Journal articles on the topic 'Clathrin-dependent endocytosis'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Clathrin-dependent endocytosis.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
MOUSAVI, Seyed Ali, Lene MALERØD, Trond BERG, and Rune KJEKEN. "Clathrin-dependent endocytosis." Biochemical Journal 377, no. 1 (2004): 1–16. http://dx.doi.org/10.1042/bj20031000.
Full textTorgersen, Maria L., Grethe Skretting, Bo van Deurs, and Kirsten Sandvig. "Internalization of cholera toxin by different endocytic mechanisms." Journal of Cell Science 114, no. 20 (2001): 3737–47. http://dx.doi.org/10.1242/jcs.114.20.3737.
Full textStirling, Lee, Michael R. Williams, and Anthony D. Morielli. "Dual Roles for RHOA/RHO-Kinase In the Regulated Trafficking of a Voltage-sensitive Potassium Channel." Molecular Biology of the Cell 20, no. 12 (2009): 2991–3002. http://dx.doi.org/10.1091/mbc.e08-10-1074.
Full textEzratty, Ellen J., Claire Bertaux, Eugene E. Marcantonio, and Gregg G. Gundersen. "Clathrin mediates integrin endocytosis for focal adhesion disassembly in migrating cells." Journal of Cell Biology 187, no. 5 (2009): 733–47. http://dx.doi.org/10.1083/jcb.200904054.
Full textPeng, Tao, Jia-Li Wang, Wei Chen, et al. "Entry of dengue virus serotype 2 into ECV304 cells depends on clathrin-dependent endocytosis, but not on caveolae-dependent endocytosis." Canadian Journal of Microbiology 55, no. 2 (2009): 139–45. http://dx.doi.org/10.1139/w08-107.
Full textBatchelder, Erika M., and Defne Yarar. "Differential Requirements for Clathrin-dependent Endocytosis at Sites of Cell–Substrate Adhesion." Molecular Biology of the Cell 21, no. 17 (2010): 3070–79. http://dx.doi.org/10.1091/mbc.e09-12-1044.
Full textHansen, S. H., K. Sandvig, and B. van Deurs. "Molecules internalized by clathrin-independent endocytosis are delivered to endosomes containing transferrin receptors." Journal of Cell Biology 123, no. 1 (1993): 89–97. http://dx.doi.org/10.1083/jcb.123.1.89.
Full textDelos Santos, Ralph Christian, Stephen Bautista, Stefanie Lucarelli, et al. "Selective regulation of clathrin-mediated epidermal growth factor receptor signaling and endocytosis by phospholipase C and calcium." Molecular Biology of the Cell 28, no. 21 (2017): 2802–18. http://dx.doi.org/10.1091/mbc.e16-12-0871.
Full textSauvonnet, Nathalie, Annick Dujeancourt та Alice Dautry-Varsat. "Cortactin and dynamin are required for the clathrin-independent endocytosis of γc cytokine receptor". Journal of Cell Biology 168, № 1 (2004): 155–63. http://dx.doi.org/10.1083/jcb.200406174.
Full textTuli, Amit, Mahak Sharma, Haley Capek, Naava Naslavsky, Steve Caplan, and Joyce Solheim. "APLP2 Diverts MHC-Peptide Complexes to Clathrin-Mediated Endocytosis and Lysosomal Degradation (78.14)." Journal of Immunology 182, no. 1_Supplement (2009): 78.14. http://dx.doi.org/10.4049/jimmunol.182.supp.78.14.
Full textSieczkarski, Sara B., and Gary R. Whittaker. "Influenza Virus Can Enter and Infect Cells in the Absence of Clathrin-Mediated Endocytosis." Journal of Virology 76, no. 20 (2002): 10455–64. http://dx.doi.org/10.1128/jvi.76.20.10455-10464.2002.
Full textWu, Xufeng, Xiaohong Zhao, Lauren Baylor, Shivani Kaushal, Evan Eisenberg, and Lois E. Greene. "Clathrin exchange during clathrin-mediated endocytosis." Journal of Cell Biology 155, no. 2 (2001): 291–300. http://dx.doi.org/10.1083/jcb.200104085.
Full textHendricks, Emily L., and Faith L. W. Liebl. "The CHD family chromatin remodeling enzyme, Kismet, promotes both clathrin-mediated and activity-dependent bulk endocytosis." PLOS ONE 19, no. 3 (2024): e0300255. http://dx.doi.org/10.1371/journal.pone.0300255.
Full textLaniosz, Valerie, Kirsten A. Holthusen, and Patricio I. Meneses. "Bovine Papillomavirus Type 1: from Clathrin to Caveolin." Journal of Virology 82, no. 13 (2008): 6288–98. http://dx.doi.org/10.1128/jvi.00569-08.
Full textTanabe, Kenji, Tetsuo Torii, Waka Natsume, Sten Braesch-Andersen, Toshio Watanabe, and Masanobu Satake. "A Novel GTPase-activating Protein for ARF6 Directly Interacts with Clathrin and Regulates Clathrin-dependent Endocytosis." Molecular Biology of the Cell 16, no. 4 (2005): 1617–28. http://dx.doi.org/10.1091/mbc.e04-08-0683.
Full textGlodowski, Doreen R., Carlos Chih-Hsiung Chen, Henry Schaefer, Barth D. Grant, and Christopher Rongo. "RAB-10 Regulates Glutamate Receptor Recycling in a Cholesterol-dependent Endocytosis Pathway." Molecular Biology of the Cell 18, no. 11 (2007): 4387–96. http://dx.doi.org/10.1091/mbc.e07-05-0486.
Full textHyman, Tehila, Miri Shmuel, and Yoram Altschuler. "Actin Is Required for Endocytosis at the Apical Surface of Madin-Darby Canine Kidney Cells where ARF6 and Clathrin Regulate the Actin Cytoskeleton." Molecular Biology of the Cell 17, no. 1 (2006): 427–37. http://dx.doi.org/10.1091/mbc.e05-05-0420.
Full textHemalatha, Anupama, Chaitra Prabhakara, and Satyajit Mayor. "Endocytosis of Wingless via a dynamin-independent pathway is necessary for signaling in Drosophila wing discs." Proceedings of the National Academy of Sciences 113, no. 45 (2016): E6993—E7002. http://dx.doi.org/10.1073/pnas.1610565113.
Full textSubtil, A., and A. Dautry-Varsat. "Microtubule depolymerization inhibits clathrin coated-pit internalization in non-adherent cell lines while interleukin 2 endocytosis is not affected." Journal of Cell Science 110, no. 19 (1997): 2441–47. http://dx.doi.org/10.1242/jcs.110.19.2441.
Full textGerhard, Ralf, Eileen Frenzel, Sebastian Goy, and Alexandra Olling. "Cellular uptake of Clostridium difficile TcdA and truncated TcdA lacking the receptor binding domain." Journal of Medical Microbiology 62, no. 9 (2013): 1414–22. http://dx.doi.org/10.1099/jmm.0.057828-0.
Full textLaniosz, Valerie, Sarah A. Dabydeen, Mallory A. Havens, and Patricio I. Meneses. "Human Papillomavirus Type 16 Infection of Human Keratinocytes Requires Clathrin and Caveolin-1 and Is Brefeldin A Sensitive." Journal of Virology 83, no. 16 (2009): 8221–32. http://dx.doi.org/10.1128/jvi.00576-09.
Full textRojek, Jillian M., Mar Perez, and Stefan Kunz. "Cellular Entry of Lymphocytic Choriomeningitis Virus." Journal of Virology 82, no. 3 (2007): 1505–17. http://dx.doi.org/10.1128/jvi.01331-07.
Full textKawasaki, Takumi, Takeshi Kobayashi, Takehiko Ueyama, Yasuhito Shirai та Naoaki Saito. "Regulation of clathrin-dependent endocytosis by diacylglycerol kinase δ: importance of kinase activity and binding to AP2α". Biochemical Journal 409, № 2 (2007): 471–79. http://dx.doi.org/10.1042/bj20070755.
Full textCheng, Zhi-Jie, Raman Deep Singh, Deepak K. Sharma, et al. "Distinct Mechanisms of Clathrin-independent Endocytosis Have Unique Sphingolipid Requirements." Molecular Biology of the Cell 17, no. 7 (2006): 3197–210. http://dx.doi.org/10.1091/mbc.e05-12-1101.
Full textXinhan, Lou, Masafumi Matsushita, Manami Numaza, Akira Taguchi, Keiji Mitsui, and Hiroshi Kanazawa. "Na+/H+ exchanger isoform 6 (NHE6/SLC9A6) is involved in clathrin-dependent endocytosis of transferrin." American Journal of Physiology-Cell Physiology 301, no. 6 (2011): C1431—C1444. http://dx.doi.org/10.1152/ajpcell.00154.2011.
Full textHemalatha, Anupama, and Satyajit Mayor. "Recent advances in clathrin-independent endocytosis." F1000Research 8 (January 31, 2019): 138. http://dx.doi.org/10.12688/f1000research.16549.1.
Full textProsser, Derek C., Theodore G. Drivas, Lymarie Maldonado-Báez, and Beverly Wendland. "Existence of a novel clathrin-independent endocytic pathway in yeast that depends on Rho1 and formin." Journal of Cell Biology 195, no. 4 (2011): 657–71. http://dx.doi.org/10.1083/jcb.201104045.
Full textLundmark, Richard, and Sven R. Carlsson. "Driving membrane curvature in clathrin-dependent and clathrin-independent endocytosis." Seminars in Cell & Developmental Biology 21, no. 4 (2010): 363–70. http://dx.doi.org/10.1016/j.semcdb.2009.11.014.
Full textMoskowitz, Howard S., Charles T. Yokoyama, and Timothy A. Ryan. "Highly Cooperative Control of Endocytosis by Clathrin." Molecular Biology of the Cell 16, no. 4 (2005): 1769–76. http://dx.doi.org/10.1091/mbc.e04-08-0739.
Full textQin, Siying, Xueying Wang, Pan Han, et al. "LRP1-Mediated Endocytosis May Be the Main Reason for the Difference in Cytotoxicity of Curcin and Curcin C on U2OS Osteosarcoma Cells." Toxins 14, no. 11 (2022): 771. http://dx.doi.org/10.3390/toxins14110771.
Full textMartín-Acebes, Miguel A., Mónica González-Magaldi, Angela Vázquez-Calvo, Rosario Armas-Portela, and Francisco Sobrino. "Internalization of Swine Vesicular Disease Virus into Cultured Cells: a Comparative Study with Foot-and-Mouth Disease Virus." Journal of Virology 83, no. 9 (2009): 4216–26. http://dx.doi.org/10.1128/jvi.02436-08.
Full textAustin, C. D., D. A. Lawrence, A. A. Peden, et al. "Death-receptor activation halts clathrin-dependent endocytosis." Proceedings of the National Academy of Sciences 103, no. 27 (2006): 10283–88. http://dx.doi.org/10.1073/pnas.0604044103.
Full textChaineau, Mathilde, Lydia Danglot, Véronique Proux-Gillardeaux, and Thierry Galli. "Role of HRB in Clathrin-dependent Endocytosis." Journal of Biological Chemistry 283, no. 49 (2008): 34365–73. http://dx.doi.org/10.1074/jbc.m804587200.
Full textPotapovich, Alla I., Tatyana O. Suhan, Tatsiana G. Shutava, and Vladimir A. Kostyuk. "Receptor-mediated endocytosis is an important way for gelatin nano-particles penetration into cells." Journal of the Belarusian State University. Biology, no. 1 (February 18, 2020): 3–10. http://dx.doi.org/10.33581/2521-1722-2020-1-3-10.
Full textLong, Gang, Xiaoyu Pan, Richard Kormelink, and Just M. Vlak. "Functional Entry of Baculovirus into Insect and Mammalian Cells Is Dependent on Clathrin-Mediated Endocytosis." Journal of Virology 80, no. 17 (2006): 8830–33. http://dx.doi.org/10.1128/jvi.00880-06.
Full textSingh, Raman Deep, Vishwajeet Puri, Jacob T. Valiyaveettil, David L. Marks, Robert Bittman, and Richard E. Pagano. "Selective Caveolin-1–dependent Endocytosis of Glycosphingolipids." Molecular Biology of the Cell 14, no. 8 (2003): 3254–65. http://dx.doi.org/10.1091/mbc.e02-12-0809.
Full textThiery, Jerome, Dennis Keefe, Saviz Saffarian, et al. "Perforin activates clathrin- and dynamin-dependent endocytosis, which is required for plasma membrane repair and delivery of granzyme B for granzyme-mediated apoptosis." Blood 115, no. 8 (2010): 1582–93. http://dx.doi.org/10.1182/blood-2009-10-246116.
Full textShakor, Abo Bakr Abdel, Makoto Taniguchi, Kazuyuki Kitatani, et al. "Sphingomyelin Synthase 1-generated Sphingomyelin Plays an Important Role in Transferrin Trafficking and Cell Proliferation." Journal of Biological Chemistry 286, no. 41 (2011): 36053–62. http://dx.doi.org/10.1074/jbc.m111.228593.
Full textAugustine, G. J., J. R. Morgan, C. A. Villalba-Galea, S. Jin, K. Prasad, and E. M. Lafer. "Clathrin and synaptic vesicle endocytosis: studies at the squid giant synapse." Biochemical Society Transactions 34, no. 1 (2006): 68–72. http://dx.doi.org/10.1042/bst0340068.
Full textPopova, N. V., I. E. Deyev, and A. G. Petrenko. "Clathrin-Mediated Endocytosis and Adaptor Proteins." Acta Naturae 5, no. 3 (2013): 62–73. http://dx.doi.org/10.32607/20758251-2013-5-3-62-73.
Full textLiu, Jiang, and Joseph I. Shapiro. "Endocytosis and Signal Transduction: Basic Science Update." Biological Research For Nursing 5, no. 2 (2003): 117–28. http://dx.doi.org/10.1177/1099800403256860.
Full textBouchard, Beth A., Natalie T. Meisler, Michael E. Nesheim, and Paula B. Tracy. "Uptake of Factor V by Megakaryocytes Requires a Specific Factor V Receptor Linked to a Low-Density Lipoprotein Receptor-Related Protein." Blood 106, no. 11 (2005): 688. http://dx.doi.org/10.1182/blood.v106.11.688.688.
Full textIvanova, Margarita M., Julia Dao, Neil Kasaci, Benjamin Adewale, Jacqueline Fikry та Ozlem Goker-Alpan. "Rapid Clathrin-Mediated Uptake of Recombinant α-Gal-A to Lysosome Activates Autophagy". Biomolecules 10, № 6 (2020): 837. http://dx.doi.org/10.3390/biom10060837.
Full textSun, Tian-Xiao, Alfred Van Hoek, Yan Huang, Richard Bouley, Margaret McLaughlin, and Dennis Brown. "Aquaporin-2 localization in clathrin-coated pits: inhibition of endocytosis by dominant-negative dynamin." American Journal of Physiology-Renal Physiology 282, no. 6 (2002): F998—F1011. http://dx.doi.org/10.1152/ajprenal.00257.2001.
Full textTeckchandani, Anjali, Erin E. Mulkearns, Timothy W. Randolph, Natalie Toida та Jonathan A. Cooper. "The clathrin adaptor Dab2 recruits EH domain scaffold proteins to regulate integrin β1 endocytosis". Molecular Biology of the Cell 23, № 15 (2012): 2905–16. http://dx.doi.org/10.1091/mbc.e11-12-1007.
Full textBouley, Richard, Naofumi Yui, Abby Terlouw, Pui W. Cheung, and Dennis Brown. "Chlorpromazine Induces Basolateral Aquaporin-2 Accumulation via F-Actin Depolymerization and Blockade of Endocytosis in Renal Epithelial Cells." Cells 9, no. 4 (2020): 1057. http://dx.doi.org/10.3390/cells9041057.
Full textLlorente, A., K. Prydz, M. Sprangers, G. Skretting, S. O. Kolset, and K. Sandvig. "Proteoglycan synthesis is increased in cells with impaired clathrin-dependent endocytosis." Journal of Cell Science 114, no. 2 (2001): 335–43. http://dx.doi.org/10.1242/jcs.114.2.335.
Full textBoleti, H., A. Benmerah, D. M. Ojcius, N. Cerf-Bensussan, and A. Dautry-Varsat. "Chlamydia infection of epithelial cells expressing dynamin and Eps15 mutants: clathrin-independent entry into cells and dynamin-dependent productive growth." Journal of Cell Science 112, no. 10 (1999): 1487–96. http://dx.doi.org/10.1242/jcs.112.10.1487.
Full textGao, Jin, Ajeet Chaudhary, Prasad Vaddepalli, Marie-Kristin Nagel, Erika Isono, and Kay Schneitz. "The Arabidopsis receptor kinase STRUBBELIG undergoes clathrin-dependent endocytosis." Journal of Experimental Botany 70, no. 15 (2019): 3881–94. http://dx.doi.org/10.1093/jxb/erz190.
Full textChoi, Shinkyu, Ji Aee Kim, Seikwan Oh, Mi Hye Park, Geum Joon Cho, and Suk Hyo Suh. "Internalization and Transportation of Endothelial Cell Surface KCa2.3 and KCa3.1 in Normal Pregnancy and Preeclampsia." Oxidative Medicine and Cellular Longevity 2019 (November 23, 2019): 1–13. http://dx.doi.org/10.1155/2019/5820839.
Full text