Journal articles on the topic 'Click-chemistry based activity probe'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Click-chemistry based activity probe.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Luijkx, Yvette M. C. A., Seino Jongkees, Karin Strijbis, and Tom Wennekes. "Development of a 1,2-difluorofucoside activity-based probe for profiling GH29 fucosidases." Organic & Biomolecular Chemistry 19, no. 13 (2021): 2968–77. http://dx.doi.org/10.1039/d1ob00054c.
Full textBell, Jessica L., Andrew J. Haak, Susan M. Wade, Yihan Sun, Richard R. Neubig, and Scott D. Larsen. "Design and synthesis of tag-free photoprobes for the identification of the molecular target for CCG-1423, a novel inhibitor of the Rho/MKL1/SRF signaling pathway." Beilstein Journal of Organic Chemistry 9 (May 21, 2013): 966–73. http://dx.doi.org/10.3762/bjoc.9.111.
Full textIsmail, Hanafy M., Victoria Barton, Matthew Phanchana, et al. "Artemisinin activity-based probes identify multiple molecular targets within the asexual stage of the malaria parasites Plasmodium falciparum 3D7." Proceedings of the National Academy of Sciences 113, no. 8 (2016): 2080–85. http://dx.doi.org/10.1073/pnas.1600459113.
Full textChen, Guilin, Hui Feng, Wenbin Xi, Jing Xu, Saifei Pan, and Zhaosheng Qian. "Thiol–ene click reaction-induced fluorescence enhancement by altering the radiative rate for assaying butyrylcholinesterase activity." Analyst 144, no. 2 (2019): 559–66. http://dx.doi.org/10.1039/c8an01808a.
Full textYan, Xiaowen, Yacui Luo, Zhubao Zhang, et al. "Europium-Labeled Activity-Based Probe through Click Chemistry: Absolute Serine Protease Quantification Using 153Eu Isotope Dilution ICP/MS." Angewandte Chemie 124, no. 14 (2012): 3414–19. http://dx.doi.org/10.1002/ange.201108277.
Full textYan, Xiaowen, Yacui Luo, Zhubao Zhang, et al. "Europium-Labeled Activity-Based Probe through Click Chemistry: Absolute Serine Protease Quantification Using 153Eu Isotope Dilution ICP/MS." Angewandte Chemie International Edition 51, no. 14 (2012): 3358–63. http://dx.doi.org/10.1002/anie.201108277.
Full textYao, Tingting, Xiaowei Xu, and Rong Huang. "Recent Advances about the Applications of Click Reaction in Chemical Proteomics." Molecules 26, no. 17 (2021): 5368. http://dx.doi.org/10.3390/molecules26175368.
Full textLin, Vivian S. "Interrogating Plant-Microbe Interactions with Chemical Tools: Click Chemistry Reagents for Metabolic Labeling and Activity-Based Probes." Molecules 26, no. 1 (2021): 243. http://dx.doi.org/10.3390/molecules26010243.
Full textTyler, Dean S., Johanna Vappiani, Tatiana Cañeque, et al. "Click chemistry enables preclinical evaluation of targeted epigenetic therapies." Science 356, no. 6345 (2017): 1397–401. http://dx.doi.org/10.1126/science.aal2066.
Full textSerim, Sevnur, Susanne V. Mayer, and Steven H. L. Verhelst. "Tuning activity-based probe selectivity for serine proteases by on-resin ‘click’ construction of peptide diphenyl phosphonates." Organic & Biomolecular Chemistry 11, no. 34 (2013): 5714. http://dx.doi.org/10.1039/c3ob40907d.
Full textVaidya, Aditya S., Francis C. Peterson, James Eckhardt, et al. "Click-to-lead design of a picomolar ABA receptor antagonist with potent activity in vivo." Proceedings of the National Academy of Sciences 118, no. 38 (2021): e2108281118. http://dx.doi.org/10.1073/pnas.2108281118.
Full textVerhelst, Steven H. L., Kimberly M. Bonger, and Lianne I. Willems. "Bioorthogonal Reactions in Activity-Based Protein Profiling." Molecules 25, no. 24 (2020): 5994. http://dx.doi.org/10.3390/molecules25245994.
Full textWang, Jun, Mahesh Uttamchandani, Junqi Li, Mingyu Hu, and Shao Q. Yao. "“Click” synthesis of small molecule probes for activity-based fingerprinting of matrix metalloproteases." Chem. Commun., no. 36 (2006): 3783–85. http://dx.doi.org/10.1039/b609446e.
Full textCavett, Valerie, and Brian M. Paegel. "Multiplexed Enzyme Activity-Based Probe Display via Hybridization." ACS Combinatorial Science 22, no. 11 (2020): 579–85. http://dx.doi.org/10.1021/acscombsci.0c00116.
Full textGao, Xinxin, and Jin Zhang. "FRET-Based Activity Biosensors to Probe Compartmentalized Signaling." ChemBioChem 11, no. 2 (2009): 147–51. http://dx.doi.org/10.1002/cbic.200900594.
Full textCavalli, Silvia, Anna J. S. Houben, Harald M. H. G. Albers, et al. "Development of an Activity-Based Probe for Autotaxin." ChemBioChem 11, no. 16 (2010): 2311–17. http://dx.doi.org/10.1002/cbic.201000349.
Full textKikuchi, Kazuya, Shigeki Hashimoto, Shin Mizukami, and Tetsuo Nagano. "Anion Sensor-Based Ratiometric Peptide Probe for Protein Kinase Activity." Organic Letters 11, no. 13 (2009): 2732–35. http://dx.doi.org/10.1021/ol9006508.
Full textLu, Chun-Ping, Chien-Tai Ren, Shih-Hsiung Wu, Chi-Yuan Chu, and Lee-Chiang Lo. "Development of an Activity-Based Probe for Steroid Sulfatases." ChemBioChem 8, no. 18 (2007): 2187–90. http://dx.doi.org/10.1002/cbic.200700279.
Full textSchleifenbaum, Andreas, Gunter Stier, Alexander Gasch, Michael Sattler, and Carsten Schultz. "Genetically Encoded FRET Probe for PKC Activity Based on Pleckstrin." Journal of the American Chemical Society 126, no. 38 (2004): 11786–87. http://dx.doi.org/10.1021/ja0460155.
Full textShaulov-Rotem, Yulia, Emmanuelle Merquiol, Tommy Weiss-Sadan, et al. "A novel quenched fluorescent activity-based probe reveals caspase-3 activity in the endoplasmic reticulum during apoptosis." Chemical Science 7, no. 2 (2016): 1322–37. http://dx.doi.org/10.1039/c5sc03207e.
Full textHira, Jonathan, Md Jalal Uddin, Marius M. Haugland, and Christian S. Lentz. "From Differential Stains to Next Generation Physiology: Chemical Probes to Visualize Bacterial Cell Structure and Physiology." Molecules 25, no. 21 (2020): 4949. http://dx.doi.org/10.3390/molecules25214949.
Full textBennett, Kristen, Natalie C. Sadler, Aaron T. Wright, Chris Yeager, and Michael R. Hyman. "Activity-Based Protein Profiling of Ammonia Monooxygenase in Nitrosomonas europaea." Applied and Environmental Microbiology 82, no. 8 (2016): 2270–79. http://dx.doi.org/10.1128/aem.03556-15.
Full textHong, Jong-Ah, Na-Eun Choi, Yeo-Kyoung La, Ho Yeon Nam, Jiwon Seo, and Jiyoun Lee. "Development of a smart activity-based probe to detect subcellular activity of asparaginyl endopeptidase in living cells." Organic & Biomolecular Chemistry 15, no. 38 (2017): 8018–22. http://dx.doi.org/10.1039/c7ob01467h.
Full textGu, Xiaodong, Ying Huang, Bruce S. Levison, et al. "Identification of Critical Paraoxonase 1 Residues Involved in High Density Lipoprotein Interaction." Journal of Biological Chemistry 291, no. 4 (2015): 1890–904. http://dx.doi.org/10.1074/jbc.m115.678334.
Full textTantama, Mathew, Wan-Chen Lin, and Stuart Licht. "An Activity-Based Protein Profiling Probe for the Nicotinic Acetylcholine Receptor." Journal of the American Chemical Society 130, no. 47 (2008): 15766–67. http://dx.doi.org/10.1021/ja805868x.
Full textSerdiuk, Illia E., Milena Reszka, Henryk Myszka, Karol Krzymiński, Beata Liberek та Alexander D. Roshal. "Flavonol-based fluorescent indicator for determination of β-glucosidase activity". RSC Advances 6, № 48 (2016): 42532–36. http://dx.doi.org/10.1039/c6ra06062e.
Full textHu, Juan, Wen-can Li, Jian-Ge Qiu, BingHua Jiang, and Chun-yang Zhang. "A multifunctional DNA nanostructure based on multicolor FRET for nuclease activity assay." Analyst 145, no. 18 (2020): 6054–60. http://dx.doi.org/10.1039/d0an01212b.
Full textJiang, Jie, Haifeng Sun, Yanlei Hu, Gang Lu, Jiwei Cui, and Jingcheng Hao. "AIE + ESIPT activity-based NIR Cu2+ sensor with dye participated binding strategy." Chemical Communications 57, no. 62 (2021): 7685–88. http://dx.doi.org/10.1039/d1cc02233d.
Full textUcar, Ahmet, Eva González-Fernández, Matteo Staderini, et al. "Miniaturisation of a peptide-based electrochemical protease activity sensor using platinum microelectrodes." Analyst 145, no. 3 (2020): 975–82. http://dx.doi.org/10.1039/c9an02321f.
Full textPoreba, Marcin, Wioletta Rut, Matej Vizovisek, et al. "Selective imaging of cathepsin L in breast cancer by fluorescent activity-based probes." Chemical Science 9, no. 8 (2018): 2113–29. http://dx.doi.org/10.1039/c7sc04303a.
Full textHowell, Amy, Santosh Keshipeddy, Yu Shi, Nathan Hnatiuk, Martha Morton, and Xudong Yao. "Design and Synthesis of an Activity-Based Probe Template for Protein Kinases." Synlett 2010, no. 04 (2009): 521–24. http://dx.doi.org/10.1055/s-0029-1218543.
Full textHowell, Amy, Santosh Keshipeddy, Yu Shi, Nathan Hnatiuk, Martha Morton, and Xudong Yao. "Design and Synthesis of an Activity-Based Probe Template for Protein Kinases." Synlett 2010, no. 07 (2010): 1142. http://dx.doi.org/10.1055/s-0029-1219805.
Full textHirayama, Yuichiro, Yuta Tsunematsu, Yuko Yoshikawa, et al. "Activity-Based Probe for Screening of High-Colibactin Producers from Clinical Samples." Organic Letters 21, no. 12 (2019): 4490–94. http://dx.doi.org/10.1021/acs.orglett.9b01345.
Full textXiao, Wei, Fang Liu, Gen-Ping Yan, et al. "Yttrium vanadates based ratiometric fluorescence probe for alkaline phosphatase activity sensing." Colloids and Surfaces B: Biointerfaces 185 (January 2020): 110618. http://dx.doi.org/10.1016/j.colsurfb.2019.110618.
Full textSchwaid, Adam G., Wanida Ruangsiriluk, Allan R. Reyes, et al. "Development of a selective activity-based probe for glycosylated LIPA." Bioorganic & Medicinal Chemistry Letters 26, no. 8 (2016): 1993–96. http://dx.doi.org/10.1016/j.bmcl.2016.02.089.
Full textWangngae, Sirilak, Thitima Pewklang, Kantapat Chansaenpak, et al. "A chalcone-based fluorescent responsive probe for selective detection of nitroreductase activity in bacteria." New Journal of Chemistry 45, no. 26 (2021): 11566–73. http://dx.doi.org/10.1039/d1nj01794b.
Full textXiao, Junpeng, Petr Broz, Aaron W. Puri, et al. "A Coupled Protein and Probe Engineering Approach for Selective Inhibition and Activity-Based Probe Labeling of the Caspases." Journal of the American Chemical Society 135, no. 24 (2013): 9130–38. http://dx.doi.org/10.1021/ja403521u.
Full textHe, Yong, Junli Yu, Xiangzi Hu, et al. "An activity-based fluorescent probe and its application for differentiating alkaline phosphatase activity in different cell lines." Chemical Communications 56, no. 87 (2020): 13323–26. http://dx.doi.org/10.1039/d0cc06129h.
Full textPark, Sun Young, Eugeine Jung, Jong Seung Kim, Sung-Gil Chi, and Min Hee Lee. "Cancer-Specific hNQO1-Responsive Biocompatible Naphthalimides Providing a Rapid Fluorescent Turn-On with an Enhanced Enzyme Affinity." Sensors 20, no. 1 (2019): 53. http://dx.doi.org/10.3390/s20010053.
Full textLuo, Jiajie, Hongyi Zhang, Jialiang Guan, et al. "Detection of lipase activity in human serum based on a ratiometric fluorescent probe." New Journal of Chemistry 45, no. 21 (2021): 9561–68. http://dx.doi.org/10.1039/d1nj01155c.
Full textGao, Congcong, Baoquan Che, and Hong Dai. "A new G-triplex-based strategy for sensitivity enhancement of the detection of endonuclease activity and inhibition." RSC Advances 11, no. 45 (2021): 28008–13. http://dx.doi.org/10.1039/d1ra04203c.
Full textDas, Sayantan, Julian Ihssen, Lukas Wick, Urs Spitz, and Doron Shabat. "Chemiluminescent Carbapenem‐Based Molecular Probe for Detection of Carbapenemase Activity in Live Bacteria." Chemistry – A European Journal 26, no. 16 (2020): 3647–52. http://dx.doi.org/10.1002/chem.202000217.
Full textJin, Qiang, Hongying Ma, Lei Feng, et al. "Sensing cytochrome P450 1A1 activity by a resorufin-based isoform-specific fluorescent probe." Chinese Chemical Letters 31, no. 11 (2020): 2945–49. http://dx.doi.org/10.1016/j.cclet.2020.05.038.
Full textNiu, Niu, Huipeng Zhou, Ning Liu, Hong Jiang, Zhenzhen Hu, and Cong Yu. "A perylene-based membrane intercalating conjugated oligoelectrolyte with efficient photodynamic antimicrobial activity." Chemical Communications 55, no. 30 (2019): 4395–98. http://dx.doi.org/10.1039/c9cc01357a.
Full textXu, Hao, Hairat Sabit, Gordon L. Amidon, and H. D. Hollis Showalter. "An improved synthesis of a fluorophosphonate–polyethylene glycol–biotin probe and its use against competitive substrates." Beilstein Journal of Organic Chemistry 9 (January 15, 2013): 89–96. http://dx.doi.org/10.3762/bjoc.9.12.
Full textShi, Fanping, Danyi Shang, and Zonghua Wang. "An rGQD/chitosan nanocomposite-based pH-sensitive probe: application to sensing in urease activity assays." New Journal of Chemistry 43, no. 34 (2019): 13398–407. http://dx.doi.org/10.1039/c9nj03268a.
Full textZhang, Bin, Lijing Xu, Yindi Zhou, Weijian Zhang, Yuanhong Wang, and Yu Zhu. "Synthesis and activity of a coumarin‐based fluorescent probe for hydroxyl radical detection." Luminescence 35, no. 2 (2019): 305–11. http://dx.doi.org/10.1002/bio.3728.
Full textOhta, Yuhei, Hiroo Wakita, Mitsuyasu Kawaguchi, Naoya Ieda, Shigehiro Osada, and Hidehiko Nakagawa. "Ratiometric assay of CARM1 activity using a FRET-based fluorescent probe." Bioorganic & Medicinal Chemistry Letters 29, no. 22 (2019): 126728. http://dx.doi.org/10.1016/j.bmcl.2019.126728.
Full textZhan, Ruoyu, Angela Jun Hiong Tan, and Bin Liu. "Conjugated polyelectrolyte as signal amplifier for fluorogenic probe based enzyme activity study." Polym. Chem. 2, no. 2 (2011): 417–21. http://dx.doi.org/10.1039/c0py00265h.
Full textKoenders, Sebastiaan T. A., Eva J. Rooden, Hans Elst, Bogdan I. Florea, Herman S. Overkleeft, and Mario Stelt. "STA‐55, an Easily Accessible, Broad‐Spectrum, Activity‐Based Aldehyde Dehydrogenase Probe." ChemBioChem 21, no. 13 (2020): 1911–17. http://dx.doi.org/10.1002/cbic.201900771.
Full text