Academic literature on the topic 'Clinical support tools'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Clinical support tools.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Clinical support tools"
Kosinski, Lawrence R. "Clinical Decision Support Tools." Clinical Gastroenterology and Hepatology 11, no. 7 (July 2013): 756–59. http://dx.doi.org/10.1016/j.cgh.2013.04.015.
Full textSofianou, A., J. Kannry, D. M. Mann, T. G. McGinn, and L. J. McCullagh. "User Centered Clinical Decision Support Tools." Applied Clinical Informatics 05, no. 04 (2014): 1015–25. http://dx.doi.org/10.4338/aci-2014-05-ra-0048.
Full textModgil, S., and P. Hammond. "Decision support tools for clinical trial design." Artificial Intelligence in Medicine 27, no. 2 (February 2003): 181–200. http://dx.doi.org/10.1016/s0933-3657(02)00112-4.
Full textStillman, Robert C. "Clinical Decision Support Tools Improving Cancer Care." Seminars in Oncology Nursing 34, no. 2 (May 2018): 158–67. http://dx.doi.org/10.1016/j.soncn.2018.03.007.
Full textDighe, Anand S. "Clinical Decision Support: Tools, Strategies, and Emerging Technologies." Clinics in Laboratory Medicine 39, no. 2 (June 2019): i. http://dx.doi.org/10.1016/s0272-2712(19)30016-2.
Full textSullivan, Frank, and Jeremy C. Wyatt. "How decision support tools help define clinical problems." BMJ 331, no. 7520 (October 6, 2005): 831–33. http://dx.doi.org/10.1136/bmj.331.7520.831.
Full textJackups, Ronald. "Clinical Decision Support Tools for Microbiology Laboratory Testing." Clinical Microbiology Newsletter 42, no. 5 (March 2020): 35–44. http://dx.doi.org/10.1016/j.clinmicnews.2020.02.001.
Full textBohen, Faye, and Ceri Woodrow. "Dynamic support database clinical support tool: inter-rater reliability." Advances in Mental Health and Intellectual Disabilities 14, no. 2 (February 3, 2020): 25–32. http://dx.doi.org/10.1108/amhid-09-2019-0027.
Full textLipton, Jonathan, and Jan A. Hazelzet. "Clinical decision support systems: Important tools when appropriately used*." Pediatric Critical Care Medicine 10, no. 1 (January 2009): 128–29. http://dx.doi.org/10.1097/pcc.0b013e31819838f9.
Full textWalsh, Kieran. "What patients think of online clinical decision support tools." BMJ Simulation and Technology Enhanced Learning 4, no. 1 (February 17, 2017): 41–42. http://dx.doi.org/10.1136/bmjstel-2017-000198.
Full textDissertations / Theses on the topic "Clinical support tools"
Denney, Kimberly B. "Assessing Clinical Software User Needs for Improved Clinical Decision Support Tools." ScholarWorks, 2015. https://scholarworks.waldenu.edu/dissertations/1563.
Full textWashington, Tiffany K. "The Effects of Using Clinical Support Tools to Prevent Treatment Failure." BYU ScholarsArchive, 2010. https://scholarsarchive.byu.edu/etd/2459.
Full textWhite, Melissa Mallory. "Deterioration in Individual Psychotherapy: The Effectiveness of theClinical Support Tools." BYU ScholarsArchive, 2019. https://scholarsarchive.byu.edu/etd/7479.
Full textSlade, Karstin Lee. "Improving Psychotherapy Outcome: The Use of Immediate Electronic Feedback and Revised Clinical Support Tools." Diss., CLICK HERE for online access, 2008. http://contentdm.lib.byu.edu/ETD/image/etd2556.pdf.
Full textHarris, Mitchell Wayne. "Providing Patient Progress Information and Clinical Support Tools to Therapists: Effects on Patients at Risk for Treatment Failure." BYU ScholarsArchive, 2011. https://scholarsarchive.byu.edu/etd/3079.
Full textWeyand, Sabine A. "Development and Usability Testing of a Neonatal Intensive Care Unit Physician-Parent Decision Support Tool (PPADS)." Thèse, Université d'Ottawa / University of Ottawa, 2011. http://hdl.handle.net/10393/20141.
Full textKimball, Kevin Larry. "Toward Determining Best Items for Identifying Therapeutic Problem Areas." BYU ScholarsArchive, 2010. https://scholarsarchive.byu.edu/etd/2519.
Full textAcevedo, Lipes Andrea Milena. "Deep Learning System for the Automatic Classification of Normal and Dysplastic Peripheral Blood Cells as a Support Tool for the Diagnosis." Doctoral thesis, Universitat de Barcelona, 2021. http://hdl.handle.net/10803/671387.
Full textLos especialistas de laboratorio identifican visualmente muchas características morfológicas para identificar las diferentes células normales, así como los tipos de células anormales, cuya presencia en sangre periférica es evidencia de enfermedades graves. Algunas de las desventajas del análisis morfológico visual incluyen que toma mucho tiempo, necesita experiencia para realizar una revisión objetiva de los frotis y es propenso a la variabilidad entre observadores. Además, la mayoría de las descripciones morfológicas se proporcionan en términos cualitativos. Debido a lo expuesto anteriormente, es necesario establecer medidas cuantitativas. El objetivo general de esta tesis es el reconocimiento automático de células normales y células displásicas circulantes en sangre en síndromes mielodisplásicos mediante redes neuronales convolucionales y técnicas de procesamiento digital de imágenes. Para lograr este objetivo, este trabajo comenzó con el diseño y desarrollo de una base de datos Mysql para almacenar información e imágenes de pacientes y el desarrollo de un primer clasificador de cuatro grupos de células, utilizando redes neuronales convolucionales como extractores de características. Luego, se compila un conjunto de datos de alta calidad de alrededor de 17.000 imágenes de células sanguíneas normales y se utiliza para el desarrollo de un sistema de reconocimiento de ocho grupos de células sanguíneas. En este trabajo, comparamos dos enfoques de aprendizaje por transferencia para encontrar el mejor para clasificar los diferentes tipos de células. En la segunda parte de la tesis se desarrolla un nuevo modelo de red neuronal convolucional para el diagnóstico de síndromes mielodisplásicos. Este modelo fue validado mediante prueba de concepto. Se considera uno de los primeros modelos que se han construido para apoyar el diagnóstico. El trabajo final de la tesis es la integración de dos redes convolucionales en un sistema modular para la clasificación automática de células normales y anormales. La metodología y los modelos desarrollados constituyen un paso adelante hacia la implementación de un sistema modular para reconocer automáticamente todos los tipos de células en una configuración real en el laboratorio.
Pópulo, Jorge Miguel Martins. "High-tech diagnostic imaging clinical decision support tools adoption : study using a system dynamics approach." Dissertação, 2010. http://hdl.handle.net/10216/59802.
Full textPópulo, Jorge Miguel Martins. "High-tech diagnostic imaging clinical decision support tools adoption : study using a system dynamics approach." Master's thesis, 2010. http://hdl.handle.net/10216/59802.
Full textBooks on the topic "Clinical support tools"
Translational research and clinical practice: Basic tools for medical decision making and self-learning. New York: Oxford University Press, 2011.
Find full textEvans, Charlotte, Anne Creaton, Marcus Kennedy, and Terry Martin, eds. Respiratory support. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780198722168.003.0008.
Full textBhugra, Dinesh, Antonio Ventriglio, and Kamaldeep S. Bhui. Assessment tools and cultural formulation. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780198723196.003.0005.
Full textCoyne, Imelda, Freda Neill, and Fiona Timmins, eds. Clinical Skills in Children's Nursing. Oxford University Press, 2010. http://dx.doi.org/10.1093/oso/9780199559039.001.0001.
Full textFye, W. Bruce. The Reinvention of the American Heart Association and the Invention of Cardiac Catheterization. Oxford University Press, 2015. http://dx.doi.org/10.1093/med/9780199982356.003.0008.
Full textFeinstein, Robert E. Violence and Suicide. Edited by Robert E. Feinstein, Joseph V. Connelly, and Marilyn S. Feinstein. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780190276201.003.0018.
Full textFeuerstein, Seth. The Integration of New Technological Approaches in OCD Care. Edited by Christopher Pittenger. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780190228163.003.0065.
Full textKatritsis, Demosthenes G., Bernard J. Gersh, and A. John Camm. Clinical Cardiology. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199685288.001.0001.
Full textRandhawa, Gurvaneet S., and Edwin A. Lomotan. Harnessing Big Data-Based Technologies to Improve Cancer Care. Edited by David A. Chambers, Wynne E. Norton, and Cynthia A. Vinson. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780190647421.003.0034.
Full textBrown, Jacqueline A., and Shane R. Jimerson, eds. Supporting Bereaved Students at School. Oxford University Press, 2017. http://dx.doi.org/10.1093/med:psych/9780190606893.001.0001.
Full textBook chapters on the topic "Clinical support tools"
Cochon, Laila, and Ramin Khorasani. "Clinical Decision Support Tools for Order Entry." In Quality and Safety in Imaging, 21–34. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/174_2017_162.
Full textCypko, Mario A. "Tools for Guided BN Modeling." In Development of Clinical Decision Support Systems using Bayesian Networks, 81–102. Wiesbaden: Springer Fachmedien Wiesbaden, 2020. http://dx.doi.org/10.1007/978-3-658-32594-7_8.
Full textWasylewicz, A. T. M., and A. M. J. W. Scheepers-Hoeks. "Clinical Decision Support Systems." In Fundamentals of Clinical Data Science, 153–69. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99713-1_11.
Full textFebretti, Alessandro, Karen Dunn Lopez, Janet Stifter, Andrew E. Johnson, Gail M. Keenan, and Diana J. Wilkie. "A Component-Based Evaluation Protocol for Clinical Decision Support Interfaces." In Design, User Experience, and Usability. Design Philosophy, Methods, and Tools, 232–41. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-39229-0_26.
Full textKubben, Pieter. "Mobile Apps." In Fundamentals of Clinical Data Science, 171–79. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99713-1_12.
Full textRenapurkar, Shravan, and Robert A. Strauss. "Lasers in Oral and Maxillofacial Surgery." In Oral and Maxillofacial Surgery for the Clinician, 817–30. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-1346-6_39.
Full textTavazzi, Erica, Camille L. Gerard, Olivier Michielin, Alexandre Wicky, Roberto Gatta, and Michel A. Cuendet. "A Process Mining Approach to Statistical Analysis: Application to a Real-World Advanced Melanoma Dataset." In Lecture Notes in Business Information Processing, 291–304. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-72693-5_22.
Full textLi, David Z., Masaru Ishii, Russell H. Taylor, Gregory D. Hager, and Ayushi Sinha. "Learning Representations of Endoscopic Videos to Detect Tool Presence Without Supervision." In Multimodal Learning for Clinical Decision Support and Clinical Image-Based Procedures, 54–63. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-60946-7_6.
Full textRajapuri, Anushri Singh, Radhika Ravindran, Kevin Horan, Sherri Bucher, and Saptarshi Purkayastha. "Essential Care for Every Baby: Neonatal Clinical Decision Support Tool." In Advances in Intelligent Systems and Computing, 189–96. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-50838-8_26.
Full textVijayalakshmi, S., Savita, S. P. Gayathri, and S. Janarthanan. "Blockchain Security for Artificial Intelligence-Based Clinical Decision Support Tool." In Internet of Things, Artificial Intelligence and Blockchain Technology, 209–40. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-74150-1_10.
Full textConference papers on the topic "Clinical support tools"
Fairhurst, M. C., R. M. Guest, N. Donnelly, J. Potter, A. Deighton, and M. Patel. "Engineering software tools for assessment of visuo-spatial neglect." In IEE Colloquium on Intelligent Decision Support in Clinical Practice. IEE, 1998. http://dx.doi.org/10.1049/ic:19980788.
Full textIfeachor, E. C., J. M. Garibaldi, and J. Skinner. "Intelligent decision support tools for the management of labour: the INFANT and DataCare expert systems." In IEE Colloquium on Intelligent Decision Support in Clinical Practice. IEE, 1998. http://dx.doi.org/10.1049/ic:19980792.
Full textGallerani, Massimo, Dario Pelizzola, Marcello Pivanti, Giovanni Guerra, Michela Boni, Evelina Lamma, and Elena Bellodi. "Reducing Laboratory Examinations by a Computer-Aided Clinical Decision Support System." In 2015 IEEE 27th International Conference on Tools with Artificial Intelligence (ICTAI). IEEE, 2015. http://dx.doi.org/10.1109/ictai.2015.112.
Full textKerexeta, Jon, Jordi Torres, Naiara Muro, Kristin Rebescher, and Nekane Larburu. "Adaptative Clinical Decision Support System using Machine Learning and Authoring Tools." In 13th International Conference on Health Informatics. SCITEPRESS - Science and Technology Publications, 2020. http://dx.doi.org/10.5220/0008952200950105.
Full textCeccarelli, Michele, Antonio Donatiello, and Dante Vitale. "KON^3: A Clinical Decision Support System, in Oncology Environment, Based on Knowledge Management." In 2008 20th IEEE International Conference on Tools with Artificial Intelligence (ICTAI). IEEE, 2008. http://dx.doi.org/10.1109/ictai.2008.46.
Full textAljarboa, Soliman, and Shah Jahan Miah. "Assessing the Acceptance of Clinical Decision Support Tools using an Integrated Technology Acceptance Model." In 2020 IEEE Asia-Pacific Conference on Computer Science and Data Engineering (CSDE). IEEE, 2020. http://dx.doi.org/10.1109/csde50874.2020.9411594.
Full textBella, R., A. Langer, M. Csanádi, A. Zemplényi, and L. Botz. "5PSQ-110 Computerised physician order entry systems and related clinical decision support tools in inpatient care – barriers of cost-effectiveness." In 24th EAHP Congress, 27th–29th March 2019, Barcelona, Spain. British Medical Journal Publishing Group, 2019. http://dx.doi.org/10.1136/ejhpharm-2019-eahpconf.543.
Full textBender, Dieter, Ali Jalali, and C. Nataraj. "Prediction of Periventricular Leukomalacia Occurrence in Neonates Using a Novel Unsupervised Learning Method." In ASME 2014 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/dscc2014-6304.
Full textFederico, Monica J., Diane Redmond, Diane Swietlik, Jennifer Reese, Jodi Thrasher, Linda Worack, and Daniel Hyman. "Using Quality Improvement Methods, Clinical Decision Support Tools, And A Multidisciplinary Team To Improve Compliance With Joint Commission Asthma Action Plan Standards." In American Thoracic Society 2011 International Conference, May 13-18, 2011 • Denver Colorado. American Thoracic Society, 2011. http://dx.doi.org/10.1164/ajrccm-conference.2011.183.1_meetingabstracts.a2600.
Full textZaidi, Syed Hassan, Imran Akhtar, Syed Imran Majeed, Tahir Zaidi, and Muhammad Saif Ullah Khalid. "Nonlinear Characterization of Heart Rate Variability in Normal Sinus Rhythm, Atrial Fibrillation and Congestive Heart Failure." In ASME 2016 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/imece2016-66836.
Full textReports on the topic "Clinical support tools"
Biesecker, Barbara, Melissa Raspa, Douglas Rupert, Rebecca Moultrie, Robert Furberg, and Lauren A. McCormack. Making Clinical Trials More Patient-Centered Using Digital Interactive E-Consent Tools. RTI Press, October 2019. http://dx.doi.org/10.3768/rtipress.2019.op.0063.1910.
Full textSchnabel, Filipina, and Danielle Aldridge. Effectiveness of EHR-Depression Screening Among Adult Diabetics in an Urban Primary Care Clinic. University of Tennessee Health Science Center, April 2021. http://dx.doi.org/10.21007/con.dnp.2021.0003.
Full textClinical decision support tools. National Institute for Health Research, October 2020. http://dx.doi.org/10.3310/collection_42068.
Full text