Academic literature on the topic 'Climate impact'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Climate impact.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Climate impact"
Gerstengarbe, Friedrich-Wilhelm, Fred Hattermann, and Peggy Gräfe. "German climate change impact study." Meteorologische Zeitschrift 24, no. 2 (April 13, 2015): 121–22. http://dx.doi.org/10.1127/metz/2015/0666.
Full textDr. P. Subramanyachary, Dr P. Subramanyachary, and Dr S. SiddiRaju Dr. S. SiddiRaju. "Climate Chage – Impact of Different Cyclones." Paripex - Indian Journal Of Research 2, no. 1 (January 15, 2012): 59–61. http://dx.doi.org/10.15373/22501991/jan2013/22.
Full textMitchell, Jamie A., Philip E. Bett, Helen M. Hanlon, and Andrew Saulter. "Investigating the impact of climate change on the UK wave power climate." Meteorologische Zeitschrift 26, no. 3 (June 14, 2017): 291–306. http://dx.doi.org/10.1127/metz/2016/0757.
Full textKumar, Kiran. "Impact of Climate Change on Human Health." Indian Journal of Applied Research 4, no. 1 (October 1, 2011): 309–11. http://dx.doi.org/10.15373/2249555x/jan2014/90.
Full textMarais, Karen, Stephen P. Lukachko, Mina Jun, Anuja Mahashabde, and Ian A. Waitz. "Assessing the impact of aviation on climate." Meteorologische Zeitschrift 17, no. 2 (April 28, 2008): 157–72. http://dx.doi.org/10.1127/0941-2948/2008/0274.
Full textAlmahdi Ibrahim Basha, Nouraldin. "Impact of Climate Change on Agriculture Productivity." International Journal of Science and Research (IJSR) 12, no. 3 (March 5, 2023): 601–4. http://dx.doi.org/10.21275/sr23216131824.
Full textHodson, Hal. "Keystone's climate impact." New Scientist 223, no. 2982 (August 2014): 10. http://dx.doi.org/10.1016/s0262-4079(14)61560-8.
Full textWang, Ronald, and Carly Wang. "Climate Change Impact on Health—Modelling Climate Change Impacts use R." OAJRC Environmental Science 3, no. 1 (January 14, 2023): 30–35. http://dx.doi.org/10.26855/oajrces.2022.12.004.
Full textAM, Penjiyev. "Impact of Renewable Energy Sources on Climate Change." Journal of Energy and Environmental Science 1, no. 1 (November 14, 2023): 1–5. http://dx.doi.org/10.23880/jeesc-16000102.
Full textIngole, Sangita P., and Aruna U. Kakde. "Global Warming and Climate Change: Impact on Biodiversity." International Journal of Scientific Research 2, no. 5 (June 1, 2012): 288–90. http://dx.doi.org/10.15373/22778179/may2013/96.
Full textDissertations / Theses on the topic "Climate impact"
Molloy, Jarlath Michael Patrick. "Mitigating aviation's climate impact in europe." Thesis, Imperial College London, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.535997.
Full textLago, César Ambrogi Ferreira do. "Climate changes impacts on subtropical urban drainage with low impact developments." Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/18/18138/tde-19062018-163056/.
Full textTécnicas compensatórias de drenagem (TC) vêm sido utilizadas para mitigar efeitos da urbanização no ciclo hidrológico. Entretanto faltam estudos sobre a performance destas TCs em clima subtropical e sob potenciais impactos de cenários de mudanças climáticas. Esta dissertação avaliou os impactos de dois cenários de mudanças climáticas (RCP 4.5 e 8.5) sobre o escoamento superficial urbano com poluentes e sua afetação na eficiência da TC localizada em clima subtropical, classificação Cfa segundo Köppen e Geiger. Primeiro se calibrou os parâmetros de quantidade e qualidade do escoamento superficial na entrada da biorretenção. O modelo buildup/washoff foi avaliado, comparando-se calibração da carga e concentração de poluentes: demanda química de oxigênio (DQO), carbono orgânico total (TOC), fosfato (PO4), nitrato (NO3), nitrito (NO2) amônia (NH3), ferro (Fe), cadmio (Cd) e zinco (Zn). Então se estudou a lavagem de poluentes na área de contribuição da biorretenção com histórico de precipitação entre 2013 e 2017 e analisando a influência dos parâmetros buildup/washoff de cada poluente na entrada de massa. Em seguida, cenários de mudanças climáticas Eta-5x5km (INPE) foram desagregados em intervalos de 5 minutos, pelo método de Bartlett-Lewis modificado. A série desagregada foi utilizada para se estimar os impactos das mudanças climáticas na drenagem urbana, a incidir na biorretenção. Então um modelo simples desenvolvido especificamente para a biorretenção em estudo foi usado para se estimar as eficiências quali-quantitativas de cada período dos cenários de mudanças climáticas. Os dados adquiridos do Inpe mostram que as mudanças climáticas resultarão em uma queda no volume de chuvas em São Carlos, resultando em menores volumes de escoamento superficial. Os impactos na lavagem de poluentes, entretanto, variam de acordo com os parâmetros buildup/washoff, explicados por uma análise de sensibilidade. As mudanças climáticas pouco afetam a eficiência quantitativa da biorretenção, 81.7% no período 1980-1999 para 81.4% e 81.3% no período 2080-2099 para cenários RCP 4.5 e 8.5. Já as eficiências de remoção de poluentes, assim como a lavagem destes, dependem das características buildup/washoff de lavagem. Uma das principais consequências observadas das mudanças climáticas é uma queda na qualidade do escoamento. Porém, mesmo com eficiência quantitativa sendo mantida, a biorretenção é capaz de amenizar essa o aumento na concentração de poluentes na drenagem urbana. Assim, a técnica ajudará a preservar a qualidade dos rios à jusante, que já terão seus volumes diminuídos pela queda no volume de chuva.
Holsten, Anne. "Climate change vulnerability assessments in the regional context." Phd thesis, Universität Potsdam, 2013. http://opus.kobv.de/ubp/volltexte/2013/6683/.
Full textDie Anpassung von Sektoren an veränderte klimatische Bedingungen erfordert ein Verständnis von regionalen Vulnerabilitäten. Vulnerabilität ist als Funktion von Sensitivität und Exposition, welche potentielle Auswirkungen des Klimawandels darstellen, und der Anpassungsfähigkeit von Systemen definiert. Vulnerabilitätsstudien, die diese Komponenten quantifizieren, sind zu einem wichtigen Werkzeug in der Klimawissenschaft geworden. Allerdings besteht von der wissenschaftlichen Perspektive aus gesehen Uneinigkeit darüber, wie diese Definition in Studien umgesetzt werden soll. Ausdiesem Konflikt ergeben sich viele Herausforderungen, vor allem bezüglich der Quantifizierung und Aggregierung der einzelnen Komponenten und deren angemessenen Komplexitätsniveaus. Die vorliegende Dissertation hat daher zum Ziel die Anwendbarkeit des Vulnerabilitätskonzepts voranzubringen, indem es in eine systematische Struktur übersetzt wird. Dies beinhaltet alle Komponenten und schlägt für jede Klimaauswirkung (z.B. Sturzfluten) eine Beschreibung des vulnerablen Systems vor (z.B. Siedlungen), welches direkt mit einer bestimmten Richtung eines relevanten klimatischen Stimulus in Verbindung gebracht wird (z.B. stärkere Auswirkungen bei Zunahme der Starkregentage). Bezüglich der herausfordernden Prozedur der Aggregierung werden zwei alternative Methoden, die einen sektorübergreifenden Überblick ermöglichen, vorgestellt und deren Vor- und Nachteile diskutiert. Anschließend wird die entwickelte Struktur einer Vulnerabilitätsstudie mittels eines indikatorbasierten und deduktiven Ansatzes beispielhaft für Gemeinden in Nordrhein-Westfalen in Deutschland angewandt. Eine Übertragbarkeit auf andere Regionen ist dennoch möglich. Die Quantifizierung für die Gemeinden stützt sich dabei auf Informationen aus der Literatur. Da für viele Sektoren keine geeigneten Indikatoren vorhanden waren, werden in dieser Arbeit neue Indikatoren entwickelt und angewandt, beispielsweise für den Forst- oder Gesundheitssektor. Allerdings stellen fehlende empirische Daten bezüglich relevanter Schwellenwerte eine Lücke dar, beispielsweise welche Stärke von Klimaänderungen eine signifikante Auswirkung hervorruft. Dies führt dazu, dass die Studie nur relative Aussagen zum Grad der Vulnerabilität jeder Gemeinde im Vergleich zum Rest des Bundeslandes machen kann. Um diese Lücke zu füllen, wird für den Forstsektor beispielhaft die heutige und zukünftige Sturmwurfgefahr von Wäldern berechnet. Zu diesem Zweck werden die Eigenschaften der Wälder mit empirischen Schadensdaten eines vergangenen Sturmereignisses in Verbindung gebracht. Der sich daraus ergebende Sensitivitätswert wird anschließend mit den Windverhältnissen verknüpft. Sektorübergreifende Vulnerabilitätsstudien erfordern beträchtliche Ressourcen, was oft deren Anwendbarkeit erschwert. In einem nächsten Schritt wird daher das Potential einer Vereinfachung der Komplexität anhand zweier sektoraler Beispiele untersucht. Um das Auftreten von Waldbränden vorherzusagen, stehen zahlreiche meteorologische Indices zur Verfügung, welche eine Spannbreite unterschiedlicher Komplexitäten aufweisen. Bezüglich der Anzahl monatlicher Waldbrände weist die relative Luftfeuchtigkeit für die meisten deutschen Bundesländer eine bessere Vorhersagekraft als komplexere Indices auf. Dies ist er Fall, obgleich sie selbst als Eingangsvariable für die komplexeren Indices verwendet wird. Mit Hilfe dieses einzelnen meteorologischen Faktors kann also die Waldbrandgefahr in deutschen Region ausreichend genau ausgedrückt werden, was die Ressourceneffizienz von Studien erhöht. Die Methodenkomplexität wird auf ähnliche Weise hinsichtlich der Anwendung des ökohydrologischen Modells SWIM für die Region Brandenburg untersucht. Die interannuellen Bodenwasserwerte, welche durch dieses Modell simuliert werden, können nur unzureichend durch ein einfacheres statistisches Modell, welches auf denselben Eingangsdaten aufbaut, abgebildet werden. Innerhalb eines Zeithorizonts von Jahrzehnten, kann der statistische Ansatz jedoch das Bodenwasser zufriedenstellend abbilden und zeigt eine Dominanz der Bodeneigenschaft Feldkapazität. Dies deutet darauf hin, dass die Komplexität im Hinblick auf die Anzahl der Eingangsvariablen für langfristige Berechnungen reduziert werden kann. Allerdings sind die Aussagen durch fehlende beobachtete Bodenwasserwerte zur Validierung beschränkt. Die vorliegenden Studien zur Vulnerabilität und ihren Komponenten haben gezeigt, dass eine Anwendung noch immer wissenschaftlich herausfordernd ist. Folgt man der hier verwendeten Vulnerabilitätsdefinition, treten zahlreiche Probleme bei der Implementierung in regionalen Studien auf. Mit dieser Dissertation wurden Fortschritte bezüglich der aufgezeigten Lücken bisheriger Studien erzielt, indem eine systematische Struktur für die Beschreibung und Aggregierung von Vulnerabilitätskomponenten erarbeitet wurde. Hierfür wurden mehrere Ansätze diskutiert, die jedoch Vor- und Nachteile besitzen. Diese sollten vor der Anwendung von zukünftigen Studien daher ebenfalls sorgfältig abgewogen werden. Darüber hinaus hat sich gezeigt, dass ein Potential besteht einige Ansätze zu vereinfachen, jedoch sind hierfür weitere Untersuchungen nötig. Insgesamt konnte die Dissertation die Anwendung von Vulnerabilitätsstudien als Werkzeug zur Unterstützung von Anpassungsmaßnahmen stärken.
Najafi, Mohammad Reza. "Climate Change Impact on the Spatio-Temporal Variability of Hydro-Climate Extremes." PDXScholar, 2013. https://pdxscholar.library.pdx.edu/open_access_etds/1114.
Full textIslam, Muhammad Saiful. "Modelling the impact of climate change on health." Thesis, University of Westminster, 2014. https://westminsterresearch.westminster.ac.uk/item/8yqvv/modelling-the-impact-of-climate-change-on-health.
Full textEdwards, Morgan Rae. "Climate impact metrics for energy technology evaluation." Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/81113.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 87-97).
The climate change mitigation potential of energy technologies depends on how their lifecycle greenhouse gas emissions compare to global climate stabilization goals. Current methods for comparing technologies, which assess impacts over an arbitrary, fixed time horizon, do not acknowledge the critical link between technology choices and climate dynamics. In this thesis, I ask how we can use information about the temporal characteristics of greenhouse gases to design new metrics for comparing energy technologies. I propose two new metrics: the Cumulative Climate Impact (CCI) and Instantaneous Climate Impact (ICI). These metrics use limited information about the climate system, such as the year when stabilization occurs, to calculate tradeoffs between greenhouse gases, and hence the technologies that emit these gases. The CCI and ICI represent a middle ground between current metrics and commonly-proposed alternatives, in terms of their level of complexity and information requirements. I apply the CCI and ICI to evaluate the climate change mitigation potential of energy technologies in the transportation sector, with a focus on alternative fuels. I highlight key policy debates about the role of (a) natural gas as a "bridge" to a low carbon energy future and (b) third generation biofuels as a long-term energy solution. New metrics shed light on critical timing-related questions that current metrics gloss over. If natural gas is a bridge fuel, how long is this bridge? If algae biofuels are not commercially viable for the next twenty years, can they still provide a significant climate benefit? I simulate technology decisions using new metrics, and existing metrics like the Global Warming Potential (GWP), identifying the conditions where new metrics improve on existing methods as well as the conditions under which new metrics fail. I show that metrics of intermediate complexity, such as the CCI and ICI, provide a simple, reliable, and policy-relevant approach to technology evaluation and capture key features of the future climate system. I extend these insights to energy technologies in the electricity sector as well as a variety of environmental impact categories.
by Morgan R. Edwards.
S.M.in Technology and Policy
Berggren, Karolina. "Urban drainage and climate change : impact assessment." Licentiate thesis, Luleå tekniska universitet, Arkitektur och vatten, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-25792.
Full textGodkänd; 2007; 20071010 (karober)
Hu, Xiaolong. "Impact of climate change on power systems." Thesis, University of Manchester, 2016. https://www.research.manchester.ac.uk/portal/en/theses/impact-of-climate-change-on-power-systems(2132a62f-afa2-4d91-8381-5ec8643b97b4).html.
Full textWi, Sungwook. "Impact of Climate Change on Hydroclimatic Variables." Diss., The University of Arizona, 2012. http://hdl.handle.net/10150/265344.
Full textNilsson, Annika E. "A Changing Arctic Climate : Science and Policy in the Arctic Climate Impact Assessment." Doctoral thesis, Linköping : Linköping University, Department of Water and Environmental Studies, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-8517.
Full textBooks on the topic "Climate impact"
Council, Arctic, Arctic Climate Impact Assessment, Arctic Monitoring and Assessment Programme., Program for the Conservation of Arctic Flora and Fauna., and International Arctic Science Committee., eds. Arctic climate impact assessment. Cambridge [England]: Cambridge University Press, 2005.
Find full textClarke, Hazel. The impact of climate change. Nairobi, Kenya: United Nations Environment Programme, 1993.
Find full textSundaresan, J. Climate change impact on ecosystem. Jodhpur: Scientific Publishers, 2013.
Find full textH, Schatten Kenneth, Arking Albert, and United States. National Aeronautics and Space Administration. Scientific and Technical Information Division, eds. Climate impact of solar variability. Washington, D.C: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Division, 1990.
Find full textWMO/WHO/UNEP International Symposium on Climate and Human Health (1986 Leningrad). Climate and human health: World Climate Programme applications. [Geneva]: World Meteorological Organization, 1987.
Find full textAssessment, Arctic Climate Impact, Arctic Monitoring and Assessment Programme., Program for the Conservation of Arctic Flora and Fauna., and International Arctic Science Committee., eds. Impacts of a warming Arctic: Arctic Climate Impact Assessment. Cambridge, U.K: Cambridge University Press, 2004.
Find full textWilliam, Kates Robert, Ausubel Jesse, Berberian Mimi, and International Council of Scientific Unions. Scientific Committee on Problems of the Environment., eds. Climate impact assessment: Studies of the interaction of climate and society. Chichester [West Sussex]: Published on behalf of the Scientific Committee on Problems of the Environment of the International Council of Scientific Unions by Wiley, 1985.
Find full textCumine, P. Climate change and environmental impact assessment. Oxford: Oxford Brookes University, 2000.
Find full textPanneerselvam, Balamurugan, Chaitanya Baliram Pande, Kirubakaran Muniraj, Anand Balasubramanian, and Nagavinothini Ravichandran, eds. Climate Change Impact on Groundwater Resources. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-04707-7.
Full textK, Yamakazi, and Nihon Kishō Gakkai, eds. Aeolian dust experiment on climate impact. Tokyo, Japan: Meteorological Society of Japan, 2005.
Find full textBook chapters on the topic "Climate impact"
Levasseur, Annie. "Climate Change." In Life Cycle Impact Assessment, 39–50. Dordrecht: Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-017-9744-3_3.
Full textHemming, Debbie, Maureen D. Agnew, Clare M. Goodess, Christos Giannakopoulos, Skander Ben Salem, Marco Bindi, Mohamed Nejmeddine Bradai, et al. "Climate Impact Assessments." In Advances in Global Change Research, 61–104. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-5769-1_4.
Full textWilson, Elizabeth, and Phill Minas. "Climate and climate change." In Methods of Environmental and Social Impact Assessment, 134–63. 4th edition. | New York : Routledge, 2017. | Series: The natural and built environment series: Routledge, 2017. http://dx.doi.org/10.4324/9781315626932-5.
Full textFalsarone, Alessia. "Culture and Climate Change." In The Impact Challenge, 81–94. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003212225-7.
Full textAbdul Malak, Dania, Katriona McGlade, Diana Pascual, and Eduard Pla. "Impact Assessment." In Adapting to Climate Change, 13–32. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-51680-6_3.
Full textvan den Hurk, Bart. "Impact-Oriented Climate Information Selection." In Springer Climate, 27–32. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-86211-4_4.
Full textEslamian, Saeid, and Saeideh Parvizi. "Engineering Hydrology: Impact on Sustainable Development." In Climate Action, 1–11. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-319-71063-1_134-1.
Full textSausen, Robert, Klaus Gierens, Veronika Eyring, Johannes Hendricks, and Mattia Righi. "Climate Impact of Transport." In Atmospheric Physics, 711–25. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-30183-4_43.
Full textAbrol, Dharam P. "Impact of Climate Changes." In Asiatic Honeybee Apis cerana, 811–54. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-6928-1_19.
Full textHawryszkiewycz, Igor Titus. "Impact of Climate Change." In Transforming Organizations in Disruptive Environments, 161–80. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1453-8_10.
Full textConference papers on the topic "Climate impact"
VIDERAS, MARTA, SERGIO G. MELGAR, ANTONIO S. CORDERO, and JOSÉ MANUEL ANDÚJAR MÁRQUEZ. "FUTURE IMPACT OF CLIMATE CHANGE ON BUILDINGS’ ENERGY CONSUMPTION IN SUBTROPICAL CLIMATES." In ENVIRONMENTAL IMPACT 2020. Southampton UK: WIT Press, 2020. http://dx.doi.org/10.2495/eid200121.
Full textAudefroy, J. F. "Climate change adaptation strategies in Mexico." In ENVIRONMENTAL IMPACT 2016. Southampton UK: WIT Press, 2016. http://dx.doi.org/10.2495/eid160171.
Full textGuinard, L., S. Parey, H. Cordier, and L. Grammosenis. "Impact of Climate Change on EDF’s Nuclear Facilities: Climate Watch Approach." In 2020 International Conference on Nuclear Engineering collocated with the ASME 2020 Power Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/icone2020-16186.
Full textBUORO, ALVARO BUENO, EDUARDO CESAR COUTINHO, and DANIEL SPECHT. "EVALUATING POLICY IMPACT OF LARGE WATER RESERVOIRS UNDER CLIMATE CHANGE." In ENVIRONMENTAL IMPACT 2018. Southampton UK: WIT Press, 2018. http://dx.doi.org/10.2495/eid180131.
Full textMori, Nobuhito, Ryota Iwashima, Tomohiro Yasuda, Hajime Mase, Tracey Tom, and Yuichiro Oku. "135. IMPACT OF GLOBAL CLIMATE CHANGE ON WAVE CLIMATE." In Coastal Dynamics 2009 - Impacts of Human Activities on Dynamic Coastal Processes. WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789814282475_0134.
Full textŠilhánková, Vladimíra. "Typology of Settlements Based on Climate Impact." In 2019 UBT International conference. University for Business and Technology, 2019. http://dx.doi.org/10.33107/ubt-ic.2019.248.
Full textAli, Hendratta. "CLIMATE CRISIS: PETROLEUM. COMMUNITIES. IMPACT." In GSA Connects 2021 in Portland, Oregon. Geological Society of America, 2021. http://dx.doi.org/10.1130/abs/2021am-367538.
Full textAter, P. I., and G. C. Aye. "Economic impact of climate change on Nigerian maize sector: a Ricardian analysis." In ENVIRONMENTAL IMPACT 2012. Southampton, UK: WIT Press, 2012. http://dx.doi.org/10.2495/eid120211.
Full text"Impact of climate change on Japan's fruit industry and adaptation measures." In Climate Change and Food System – Synergies of Adaptation and Mitigation, and Climate Information for Sustainable and Climate-Resilient Agriculture. Food and Fertilizer Technology Center for the Asian and Pacific Region, 2022. http://dx.doi.org/10.56669/nugw2239.
Full textDrake, Jennifer, Andrea Bradford, and Tim Van Seters. "Performance of Permeable Pavements in Cold Climate Environments." In Low Impact Development International Conference (LID) 2010. Reston, VA: American Society of Civil Engineers, 2010. http://dx.doi.org/10.1061/41099(367)117.
Full textReports on the topic "Climate impact"
Waldo, Staffan, Hans Ellefsen, Ola Flaaten, Jónas Hallgrimsson, Cecilia Hammarlund, Øystein Hermansen, John R. Isaksen, et al. Reducing Climate Impact from Fisheries. Nordic Council of Ministers, May 2014. http://dx.doi.org/10.6027/tn2014-533.
Full textKarali, Nihan, Nina Khanna, and Nihar Shah. Climate Impact of Primary Plastic Production. Office of Scientific and Technical Information (OSTI), April 2024. http://dx.doi.org/10.2172/2336722.
Full textKarali, Nihan, Nina Khanna, and Nihar Shah. Climate Impact of Primary Plastic Production. Office of Scientific and Technical Information (OSTI), April 2024. http://dx.doi.org/10.2172/2336721.
Full textFinnsson, Páll Tómas. Optimising the impact of Nordic climate policies. Edited by John Hassler. Nordregio, December 2020. http://dx.doi.org/10.6027/pb2020:7.2001-3876.
Full textNajafi, Mohammad Reza. Climate Change Impact on the Spatio-Temporal Variability of Hydro-Climate Extremes. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.1114.
Full textE., Pramova, Chazarin F., Locatelli B., and Hoppe M. Climate change impact chains in tropical coastal areas. Center for International Forestry Research (CIFOR), 2013. http://dx.doi.org/10.17528/cifor/005179.
Full textJoyce, Linda A., and Richard Birdsey. The impact of climate change on America's forests. Ft. Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, 2000. http://dx.doi.org/10.2737/rmrs-gtr-59.
Full textDanielle Salcido, Danielle Salcido. How Will Global Climate Change Impact Tropical Communities? Experiment, December 2013. http://dx.doi.org/10.18258/1814.
Full textResearch Institute (IFPRI), International Food Policy. Climate change: Impact on agriculture and costs of adaptation. Washington, DC: International Food Policy Research Institute, 2009. http://dx.doi.org/10.2499/0896295354.
Full textPindyck, Robert. Modeling the Impact of Warming in Climate Change Economics. Cambridge, MA: National Bureau of Economic Research, January 2010. http://dx.doi.org/10.3386/w15692.
Full text