Academic literature on the topic 'Cloud Computing Performance'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Cloud Computing Performance.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Cloud Computing Performance"
Linthicum, David S. "Approaching Cloud Computing Performance." IEEE Cloud Computing 5, no. 2 (March 2018): 33–36. http://dx.doi.org/10.1109/mcc.2018.022171665.
Full textMauch, Viktor, Marcel Kunze, and Marius Hillenbrand. "High performance cloud computing." Future Generation Computer Systems 29, no. 6 (August 2013): 1408–16. http://dx.doi.org/10.1016/j.future.2012.03.011.
Full textAouat, Asmaa, El Abbassia Deba, Abou El Hassan Benyamina, and Djilali Benhamamouch. "Deployment in Cloud Computing." International Journal of Distributed Systems and Technologies 11, no. 1 (January 2020): 27–37. http://dx.doi.org/10.4018/ijdst.2020010103.
Full textAhuja, Sanjay P., and Bhagavathi Kaza. "Performance Evaluation of Data Intensive Computing In the Cloud." International Journal of Cloud Applications and Computing 4, no. 2 (April 2014): 34–47. http://dx.doi.org/10.4018/ijcac.2014040103.
Full textPathak, Purvi, and Kumar R. "THE FEASIBILITY STUDY OF RUNNING HPC WORKLOADS ON COMPUTATIONAL CLOUDS." Asian Journal of Pharmaceutical and Clinical Research 10, no. 13 (April 1, 2017): 445. http://dx.doi.org/10.22159/ajpcr.2017.v10s1.20507.
Full textAlzakholi, Omar, Lailan Haji, Hanan Shukur, Rizgar Zebari, Shakir Abas, and Mohammad Sadeeq. "Comparison Among Cloud Technologies and Cloud Performance." Journal of Applied Science and Technology Trends 1, no. 2 (April 23, 2020): 40–47. http://dx.doi.org/10.38094/jastt1219.
Full textVolkov, Aleksandr O. "EVALUATION OF CLOUD COMPUTING CLUSTER PERFORMANCE." T-Comm 14, no. 12 (2020): 72–79. http://dx.doi.org/10.36724/2072-8735-2020-14-12-72-79.
Full textZanoon, Nabeel. "Toward Cloud Computing: Security and Performance." International Journal on Cloud Computing: Services and Architecture 5, no. 5/6 (December 30, 2015): 17–26. http://dx.doi.org/10.5121/ijccsa.2015.5602.
Full textAddamani, Swapna, and Anirban Basu. "Performance Analysis of Cloud Computing Platform." International Journal of Applied Information Systems 4, no. 4 (October 10, 2012): 29–33. http://dx.doi.org/10.5120/ijais12-450697.
Full textSuakanto, Sinung. "Performance Measurement of Cloud Computing Services." International Journal on Cloud Computing: Services and Architecture 2, no. 2 (April 30, 2012): 9–20. http://dx.doi.org/10.5121/ijccsa.2012.2202.
Full textDissertations / Theses on the topic "Cloud Computing Performance"
Al-Refai, Ali, and Srinivasreddy Pandiri. "Cloud Computing : Trends and Performance Issues." Thesis, Blekinge Tekniska Högskola, Sektionen för datavetenskap och kommunikation, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-3672.
Full textMani, Sindhu. "Empirical Performance Analysis of High Performance Computing Benchmarks Across Variations in Cloud Computing." UNF Digital Commons, 2012. http://digitalcommons.unf.edu/etd/418.
Full textPelletingeas, Christophe. "Performance evaluation of virtualization with cloud computing." Thesis, Edinburgh Napier University, 2010. http://researchrepository.napier.ac.uk/Output/4010.
Full textNoureddine, Moustafa. "Enterprise adoption oriented cloud computing performance optimization." Thesis, University of East London, 2014. http://roar.uel.ac.uk/4026/.
Full textPenmetsa, Jyothi Spandana. "AUTOMATION OF A CLOUD HOSTED APPLICATION : Performance, Automated Testing, Cloud Computing." Thesis, Blekinge Tekniska Högskola, Institutionen för kommunikationssystem, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-12849.
Full textAUTOMATION OF A CLOUD HOSTED APPLICATION
Roloff, Eduardo. "Viability and performance of high-performance computing in the cloud." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2013. http://hdl.handle.net/10183/79594.
Full textCloud computing is a new paradigm, where computational resources are offered as services. In this context, the user does not need to buy infrastructure, the resources can be rented from a provider and used for a period of time. Furthermore the user can easily allocate as many resources as needed, and deallocate them as well, in a totally elastic environment. The resources need to be paid only for the effective usage time. On the other hand, High-Performance Computing (HPC) requires a large amount of computational power. To acquire systems capable for HPC, large financial investments are necessary. Apart from the initial investment, the user must pay the maintenance costs, and has only limited computational resources. To overcome these issues, this thesis aims to evaluate the cloud computing paradigm as a candidate environment for HPC. We analyze the efforts and challenges for porting and deploy HPC applications to the cloud. We evaluate if this computing model can provide sufficient capacities for running HPC applications, and compare its cost efficiency to traditional HPC systems, such as clusters. The cloud computing paradigm was analyzed to identify which models have the potential to be used for HPC purposes. The identified models were then evaluated using major cloud providers, Microsoft Windows Azure, Amazon EC2 and Rackspace and compare them to a traditional HPC system. We analyzed the capabilities to create HPC environments, and evaluated their performance. For the evaluation of the cost efficiency, we developed an economic model. The results show that all the evaluated providers have the capability to create HPC environments. In terms of performance, there are some cases where cloud providers present a better performance than the traditional system. From the cost perspective, the cloud presents an interesting alternative due to the pay-per-use model. Summarizing the results, this dissertation shows that cloud computing can be used as a realistic alternative for HPC environments.
Sridharan, Suganya. "A Performance Comparison of Hypervisors for Cloud Computing." UNF Digital Commons, 2012. http://digitalcommons.unf.edu/etd/269.
Full textDanielsson, Simon, and Staffan Johansson. "Cloud Computing - A Study of Performance and Security." Thesis, Malmö högskola, Fakulteten för teknik och samhälle (TS), 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-20326.
Full textCloud Computing - the big buzz word of the IT world. It has become more and more popular in recent years but questions has arisen about it’s performance and security. How safe is it and is there any real difference in performance between a locally based server and a cloud based server? This thesis will examine these questions. A series of performance tests combined with a literature study were performed to achieve the results of this thesis.This thesis could be of use for those who have an interest in Cloud Computing and do not have much knowledge of it. The results can be used as an example for how future research in Cloud Computing can be done.
Calatrava, Arroyo Amanda. "High Performance Scientific Computing over Hybrid Cloud Platforms." Doctoral thesis, Universitat Politècnica de València, 2016. http://hdl.handle.net/10251/75265.
Full textLas aplicaciones científicas generalmente precisan grandes requisitos de cómputo, memoria y gestión de datos para su ejecución. Este tipo de aplicaciones tradicionalmente ha empleado recursos de altas prestaciones, como supercomputadores de memoria compartida, clústers de PCs de memoria distribuida, o recursos provenientes de infraestructuras Grid, sobre los que se adaptaba la aplicación para que se ejecutara satisfactoriamente. El auge que han tenido las técnicas de virtualización en los últimos años, propiciando la aparición de la computación en la nube (Cloud Computing), ha provocado un importante cambio en la forma de ejecutar este tipo de aplicaciones. Sin embargo, la gestión de la ejecución de aplicaciones científicas sobre plataformas de computación elásticas de altas prestaciones no es una tarea trivial. En esta tesis doctoral se ha desarrollado Elastic Cloud Computing Cluster (EC3), una herramienta de código abierto capaz de llevar a cabo la ejecución de aplicaciones científicas de altas prestaciones creando para ello clústers virtuales, híbridos y elásticos, autogestionados y eficientes en cuanto a costes, sobre plataformas Cloud de tipo Infraestructura como Servicio (IaaS). Estos clústers autogestionados tienen la capacidad de adaptar su tamaño, es decir, el número de nodos, a la carga de trabajo, creando así la ilusión de un clúster real sin requerir una inversión por encima del uso actual. Además, son completamente configurables y pueden ser migrados de un proveedor a otro de manera automática y transparente a los usuarios y trabajos en ejecución en el cluster. EC3 también permite desplegar clústers híbridos sobre recursos Cloud públicos y privados, donde los recursos privados son complementados con recursos Cloud públicos para acelerar el proceso de ejecución. Otras configuraciones híbridas, como el empleo de diferentes tipos de instancias y el uso de instancias puntuales combinado con instancias bajo demanda son también soportadas por EC3. Además, el uso de instancias puntuales junto con técnicas de checkpointing permite a EC3 reducir significantemente el coste total de las ejecuciones a la vez que proporciona tolerancia a fallos. EC3 está concebido para facilitar el uso de clústers virtuales a los usuarios, que, aunque no tengan un conocimiento extenso sobre este tipo de tecnologías, pueden beneficiarse fácilmente de ellas. Por ello, la herramienta ofrece dos interfaces diferentes a sus usuarios, una interfaz web donde se expone EC3 como servicio para usuarios no experimentados y una potente interfaz de línea de comandos. Además, esta tesis doctoral se adentra en el campo de la virtualización ligera, mediante el uso de contenedores como alternativa a la solución tradicional de virtualización basada en máquinas virtuales. Este estudio analiza el escenario propicio para el uso de contenedores y propone una arquitectura para el despliegue de clusters virtuales elásticos basados en esta tecnología. Finalmente, para demostrar la funcionalidad y ventajas de las herramientas desarrolladas durante esta tesis, esta memoria recoge varios casos de uso que abarcan diferentes escenarios y campos de conocimiento, como estudios estructurales de edificios, astrofísica o biodiversidad.
Les aplicacions científiques generalment precisen grans requisits de còmput, de memòria i de gestió de dades per a la seua execució. Este tipus d'aplicacions tradicionalment hi ha empleat recursos d'altes prestacions, com supercomputadors de memòria compartida, clústers de PCs de memòria distribuïda, o recursos provinents d'infraestructures Grid, sobre els quals s'adaptava l'aplicació perquè s'executara satisfactòriament. L'auge que han tingut les tècniques de virtualitzaciò en els últims anys, propiciant l'aparició de la computació en el núvol (Cloud Computing), ha provocat un important canvi en la forma d'executar este tipus d'aplicacions. No obstant això, la gestió de l'execució d'aplicacions científiques sobre plataformes de computació elàstiques d'altes prestacions no és una tasca trivial. En esta tesi doctoral s'ha desenvolupat Elastic Cloud Computing Cluster (EC3), una ferramenta de codi lliure capaç de dur a terme l'execució d'aplicacions científiques d'altes prestacions creant per a això clústers virtuals, híbrids i elàstics, autogestionats i eficients quant a costos, sobre plataformes Cloud de tipus Infraestructura com a Servici (IaaS). Estos clústers autogestionats tenen la capacitat d'adaptar la seua grandària, es dir, el nombre de nodes, a la càrrega de treball, creant així la il·lusió d'un cluster real sense requerir una inversió per damunt de l'ús actual. A més, són completament configurables i poden ser migrats d'un proveïdor a un altre de forma automàtica i transparent als usuaris i treballs en execució en el cluster. EC3 també permet desplegar clústers híbrids sobre recursos Cloud públics i privats, on els recursos privats són complementats amb recursos Cloud públics per a accelerar el procés d'execució. Altres configuracions híbrides, com l'us de diferents tipus d'instàncies i l'ús d'instàncies puntuals combinat amb instàncies baix demanda són també suportades per EC3. A més, l'ús d'instàncies puntuals junt amb tècniques de checkpointing permet a EC3 reduir significantment el cost total de les execucions al mateix temps que proporciona tolerància a fallades. EC3e stà concebut per a facilitar l'ús de clústers virtuals als usuaris, que, encara que no tinguen un coneixement extensiu sobre este tipus de tecnologies, poden beneficiar-se fàcilment d'elles. Per això, la ferramenta oferix dos interfícies diferents dels seus usuaris, una interfície web on s'exposa EC3 com a servici per a usuaris no experimentats i una potent interfície de línia d'ordres. A més, esta tesi doctoral s'endinsa en el camp de la virtualitzaciò lleugera, per mitjà de l'ús de contenidors com a alternativa a la solució tradicional de virtualitzaciò basada en màquines virtuals. Este estudi analitza l'escenari propici per a l'ús de contenidors i proposa una arquitectura per al desplegament de clusters virtuals elàstics basats en esta tecnologia. Finalment, per a demostrar la funcionalitat i avantatges de les ferramentes desenrotllades durant esta tesi, esta memòria arreplega diversos casos d'ús que comprenen diferents escenaris i camps de coneixement, com a estudis estructurals d'edificis, astrofísica o biodiversitat.
Calatrava Arroyo, A. (2016). High Performance Scientific Computing over Hybrid Cloud Platforms [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/75265
TESIS
Hutchins, Richard Chad. "Feasibility of virtual machine and cloud computing technologies for high performance computing." Thesis, Monterey, California. Naval Postgraduate School, 2013. http://hdl.handle.net/10945/42447.
Full textReissued May 2014 with additions to the acknowledgments
Knowing the future weather on the battlefield with high certainty can result in a higher advantage over the adversary. To create this advantage for the United States, the U.S. Navy utilizes the Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS) to create high spatial resolution, regional, numerical weather prediction (NWP) forecasts. To compute a forecast, COAMPS runs on high performance computing (HPC) systems. These HPC systems are large, dedicated supercomputers with little ability to scale or move. This makes these systems vulnerable to outages without a costly, equally powerful secondary system. Recent advancements in cloud computing and virtualization technologies provide a method for high mobility and scalability without sacrificing performance. This research used standard benchmarks in order to quantitatively compare a virtual machine (VM) to a native HPC cluster. The benchmark tests showed that the VM was feasible platform for executing HPC applications. Then we ran the COAMPS NWP on a VM within a cloud infrastructure to prove the ability to run a HPC application in a virtualized environment. The VM COAMPS model run performed better than the native HPC machine model run. These results show that VM and cloud computing technologies can be used to run HPC applications for the Department of Defense
Books on the topic "Cloud Computing Performance"
Pearson, Siani. Privacy and Security for Cloud Computing. London: Springer London, 2013.
Find full textMilutinović, Veljko, Marijana Despotović-Zrakić, and Aleksandar Belić. Handbook of research on high performance and cloud computing in scientific research and education. Hershey, PA: Information Science Reference, 2014.
Find full textUdoh, Emmanuel. Cloud, grid and high performance computing: Emerging applications. Hershey PA: Information Science Reference, 2011.
Find full textLynn, Theo. Heterogeneity, High Performance Computing, Self-Organization and the Cloud. Basingstoke: Springer Nature, 2018.
Find full textLynn, Theo, John P. Morrison, and David Kenny, eds. Heterogeneity, High Performance Computing, Self-Organization and the Cloud. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-76038-4.
Full textUdoh, Emmanuel. Applications and developments in grid, cloud, and high performance computing. Hershey, PA: Information Science Reference, 2013.
Find full textK, Kokula Krishna Hari, ed. Cloud Technology and Performance Improvement with Intserv Over Diffserv for Cloud Computing: ICCCEG 2014. Vietnam: Association of Scientists, Developers and Faculties, 2014.
Find full textEvolving developments in grid and cloud computing: Advancing research. Hershey, PA: Information Science Reference, 2012.
Find full textGentzsch, Wolfgang. High speed and large scale scientific computing. Amsterdam: IOS Press, 2009.
Find full textGentzsch, Wolfgang. High speed and large scale scientific computing. Amsterdam: IOS Press, 2009.
Find full textBook chapters on the topic "Cloud Computing Performance"
Aversa, Rocco, Beniamino Di Martino, Massimiliano Rak, Salvatore Venticinque, and Umberto Villano. "Performance Prediction for HPC on Clouds." In Cloud Computing, 437–56. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9780470940105.ch17.
Full textCasola, Valentina, Massimiliano Rak, and Umberto Villano. "PerfCloud: Performance-Oriented Integration of Cloud and GRID." In Cloud Computing, 93–102. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-12636-9_7.
Full textKönsgen, Raoul, and Mario Schaarschmidt. "Key Performance Indicators für Software as a Service." In Cloud Computing, 31–42. Wiesbaden: Springer Fachmedien Wiesbaden, 2018. http://dx.doi.org/10.1007/978-3-658-20967-4_3.
Full textEkanayake, Jaliya, and Geoffrey Fox. "High Performance Parallel Computing with Clouds and Cloud Technologies." In Cloud Computing, 20–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-12636-9_2.
Full textOstermann, Simon, Alexandria Iosup, Nezih Yigitbasi, Radu Prodan, Thomas Fahringer, and Dick Epema. "A Performance Analysis of EC2 Cloud Computing Services for Scientific Computing." In Cloud Computing, 115–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-12636-9_9.
Full textLima, Rodrigo Alves, Joshua Kimball, João E. Ferreira, and Calton Pu. "Systematic Construction, Execution, and Reproduction of Complex Performance Benchmarks." In Cloud Computing – CLOUD 2019, 26–37. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-23502-4_3.
Full textMurphy, John. "Performance Engineering for Cloud Computing." In Computer Performance Engineering, 1–9. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-24749-1_1.
Full textJoshi, Pramod Kumar, and Sadhana Rana. "Era of Cloud Computing." In High Performance Architecture and Grid Computing, 1–8. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22577-2_1.
Full textChawla, Vinay, and Prenul Sogani. "Cloud Computing – The Future." In High Performance Architecture and Grid Computing, 113–18. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22577-2_15.
Full textKimball, Joshua, and Calton Pu. "A Method and Tool for Automated Induction of Relations from Quantitative Performance Logs." In Cloud Computing – CLOUD 2019, 11–25. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-23502-4_2.
Full textConference papers on the topic "Cloud Computing Performance"
Wu, Dazhong, Xi Liu, Steve Hebert, Wolfgang Gentzsch, and Janis Terpenny. "Performance Evaluation of Cloud-Based High Performance Computing for Finite Element Analysis." In ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/detc2015-46381.
Full textBatra, Amit, and Arvind Kumar. "High Performance Computing into Cloud Computing Services." In 2012 International Conference on Computing Sciences (ICCS). IEEE, 2012. http://dx.doi.org/10.1109/iccs.2012.39.
Full textBarbosa Vianna, Rodrigo, and Luiz Fernando Bittencourt. "Performance Evaluation of Cloud Computing." In XXV Congresso de Iniciação Cientifica da Unicamp. Campinas - SP, Brazil: Galoa, 2017. http://dx.doi.org/10.19146/pibic-2017-78629.
Full textLoulergue, Frederic, Frederic Gava, Nikolai Kosmatov, and Matthieu Lemerre. "Towards verified cloud computing environments." In 2012 International Conference on High Performance Computing & Simulation (HPCS). IEEE, 2012. http://dx.doi.org/10.1109/hpcsim.2012.6266896.
Full textKumaresan, M., and G. K. D. Prasanna Venkatesan. "Enabling high performance computing in cloud computing environments." In 2017 IEEE International Conference on Electrical, Instrumentation and Communication Engineering (ICEICE). IEEE, 2017. http://dx.doi.org/10.1109/iceice.2017.8191887.
Full textOlson, Michael, and K. Mani Chandy. "Performance Issues in Cloud Computing for Cyber-physical Applications." In 2011 IEEE 4th International Conference on Cloud Computing (CLOUD). IEEE, 2011. http://dx.doi.org/10.1109/cloud.2011.118.
Full textYounge, Andrew J., Robert Henschel, James T. Brown, Gregor von Laszewski, Judy Qiu, and Geoffrey C. Fox. "Analysis of Virtualization Technologies for High Performance Computing Environments." In 2011 IEEE 4th International Conference on Cloud Computing (CLOUD). IEEE, 2011. http://dx.doi.org/10.1109/cloud.2011.29.
Full textRoloff, Eduardo, Francis Birck, Matthias Diener, Alexandre Carissimi, and Philippe O. A. Navaux. "Evaluating High Performance Computing on the Windows Azure Platform." In 2012 IEEE 5th International Conference on Cloud Computing (CLOUD). IEEE, 2012. http://dx.doi.org/10.1109/cloud.2012.47.
Full textEllens, Wendy, Miroslav ivkovic, Jacob Akkerboom, Remco Litjens, and Hans van den Berg. "Performance of Cloud Computing Centers with Multiple Priority Classes." In 2012 IEEE 5th International Conference on Cloud Computing (CLOUD). IEEE, 2012. http://dx.doi.org/10.1109/cloud.2012.96.
Full textMfula, Harrison, and Jukka K. Nurminen. "Self-Healing Cloud Services in Private Multi-Clouds." In 2018 International Conference on High Performance Computing & Simulation (HPCS). IEEE, 2018. http://dx.doi.org/10.1109/hpcs.2018.00041.
Full textReports on the topic "Cloud Computing Performance"
Hochstein, Lorin. High Performance Computing (HPC) Innovation Service Portal Pilots Cloud Computing (HPC-ISP Pilot Cloud Computing). Fort Belvoir, VA: Defense Technical Information Center, August 2011. http://dx.doi.org/10.21236/ada549202.
Full textAppel, Gordon John, Teklu Hadgu, Brandon Thorin Klein, and John Gifford Miner. Cloud Computing for Complex Performance Codes. Office of Scientific and Technical Information (OSTI), February 2017. http://dx.doi.org/10.2172/1343253.
Full text