Academic literature on the topic 'Clone Detection and Analysis'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Clone Detection and Analysis.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Clone Detection and Analysis"
Mubarak-Ali, Al-Fahim, Rahiwan Nazar Romli, and Nilam Nur Amir Sjarif. "Code Clone Detection Model: A SWOT Analysis Perspective." Advanced Science Letters 24, no. 10 (October 1, 2018): 7210–13. http://dx.doi.org/10.1166/asl.2018.12916.
Full textAkhin, Marat, and Vladimir Itsykson. "Tree Slicing in Clone Detection: Syntactic Analysis Made (Semi)-Semantic." Modeling and Analysis of Information Systems 19, no. 6 (March 12, 2015): 69–78. http://dx.doi.org/10.18255/1818-1015-2012-6-69-78.
Full textSotolongo, Ricardo, Fangyan Dong, and Kaoru Hirota. "Semantically Enhanced Code Clone Refinement Algorithm Based on Analysis of Multiple Detection Reports." Journal of Advanced Computational Intelligence and Intelligent Informatics 15, no. 3 (May 20, 2011): 322–28. http://dx.doi.org/10.20965/jaciii.2011.p0322.
Full textBartoszuk, Maciej, and Marek Gagolewski. "SimilaR: R Code Clone and Plagiarism Detection." R Journal 12, no. 1 (2020): 367. http://dx.doi.org/10.32614/rj-2020-017.
Full textSargsyan, Sevak, Shamil Kurmnagaleev, Andrey Belevantsev, Hayk Aslanyan, and Artiom Baloian. "Scalable code clone detection tool based on semantic analysis." Proceedings of the Institute for System Programming of the RAS 27, no. 1 (2015): 39–50. http://dx.doi.org/10.15514/ispras-2015-27(1)-3.
Full textLalar, Sacachin, Shashi Bhushan, and Surender Surender. "Analysis of Clone Detection Approaches in Static Wireless Sensor Networks." Oriental journal of computer science and technology 10, no. 3 (August 5, 2017): 653–59. http://dx.doi.org/10.13005/ojcst/10.03.14.
Full textMa, Yu-Seung, and Duk-Kyun Woo. "Domain Analysis of Device Drivers Using Code Clone Detection Method." ETRI Journal 30, no. 3 (June 9, 2008): 394–402. http://dx.doi.org/10.4218/etrij.08.0107.0204.
Full textHaferlach, Claudia, Susanne Schnittger, Alice Fabarius, Armin Leitner, Wolfgang Kern, Ulrike Bacher, Rüdiger Hehlmann, Andreas Hochhaus, and Torsten Haferlach. "Analysis of Philadelphia Negative Clones Detected during Treatment with Tyrosine Kinase Inhibitors: A Study on 63 CML Cases." Blood 110, no. 11 (November 16, 2007): 4541. http://dx.doi.org/10.1182/blood.v110.11.4541.4541.
Full textKaur, Gundeep, and Sumit Sharma. "Metric level based code clone detection using optimized code manager." International Journal of Engineering & Technology 7, no. 2.27 (August 6, 2018): 144. http://dx.doi.org/10.14419/ijet.v7i2.27.13763.
Full textAktas, Mehmet S., and Mustafa Kapdan. "Structural Code Clone Detection Methodology Using Software Metrics." International Journal of Software Engineering and Knowledge Engineering 26, no. 02 (March 2016): 307–32. http://dx.doi.org/10.1142/s0218194016500133.
Full textDissertations / Theses on the topic "Clone Detection and Analysis"
Krutz, Daniel Edward. "Code Clone Discovery Based on Concolic Analysis." NSUWorks, 2013. http://nsuworks.nova.edu/gscis_etd/203.
Full textAnbalagan, Sindhuja. "On Occurrence Of Plagiarism In Published Computer Science Thesis Reports At Swedish Universities." Thesis, Högskolan Dalarna, Datateknik, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:du-5377.
Full textNilsson, Erik. "Abstract Syntax Tree Analysis for Plagiarism Detection." Thesis, Linköpings universitet, Institutionen för datavetenskap, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-80888.
Full textElva, Rochelle. "Detecting Semantic Method Clones in Java Code using Method IOE-Behavior." Doctoral diss., University of Central Florida, 2013. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/5731.
Full textPh.D.
Doctorate
Computer Science
Engineering and Computer Science
Computer Science
Rieger, Matthias. "Effective clone detection without language barriers /." [S.l.] : [s.n.], 2005. http://www.zb.unibe.ch/download/eldiss/05rieger_m.pdf.
Full textErsson, Sara. "Code Clone Detection for Equivalence Assurance." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-284329.
Full textFör att stödja flera olika programmingsspråk har det blivit alltmer vanligt atterbjuda applikationsprogrammeringsgränssnitt (API:er) på olika programmeringsspråk.Detta resulterar dock i utmaningen att säkerställa att API:erna ärekvivalenta angående deras gränssnitt. För att uppnå detta har kodklonsdetekteringsteknikeranpassats, för att matcha liknande funktionsdeklarationeri API:erna. Först undersöktes existerande kodklonsverktyg. Eftersom de intepresterade bra, användes ett trädbaserat syntaktiskt tillvägagångssätt, där allaheader-filer kompilerades med Clang. De abstrakta syntaxträden, som erhöllsunder kompileringen, traverserades sedan för att lokalisera funktionsdeklarationsnoderna,och för att lagra funktionsnamnen och parametervariabelnamnen.När funktionsnamnen matchades, användes ett textbaserat tillvägagångssätt,som omvandlade funktionsnamnen enligt en uppsättning implementeraderegler.En strikt regel jämför omvandlingar av hela funktionsnamn på ett exakt sätt,medan en lös regel bara jämför omvandlingar av delar of funktionsnamn, ochmatchar den resterande delen med vadsomhelst. Reglerna applicerades bådasjälva och i olika kombinationer, där den striktaste regeln applicerades först,följt av den näst strikaste, och så vidare.De regler som matchar bäst visade sig vara de som är striktast, och som intepåverkas av ordningen på funktionerna i vilken de matchas. Dessa reglervisade sig vara väldigt robusta mot API-evolution, dvs. ett ökat antal publikafunktioner i API:erna. Regler som är mindre strikta och stabila, och interobusta mot API-evolution kan fortfarande användas, men helst som ett komplementtill de striktare och mer stabila reglerna, när de flesta av funktionernaredan har blivit matchade.Verktyget har evaluerats på de två API:erna i Kings mjukvaruutvecklarkit, ochtäckte 94% av de tillgängliga funktionsmatchningarna.
Zhang, Xianpeng. "Software Clone Detection Basedon Context Information." Thesis, Uppsala universitet, Institutionen för informationsteknologi, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-324959.
Full textBahtiyar, Muhammed Yasin. "JClone: Syntax tree based clone detection for Java." Thesis, Linnaeus University, School of Computer Science, Physics and Mathematics, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-5455.
Full textAn unavoidable amount of money is spent on maintaining existing software systems today. Software maintenance cost generally higher than development cost of the system therefore lowering maintenance cost is highly appreciated in software industry.
A significant part of maintenance activities is related to repeating the investigation of problems and applying repeated solutions several times. A software system may contain a common bug in several different places and it might take extra effort and time to fix all existences of this bug. This operation commonly increases the cost of Software Maintenance Activities.
Detecting duplicate code fragments can significantly decrease the time and effort therefore the maintenance cost. Clone code detection can be achieved via analyzing the source code of given software system. An abstract syntax tree based clone detector for java systems is designed and implemented through this study.
This master thesis examines a software engineering process to create an abstract syntax tree based clone detector for the projects implemented in Java programming language.
Khan, Mohammed Salman. "A Topic Modeling approach for Code Clone Detection." UNF Digital Commons, 2019. https://digitalcommons.unf.edu/etd/874.
Full textSaini, Vaibhav Pratap Singh. "Towards Accurate and Scalable Clone Detection Using Software Metrics." Thesis, University of California, Irvine, 2019. http://pqdtopen.proquest.com/#viewpdf?dispub=10981732.
Full textCode clone detection tools find exact or similar pieces of code, known as code clones. Code clones are categorized into four types of increasing difficulty of detection, ranging from purely textual (Type I) to purely semantic (Type IV). Most clone detectors reported in the literature, work well up to Type III, which accounts for syntactic differences. In between Type III and Type IV, however, there lies a spectrum of clones that, although still exhibiting some syntactic similarities, are extremely hard to detect—the Twilight Zone. Besides correctness, scalability has become a must-have requirement for modern clone detection tools. The increase in amount of source code in web-hosted open source repository services has presented opportunities to improve the state of the art in various modern use cases of clone detection such as detecting similar mobile applications, license violation detection, mining library candidates, code repair, and code search among others. Though these opportunities are exciting, scaling such vast corpora poses critical challenge.
Over the years, many clone detection techniques and tools have been developed. One class of these techniques is based on software metrics. Metrics based clone detection has potential to identify clones in the Twilight Zone. For various reasons, however, metrics-based techniques are hard to scale to large datasets. My work highlights issues which prohibit metric based clone detection techniques to scale large datasets while maintaining high levels of correctness. The identification of these issues allowed me to rethink how metrics could be used for clone detection.
This dissertation starts by presenting an empirical study using software metrics to understand if metrics can be used to identify differences in cloned and non-cloned code. The study is followed by another large scale study to explore the extent of cloning in GitHub. Here, the dissertation highlights scalability challenges in clone detection and how they were addressed. The above two studies provided a strong base to use software metrics for clone detection in a scalable manner. To this end, the dissertation presents Oreo, a novel approach capable of detecting harder-to-detect clones in the Twilight Zone. Oreo is built using a combination of machine learning, information retrieval, and software metrics. This dissertation evaluates the recall of Oreo on BigCloneBench, a benchmark of real world code clones. In experiments to compare the detection performance of Oreo with other five state of the art clone detectors, we found that Oreo has both high recall and precision. More importantly, it pushes the boundary in detection of clones with moderate to weak syntactic similarity, in a scalable manner. Further, to address the issues identified in precision evaluations, the dissertation presents InspectorClone, a semi automated approach to facilitate precision studies of clone detection tools. InspectorClone makes use of some of the concepts introduced in the design of Oreo to automatically resolve different types of clone pairs. Experiments demonstrate that InspectorClone has a very high precision and it significantly reduces the number of clone pairs that need human validation during precision experiments. Moreover, InspectorClone aggregates the individual effort of multiple teams into a single evolving dataset of labeled clone pairs, creating an important asset for software clone research. Finally, the dissertation concludes with a discussion on the lessons learned during the design and development of Oreo and lists down a few areas for the future work in code clone detection.
Books on the topic "Clone Detection and Analysis"
Inoue, Katsuro, and Chanchal K. Roy, eds. Code Clone Analysis. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1927-4.
Full textMcCarthy, Anne. Methods of analysis and detection. Cambridge: Cambridge University Press, 1997.
Find full textMohanta, Abhijit, and Anoop Saldanha. Malware Analysis and Detection Engineering. Berkeley, CA: Apress, 2020. http://dx.doi.org/10.1007/978-1-4842-6193-4.
Full textOlympia, Hadjiliadis, ed. Quickest detection. Cambridge: Cambridge University Press, 2009.
Find full textA, Busch Marianna, ed. Multielement detection systems for spectrochemical analysis. New York: Wiley, 1990.
Find full textN, Ngan King, ed. Digital video transition analysis and detection. River Edge, N.J: World Scientific, 2002.
Find full textVoigtman, Edward. Limits of Detection in Chemical Analysis. Hoboken, New Jersey: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119189008.
Full textHeng, Wei Jyh. Digital video transition analysis and detection. Singapore: World Scientific Publishing, 2004.
Find full textBook chapters on the topic "Clone Detection and Analysis"
Saini, Vaibhav, Farima Farmahinifarahani, Hitesh Sajnani, and Cristina Lopes. "Oreo: Scaling Clone Detection Beyond Near-Miss Clones." In Code Clone Analysis, 63–74. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1927-4_5.
Full textKrinke, Jens, and Chaiyong Ragkhitwetsagul. "Code Similarity in Clone Detection." In Code Clone Analysis, 135–50. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1927-4_10.
Full textSajnani, Hitesh, Vaibhav Saini, Chanchal K. Roy, and Cristina Lopes. "SourcererCC: Scalable and Accurate Clone Detection." In Code Clone Analysis, 51–62. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1927-4_4.
Full textLi, Liuqing, He Feng, Na Meng, and Barbara Ryder. "CCLearner: Clone Detection via Deep Learning." In Code Clone Analysis, 75–89. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1927-4_6.
Full textMondal, Manishankar, Chanchal K. Roy, and James R. Cordy. "NiCad: A Modern Clone Detector." In Code Clone Analysis, 45–50. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1927-4_3.
Full textMahajan, Ginika. "Efficiency and Precision Enhancement of Code Clone Detection Using Hybrid Technique-Based Web Tool." In Asset Analytics, 225–34. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-32-9585-8_19.
Full textLópez, Juan, María Fuciños, Xosé R. Fdez-Vidal, and Xosé M. Pardo. "Detection and Matching of Lines for Close-Range Photogrammetry." In Pattern Recognition and Image Analysis, 732–39. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-38628-2_87.
Full textCasado-García, Ángela, César Domínguez, Jónathan Heras, Eloy Mata, and Vico Pascual. "The Benefits of Close-Domain Fine-Tuning for Table Detection in Document Images." In Document Analysis Systems, 199–215. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-57058-3_15.
Full textAlrabaee, Saed, Mourad Debbabi, Paria Shirani, Lingyu Wang, Amr Youssef, Ashkan Rahimian, Lina Nouh, Djedjiga Mouheb, He Huang, and Aiman Hanna. "Clone Detection." In Advances in Information Security, 187–209. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-34238-8_8.
Full textConti, Mauro. "Clone Detection." In Secure Wireless Sensor Networks, 75–100. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4939-3460-7_4.
Full textConference papers on the topic "Clone Detection and Analysis"
Brixtel, Romain, Mathieu Fontaine, Boris Lesner, Cyril Bazin, and Romain Robbes. "Language-Independent Clone Detection Applied to Plagiarism Detection." In 2010 10th IEEE Working Conference on Source Code Analysis and Manipulation (SCAM). IEEE, 2010. http://dx.doi.org/10.1109/scam.2010.19.
Full textSu, Fang-Hsiang, Jonathan Bell, and Gail Kaiser. "Challenges in Behavioral Code Clone Detection." In 2016 IEEE 23rd International Conference on Software Analysis, Evolution, and Reengineering (SANER). IEEE, 2016. http://dx.doi.org/10.1109/saner.2016.75.
Full textFördős, Viktória, and Melinda Tóth. "Comprehensible presentation of clone detection results." In PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2014 (ICNAAM-2014). AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4912559.
Full textGolubev, Yaroslav, Viktor Poletansky, Nikita Povarov, and Timofey Bryksin. "Multi-threshold token-based code clone detection." In 2021 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER). IEEE, 2021. http://dx.doi.org/10.1109/saner50967.2021.00053.
Full textFarmahinifarahani, Farima, Vaibhav Saini, Di Yang, Hitesh Sajnani, and Cristina V. Lopes. "On Precision of Code Clone Detection Tools." In 2019 IEEE 26th International Conference on Software Analysis, Evolution and Reengineering (SANER). IEEE, 2019. http://dx.doi.org/10.1109/saner.2019.8668015.
Full textNiu, Haofei, Tianchang Yang, and Shaozhang Niu. "Clone analysis and detection in android applications." In 2016 3rd International Conference on Systems and Informatics (ICSAI). IEEE, 2016. http://dx.doi.org/10.1109/icsai.2016.7811010.
Full textWang, Cong, Jian Gao, Yu Jiang, Zhenchang Xing, Huafeng Zhang, Weiliang Yin, Ming Gu, and Jiaguang Sun. "Go-clone: graph-embedding based clone detector for Golang." In ISSTA '19: 28th ACM SIGSOFT International Symposium on Software Testing and Analysis. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3293882.3338996.
Full textVislavski, Tijana, Gordana Rakic, Nicolas Cardozo, and Zoran Budimac. "LICCA: A tool for cross-language clone detection." In 2018 IEEE 25th International Conference on Software Analysis, Evolution and Reengineering (SANER). IEEE, 2018. http://dx.doi.org/10.1109/saner.2018.8330250.
Full textvan Bladel, Brent, and Serge Demeyer. "Clone Detection in Test Code: An Empirical Evaluation." In 2020 IEEE 27th International Conference on Software Analysis, Evolution and Reengineering (SANER). IEEE, 2020. http://dx.doi.org/10.1109/saner48275.2020.9054798.
Full textDang, Yingnong, Dongmei Zhang, Song Ge, Ray Huang, Chengyun Chu, and Tao Xie. "Transferring Code-Clone Detection and Analysis to Practice." In 2017 IEEE/ACM 39th International Conference on Software Engineering: Software Engineering in Practice Track (ICSE-SEIP). IEEE, 2017. http://dx.doi.org/10.1109/icse-seip.2017.6.
Full textReports on the topic "Clone Detection and Analysis"
Eather, Robert H., and Ronald Siewert. Space Debris Detection and Analysis. Fort Belvoir, VA: Defense Technical Information Center, February 1994. http://dx.doi.org/10.21236/ada282012.
Full textGlover, J. M. Void Detection using Standing Wave Analysis. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1992. http://dx.doi.org/10.4095/133649.
Full textKegelmeyer, W. Philip, Jeremy D. Wendt, and Ali Pinar. An Example of Counter-Adversarial Community Detection Analysis. Office of Scientific and Technical Information (OSTI), October 2018. http://dx.doi.org/10.2172/1481570.
Full textCastleberry, K. N. High-vibration detection using motor current signature analysis. Office of Scientific and Technical Information (OSTI), August 1996. http://dx.doi.org/10.2172/366465.
Full textEick, Brian, Zachary Treece, Billie Spencer, Matthew Smith, Steven Sweeney, Quincy Alexander, and Stuart Foltz. Miter gate gap detection using principal component analysis. Engineer Research and Development Center (U.S.), June 2018. http://dx.doi.org/10.21079/11681/27365.
Full textErbacher, Robert F., and Robinson Pino. Open Source Software Tools for Anomaly Detection Analysis. Fort Belvoir, VA: Defense Technical Information Center, April 2014. http://dx.doi.org/10.21236/ada599306.
Full textDavis, Larry, and Ross Cutler. Real-Time Periodic Motion Detection, Analysis and Application. Fort Belvoir, VA: Defense Technical Information Center, July 1999. http://dx.doi.org/10.21236/ada391942.
Full textButzbaugh, Joshua, Abraham SD Tidwell, and Chrissi Antonopoulos. Automatic Fault Detection & Diagnostics: Residential Market Analysis. Office of Scientific and Technical Information (OSTI), September 2020. http://dx.doi.org/10.2172/1670423.
Full textMatsumoto, David, Hyisung C. Hwang, Adam M. Fullenkamp, and C. M. Laurent. Human Deception Detection from Whole Body Motion Analysis. Fort Belvoir, VA: Defense Technical Information Center, December 2015. http://dx.doi.org/10.21236/ada626755.
Full textRobinson, David Gerald. Statistical language analysis for automatic exfiltration event detection. Office of Scientific and Technical Information (OSTI), April 2010. http://dx.doi.org/10.2172/983675.
Full text