Journal articles on the topic 'Closed microfluidic system'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Closed microfluidic system.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Debski, Pawel, Karolina Sklodowska, Jacek Michalski, Piotr Korczyk, Miroslaw Dolata, and Slawomir Jakiela. "Continuous Recirculation of Microdroplets in a Closed Loop Tailored for Screening of Bacteria Cultures." Micromachines 9, no. 9 (2018): 469. http://dx.doi.org/10.3390/mi9090469.
Full textSteege, Tobias, Mathias Busek, Stefan Grünzner, Andrés Fabían Lasagni, and Frank Sonntag. "Closed-loop control system for well-defined oxygen supply in micro-physiological systems." Current Directions in Biomedical Engineering 3, no. 2 (2017): 363–66. http://dx.doi.org/10.1515/cdbme-2017-0075.
Full textWang, Ningquan, Ruxiu Liu, Norh Asmare, Chia-Heng Chu, Ozgun Civelekoglu, and A. Fatih Sarioglu. "Closed-loop feedback control of microfluidic cell manipulation via deep-learning integrated sensor networks." Lab on a Chip 21, no. 10 (2021): 1916–28. http://dx.doi.org/10.1039/d1lc00076d.
Full textLoutherback, K., P. A. Bulur, and A. Dietz. "Process Development and Manufacturing: CLOSED MICROFLUIDIC SYSTEM FOR MANUFACTURING DENDRITIC CELL THERAPIES." Cytotherapy 24, no. 5 (2022): S171—S172. http://dx.doi.org/10.1016/s1465-3249(22)00448-0.
Full textLoutherback, K., P. A. Bulur, and A. Dietz. "Process Development and Manufacturing: CLOSED MICROFLUIDIC SYSTEM FOR MANUFACTURING DENDRITIC CELL THERAPIES." Cytotherapy 24, no. 5 (2022): S171—S172. http://dx.doi.org/10.1016/s1465-3249(22)00448-0.
Full textFu, Hai, Wen Zeng, Songjing Li, and Shuai Yuan. "Electrical-detection droplet microfluidic closed-loop control system for precise droplet production." Sensors and Actuators A: Physical 267 (November 2017): 142–49. http://dx.doi.org/10.1016/j.sna.2017.09.043.
Full textHansen, J. S., J. T. Ottesen, and A. Lemarchand. "Molecular dynamics simulations of valveless pumping in a closed microfluidic tube-system." Molecular Simulation 31, no. 14-15 (2005): 963–69. http://dx.doi.org/10.1080/08927020500419297.
Full textYafia, Mohamed, Amir M. Foudeh, Maryam Tabrizian, and Homayoun Najjaran. "Low-Cost Graphene-Based Digital Microfluidic System." Micromachines 11, no. 9 (2020): 880. http://dx.doi.org/10.3390/mi11090880.
Full textLim, Hyunjung, Jae Young Kim, Seunghee Choo, et al. "Separation and Washing of Candida Cells from White Blood Cells Using Viscoelastic Microfluidics." Micromachines 14, no. 4 (2023): 712. http://dx.doi.org/10.3390/mi14040712.
Full textJang, Kihoon, Yan Xu, Yo Tanaka, et al. "Single-cell attachment and culture method using a photochemical reaction in a closed microfluidic system." Biomicrofluidics 4, no. 3 (2010): 032208. http://dx.doi.org/10.1063/1.3494287.
Full textKim, Jeeyong, Hyunjung Lim, Hyunseul Jee, et al. "High-Throughput Cell Concentration Using A Piezoelectric Pump in Closed-Loop Viscoelastic Microfluidics." Micromachines 12, no. 6 (2021): 677. http://dx.doi.org/10.3390/mi12060677.
Full textKim, Jeong, Hye Choi, Chul Kim, Hee Jin, Jae-sung Bae, and Gyu Kim. "Enhancement of Virus Infection Using Dynamic Cell Culture in a Microchannel." Micromachines 9, no. 10 (2018): 482. http://dx.doi.org/10.3390/mi9100482.
Full textHeuck, F., P. van der Ploeg, and U. Staufer. "Deposition and structuring of Ag/AgCl electrodes inside a closed polymeric microfluidic system for electroosmotic pumping." Microelectronic Engineering 88, no. 8 (2011): 1887–90. http://dx.doi.org/10.1016/j.mee.2011.01.058.
Full textBohm, Sebastian, and Erich Runge. "Multiphysics simulation of fluid interface shapes in microfluidic systems driven by electrowetting on dielectrics." Journal of Applied Physics 132, no. 22 (2022): 224702. http://dx.doi.org/10.1063/5.0110149.
Full textTremblay, Yannick D. N., Philippe Vogeleer, Mario Jacques, and Josée Harel. "High-Throughput Microfluidic Method To Study Biofilm Formation and Host-Pathogen Interactions in Pathogenic Escherichia coli." Applied and Environmental Microbiology 81, no. 8 (2015): 2827–40. http://dx.doi.org/10.1128/aem.04208-14.
Full textFan, Shangchun, Jinhao Sun, Weiwei Xing, Cheng Li, and Dongxue Wang. "Design and Simulation of a Fused Silica Space Cell Culture and Observation Cavity with Microfluidic and Temperature Controlling." Journal of Applied Mathematics 2013 (2013): 1–13. http://dx.doi.org/10.1155/2013/378253.
Full textAlrifaiy, Ahmed, and Kerstin Ramser. "How to integrate a micropipette into a closed microfluidic system: absorption spectra of an optically trapped erythrocyte." Biomedical Optics Express 2, no. 8 (2011): 2299. http://dx.doi.org/10.1364/boe.2.002299.
Full textGuan, Yin, Baiyun Li, and Lu Xing. "Numerical investigation of electrowetting-based droplet splitting in closed digital microfluidic system: Dynamics, mode, and satellite droplet." Physics of Fluids 30, no. 11 (2018): 112001. http://dx.doi.org/10.1063/1.5049511.
Full textKimura, Hiroshi, Hirokazu Takeyama, Kikuo Komori, Takatoki Yamamoto, Yasuyuki Sakai, and Teruo Fujii. "Microfluidic Device with Integrated Glucose Sensor for Cell-Based Assay in Toxicology." Journal of Robotics and Mechatronics 22, no. 5 (2010): 594–600. http://dx.doi.org/10.20965/jrm.2010.p0594.
Full textBartsch de Torres, Heike, Christian Rensch, Torsten Thelemann, J. Müller, and M. Hoffmann. "Fully Integrated Bridge-Type Anemometer in LTCC-Based Microfluidic Systems." Advances in Science and Technology 54 (September 2008): 401–4. http://dx.doi.org/10.4028/www.scientific.net/ast.54.401.
Full textNouri, Abdelmounaim, Maria L. Rodgers, Daniel L. Bolnick, et al. "Microfluidic gut-on chip system for reproducing the microbiome-immune cells interaction in Threespine Stickleback." Journal of Immunology 208, no. 1_Supplement (2022): 116.05. http://dx.doi.org/10.4049/jimmunol.208.supp.116.05.
Full textHeidt, Benjamin, Renato Rogosic, Nils Leoné, et al. "Topographical Vacuum Sealing of 3D-Printed Multiplanar Microfluidic Structures." Biosensors 11, no. 10 (2021): 395. http://dx.doi.org/10.3390/bios11100395.
Full textKoenig, Leopold, Anja Patricia Ramme, Daniel Faust, et al. "A Human Stem Cell-Derived Brain-Liver Chip for Assessing Blood-Brain-Barrier Permeation of Pharmaceutical Drugs." Cells 11, no. 20 (2022): 3295. http://dx.doi.org/10.3390/cells11203295.
Full textSchmieder, Florian, Stefan Behrens, Nina Reustle, et al. "A microphysiological system to investigate the pressure dependent filtration at an artificial glomerular kidney barrier." Current Directions in Biomedical Engineering 5, no. 1 (2019): 389–91. http://dx.doi.org/10.1515/cdbme-2019-0098.
Full textGómez, J. R., J. P. Escandón, C. G. Hernández, R. O. Vargas, and D. A. Torres. "Multilayer analysis of immiscible power-law fluids under magnetohydrodynamic and pressure-driven effects in a microchannel." Physica Scripta 96, no. 12 (2021): 125028. http://dx.doi.org/10.1088/1402-4896/ac37a0.
Full textSilverio, Vania, Miguel Amaral, João Gaspar, Susana Cardoso, and Paulo P. Freitas. "Manipulation of Magnetic Beads with Thin Film Microelectromagnet Traps." Micromachines 10, no. 9 (2019): 607. http://dx.doi.org/10.3390/mi10090607.
Full textZhang, Bailin, Juan Manuel Tamez-Vela, Steven Solis, et al. "Detection of Myoglobin with an Open-Cavity-Based Label-Free Photonic Crystal Biosensor." Journal of Medical Engineering 2013 (June 2, 2013): 1–7. http://dx.doi.org/10.1155/2013/808056.
Full textSakurai, Yumiko, Elaissa T. Hardy, Byungwook Ahn, et al. "Engineering a Valve-Regulated Endothelialized Microfluidic Device As an "in Vitro" Bleeding Time for Assessing Global Hemostasis." Blood 126, no. 23 (2015): 3485. http://dx.doi.org/10.1182/blood.v126.23.3485.3485.
Full textBusek, Mathias, Mario Schubert, Kaomei Guan, et al. "Microphysiological system for heart tissue - going from 2D to 3D culture." Current Directions in Biomedical Engineering 5, no. 1 (2019): 269–72. http://dx.doi.org/10.1515/cdbme-2019-0068.
Full textMu, Ruojun, Nitong Bu, Jie Pang, Lin Wang, and Yue Zhang. "Recent Trends of Microfluidics in Food Science and Technology: Fabrications and Applications." Foods 11, no. 22 (2022): 3727. http://dx.doi.org/10.3390/foods11223727.
Full textWeislogel, Mark M., J. Alex Baker, and Ryan M. Jenson. "Quasi-steady capillarity-driven flows in slender containers with interior edges." Journal of Fluid Mechanics 685 (September 23, 2011): 271–305. http://dx.doi.org/10.1017/jfm.2011.314.
Full textCantwell, Christy, John S. McGrath, Clive A. Smith, and Graeme Whyte. "Image-Based Feedback of Multi-Component Microdroplets for Ultra-Monodispersed Library Preparation." Micromachines 15, no. 1 (2023): 27. http://dx.doi.org/10.3390/mi15010027.
Full textWuchter, Patrick, Rainer Saffrich, Stefan Giselbrecht, Anthony D. Ho, and Eric Gottwald. "Novel 3D-Model for the Hematopoietic Stem Cell Niche Using MSC in a KITChip Based Bioreactor." Blood 118, no. 21 (2011): 1331. http://dx.doi.org/10.1182/blood.v118.21.1331.1331.
Full textTran, Reginald, David R. Myers, Jordan E. Shields, et al. "Improving Lentiviral Transduction Efficiency with Microfluidic Systems." Blood 126, no. 23 (2015): 4415. http://dx.doi.org/10.1182/blood.v126.23.4415.4415.
Full textRaub, Aini Ayunni Mohd, Ida Hamidah, Asep Bayu Dani Nandiyanto, et al. "ZnO NRs/rGO Photocatalyst in a Polymer-Based Microfluidic Platform." Polymers 15, no. 7 (2023): 1749. http://dx.doi.org/10.3390/polym15071749.
Full textRehmani, Muhammad Asif Ali, Swapna A. Jaywant, and Khalid Mahmood Arif. "Study of Microchannels Fabricated Using Desktop Fused Deposition Modeling Systems." Micromachines 12, no. 1 (2020): 14. http://dx.doi.org/10.3390/mi12010014.
Full textStella, Giovanna, Lorena Saitta, Alfredo Edoardo Ongaro, Gianluca Cicala, Maïwenn Kersaudy-Kerhoas, and Maide Bucolo. "Advanced Technologies in the Fabrication of a Micro-Optical Light Splitter." Micro 3, no. 1 (2023): 338–52. http://dx.doi.org/10.3390/micro3010023.
Full textWang, Weiqiang, and Thomas B. Jones. "Moving droplets between closed and open microfluidic systems." Lab on a Chip 15, no. 10 (2015): 2201–12. http://dx.doi.org/10.1039/c5lc00014a.
Full textNguyen, Duong Thanh, Van Thi Thanh Tran, Huy Trung Nguyen, Hong Thi Cao, Thai Quoc Vu, and Dung Quang Trinh. "Preparation of microfluidics device from PMMA for liposome synthesis." Vietnam Journal of Science and Technology 61, no. 1 (2023): 84–90. http://dx.doi.org/10.15625/2525-2518/16577.
Full textPinck, Stéphane, Lucila Martínez Ostormujof, Sébastien Teychené, and Benjamin Erable. "Microfluidic Microbial Bioelectrochemical Systems: An Integrated Investigation Platform for a More Fundamental Understanding of Electroactive Bacterial Biofilms." Microorganisms 8, no. 11 (2020): 1841. http://dx.doi.org/10.3390/microorganisms8111841.
Full textBehmardi, Yasna, Laurissa Ouaguia, Laura Jean Healey, et al. "Deterministic Cell Separation Recovers >2-Fold T Cells, and More Naïve T Cells, for Autologous Cell Therapy As Compared to Centrifugally Prepared Cells." Blood 138, Supplement 1 (2021): 2847. http://dx.doi.org/10.1182/blood-2021-153528.
Full textSoenksen, L. R., T. Kassis, M. Noh, L. G. Griffith, and D. L. Trumper. "Closed-loop feedback control for microfluidic systems through automated capacitive fluid height sensing." Lab on a Chip 18, no. 6 (2018): 902–14. http://dx.doi.org/10.1039/c7lc01223c.
Full textNasibullayev, I. Sh, and O. V. Darintsev. "Two-dimensional dynamic model of the interaction of a fluid and a piezoelectric bending actuator in a plane channel." Multiphase Systems 14, no. 4 (2019): 220–32. http://dx.doi.org/10.21662/mfs2019.4.029.
Full textPeshin, Snehan, Derosh George, Roya Shiri, Lawrence Kulinsky, and Marc Madou. "Capillary Flow-Driven and Magnetically Actuated Multi-Use Wax Valves for Controlled Sealing and Releasing of Fluids on Centrifugal Microfluidic Platforms." Micromachines 13, no. 2 (2022): 303. http://dx.doi.org/10.3390/mi13020303.
Full textNeto, Estrela, Cecília J. Alves, Daniela M. Sousa, et al. "Sensory neurons and osteoblasts: close partners in a microfluidic platform." Integr. Biol. 6, no. 6 (2014): 586–95. http://dx.doi.org/10.1039/c4ib00035h.
Full textHarink, Björn, Séverine Le Gac, David Barata, Clemens van Blitterswijk, and Pamela Habibovic. "Microtiter plate-sized standalone chip holder for microenvironmental physiological control in gas-impermeable microfluidic devices." Lab Chip 14, no. 11 (2014): 1816–20. http://dx.doi.org/10.1039/c4lc00190g.
Full textTonooka, Taishi. "Microfluidic Device with an Integrated Freeze-Dried Cell-Free Protein Synthesis System for Small-Volume Biosensing." Micromachines 12, no. 1 (2020): 27. http://dx.doi.org/10.3390/mi12010027.
Full textKucukal, Erdem, Anton Ilich, Nigel S. Key, Jane A. Little, and Umut A. Gurkan. "Adhesion of Sickle RBCs to Heme-Activated Endothelial Cells Correlates with Patient Clinical Phenotypes." Blood 130, Suppl_1 (2017): 959. http://dx.doi.org/10.1182/blood.v130.suppl_1.959.959.
Full textZizzari, Alessandra, and Valentina Arima. "Glass Microdroplet Generator for Lipid-Based Double Emulsion Production." Micromachines 15, no. 4 (2024): 500. http://dx.doi.org/10.3390/mi15040500.
Full textKimura, Hiroshi, Masaki Nishikawa, Takatoki Yamamoto, Yasuyuki Sakai, and Teruo Fujii. "Microfluidic Perfusion Culture of Human Hepatocytes." Journal of Robotics and Mechatronics 19, no. 5 (2007): 550–56. http://dx.doi.org/10.20965/jrm.2007.p0550.
Full text