Dissertations / Theses on the topic 'Cloud federation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 24 dissertations / theses for your research on the topic 'Cloud federation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Rebai, Salma. "Resource allocation in Cloud federation." Thesis, Evry, Institut national des télécommunications, 2017. http://www.theses.fr/2017TELE0006/document.
Full textCloud computing is a steadily maturing large-scale model for providing on-demand IT resources on a pay-as-you-go basis. This emerging paradigm has rapidly revolutionized the IT industry and enabled new service delivery trends, including infrastructure externalization to large third-party providers. The Cloud multi-tenancy architecture raises several management challenges for all stakeholders. Despite the increasing attention on this topic, most efforts have been focused on user-centric solutions, and unfortunately much less on the difficulties encountered by Cloud providers in improving their business. In this context, Cloud Federation has been recently suggested as a key solution to the increasing and variable workloads. Providers having complementary resource requirements over time can collaborate and share their respective infrastructures, to dynamically adjust their hosting capacities in response to users' demands. However, joining a federation makes the resource allocation more complex, since providers have to also deal with cooperation decisions and workload distribution within the federation. This is of crucial importance for cloud providers from a profit standpoint and especially challenging in a federation involving multiple providers and distributed resources and applications. This thesis addresses profit optimization through federating and allocating resources amongst multiple infrastructure providers. The work investigates the key challenges and opportunities related to revenue maximization in Cloud federation, and defines efficient strategies to govern providers' cooperation decisions. The goal is to provide algorithms to automate the selection of cost-effective distributed allocation plans that simultaneously satisfy user demand and networking requirements. We seek generic and robust models able to meet the new trends in Cloud services and handle both simple and complex requests, ranging from standalone VMs to composite services requiring the provisioning of distributed and connected resources. In line with the thesis objectives, we first provide a survey of prior work on infrastructure resource provisioning in Cloud environments. The analysis mainly focuses on profit-driven allocation models in Cloud federations and the associated gaps and challenges with emphasis on pricing and networking issues. Then, we present a novel exact integer linear program (ILP), to assist IaaS providers in their cooperation decisions, through optimal "insourcing", "outsourcing" and local allocation operations. The different allocation decisions are treated jointly in a global optimization formulation that splits resource request graphs across federation members while satisfying communication requirements between request subsets. In addition to the request topology, this partitioning takes into account the dynamic prices and quotas proposed by federation members as well as the costs of resources and their networking. The algorithm performance evaluation and the identified benefits confirm the relevance of resource federation in improving providers' profits and shed light into the most favorable conditions to join or build a federation. Finally, a new topology-aware allocation heuristic is proposed to improve convergence times with large-scale problem instances. The proposed approach uses a Gomory-Hu tree based clustering algorithm for request graphs partitioning, and a Best-Fit matching strategy for subgraphs placement and allocation. Combining both techniques captures the essence of the optimization problem and meets the objectives, while speeding up convergence to near-optimal solutions by several orders of magnitude
Rebai, Salma. "Resource allocation in Cloud federation." Electronic Thesis or Diss., Evry, Institut national des télécommunications, 2017. http://www.theses.fr/2017TELE0006.
Full textCloud computing is a steadily maturing large-scale model for providing on-demand IT resources on a pay-as-you-go basis. This emerging paradigm has rapidly revolutionized the IT industry and enabled new service delivery trends, including infrastructure externalization to large third-party providers. The Cloud multi-tenancy architecture raises several management challenges for all stakeholders. Despite the increasing attention on this topic, most efforts have been focused on user-centric solutions, and unfortunately much less on the difficulties encountered by Cloud providers in improving their business. In this context, Cloud Federation has been recently suggested as a key solution to the increasing and variable workloads. Providers having complementary resource requirements over time can collaborate and share their respective infrastructures, to dynamically adjust their hosting capacities in response to users' demands. However, joining a federation makes the resource allocation more complex, since providers have to also deal with cooperation decisions and workload distribution within the federation. This is of crucial importance for cloud providers from a profit standpoint and especially challenging in a federation involving multiple providers and distributed resources and applications. This thesis addresses profit optimization through federating and allocating resources amongst multiple infrastructure providers. The work investigates the key challenges and opportunities related to revenue maximization in Cloud federation, and defines efficient strategies to govern providers' cooperation decisions. The goal is to provide algorithms to automate the selection of cost-effective distributed allocation plans that simultaneously satisfy user demand and networking requirements. We seek generic and robust models able to meet the new trends in Cloud services and handle both simple and complex requests, ranging from standalone VMs to composite services requiring the provisioning of distributed and connected resources. In line with the thesis objectives, we first provide a survey of prior work on infrastructure resource provisioning in Cloud environments. The analysis mainly focuses on profit-driven allocation models in Cloud federations and the associated gaps and challenges with emphasis on pricing and networking issues. Then, we present a novel exact integer linear program (ILP), to assist IaaS providers in their cooperation decisions, through optimal "insourcing", "outsourcing" and local allocation operations. The different allocation decisions are treated jointly in a global optimization formulation that splits resource request graphs across federation members while satisfying communication requirements between request subsets. In addition to the request topology, this partitioning takes into account the dynamic prices and quotas proposed by federation members as well as the costs of resources and their networking. The algorithm performance evaluation and the identified benefits confirm the relevance of resource federation in improving providers' profits and shed light into the most favorable conditions to join or build a federation. Finally, a new topology-aware allocation heuristic is proposed to improve convergence times with large-scale problem instances. The proposed approach uses a Gomory-Hu tree based clustering algorithm for request graphs partitioning, and a Best-Fit matching strategy for subgraphs placement and allocation. Combining both techniques captures the essence of the optimization problem and meets the objectives, while speeding up convergence to near-optimal solutions by several orders of magnitude
Xhagjika, Vamis. "Resource, data and application management for cloud federations and multi-clouds." Doctoral thesis, Universitat Politècnica de Catalunya, 2017. http://hdl.handle.net/10803/409728.
Full textEl procesamiento de medios en tiempo real distribuido se refiere a clases de aplicaciones altamente distribuidas, no tolerantes al retardo, que representan la mayoría del tráfico de datos generado en el mundo actual. Las conferencias de audio y video en tiempo real y la transmisión de contenido en vivo tienen especial interés en investigación, ya que la prospectiva tecnológica estima que el tráfico de video supere a cualquier otro tipo de tráfico de datos en el futuro cercano. La transmisión en vivo se refiere a aplicaciones en las que flujos de audio/vídeo de una fuente se han de entregar a un conjunto de destinos en lugares geográficos diferentes mientras se mantiene baja la latencia de entrega del flujo (como por ejemplo la cobertura de eventos en vivo). Las plataformas de conferencia en tiempo real son plataformas de aplicación que implementan comunicaciones de audio/video en tiempo real entre muchos participantes. Ambas categorías presentan una alta sensibilidad tanto al estado de la red (latencia, jitter, pérdida de paquetes, velocidad de bits) como a los perfiles de carga de la infraestructura de procesamiento de flujo (latencia y jitter introducidos durante el procesamiento en la nube de paquetes de datos multimedia). Esta tesis trata de mejorar el procesamiento de datos multimedia en tiempo real tanto en los parámetros de nivel de red como en las optimizaciones en la nube.
RODRIGUES, Thiago Gomes. "Cloudacc: a cloud-based accountability framework for federated cloud." Universidade Federal de Pernambuco, 2016. https://repositorio.ufpe.br/handle/123456789/18590.
Full textMade available in DSpace on 2017-04-19T15:09:08Z (GMT). No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) tgr_thesis.pdf: 4801672 bytes, checksum: ce1d30377cfe8fad52dbfd02d55554e6 (MD5) Previous issue date: 2016-09-08
The evolution of software service delivery has changed the way accountability is performed. The complexity related to cloud computing environments increases the difficulty in properly performing accountability, since the evidences are spread through the whole infrastructure, from different servers, in physical, virtualization and application layers. This complexity increases when the cloud federation is considered because besides the inherent complexity of the virtualized environment, the federation members may not implement the same security procedures and policies. The main objective of this thesis is to propose an accountability framework named CloudAcc, that supports audit, management, planning and billing process in federated cloud environments, increasing trust and transparency. Furthermore, CloudAcc considers the legal safeguard requirements presented in Brazilian Marco Civil da Internet. We confirm the CloudAcc effectiveness when some infrastructure elements were submitted against Denial of Service (DoS) and Brute Force attacks, and our framework was able to detect them. Facing the results obtained, we can conclude that CloudAcc contributes to the state-of-the-art once it provides the holistic vision of the cloud federated environment through the evidence collection considering the three layers, supporting audit, management, planning and billing process in federated cloud environments.
A maneira de realizar accountability tem variado à medida em que o modo de entrega de serviços de Tecnologia da Informação (TI) tem evoluído. Em ambientes de nuvem a complexidade de realizar accountability apropriadamente é alta porque as evidências devem ser coletadas considerando-se as camadas física, de virtualização e de aplicações, que estão espalhadas em diferentes servidores e elementos da infraestrutura. Esta complexidade é ampliada quando ocorre a federação das infraestruturas de nuvem porque além da complexidade inerente ao ambiente virtualizado, os membros da federação podem não ter os mesmos grupos de políticas e práticas de segurança. O principal objetivo desta tese é propor um framework de accountability, denominado CloudAcc, que suporte processos de auditoria, gerenciamento, planejamento e cobrança, em nuvens federadas, aumentando a confiança e a transparência. Além disso, o CloudAcc também considera os requisitos legais para a salvaguarda dos registros, conforme descrito no Marco Civil da Internet brasileira. A efetividade do CloudAcc foi confirmada quando alguns componentes da infraestrutura da nuvem foram submetidos a ataques de negação de serviço e de força bruta, e o framework foi capaz de detectá-los. Diante dos resultados obtidos, pode-se concluir que o CloudAcc contribui para o estado-da-arte, uma vez que fornece uma visão holística do ambiente de nuvem federada através da coleta de evidências em três camadas suportando os processos de auditoria, gerenciamento, planejamento e cobrança.
Bou, Abdo Jacques. "Efficient and secure mobile cloud networking." Thesis, Paris 6, 2014. http://www.theses.fr/2014PA066551.
Full textMobile cloud computing is a very strong candidate for the title "Next Generation Network" which empowers mobile users with extended mobility, service continuity and superior performance. Users can expect to execute their jobs faster, with lower battery consumption and affordable prices; however this is not always the case. Various mobile applications have been developed to take advantage of this new technology, but each application has its own requirements. Several mobile cloud architectures have been proposed but none was suitable for all mobile applications which resulted in lower customer satisfaction. In addition to that, the absence of a valid business model to motivate investors hindered its deployment on production scale. This dissertation proposes a new mobile cloud architecture which positions the mobile operator at the core of this technology equipped with a revenue-making business model. This architecture, named OCMCA (Operator Centric Mobile Cloud Architecture), connects the user from one side and the Cloud Service Provider (CSP) from the other and hosts a cloud within its network. The OCMCA/user connection can utilize multicast channels leading to a much cheaper service for the users and more revenues, lower congestion and rejection rates for the operator. The OCMCA/CSP connection is based on federation, thus a user who has been registered with any CSP, can request her environment to be offloaded to the mobile operator's hosted cloud in order to receive all OCMCA's services and benefits
Grubitzsch, Philipp. "Intercloud-Kommunikation für Mehrwehrtdienste von Cloud-basierten Architekturen im Internet of Things." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2018. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-236210.
Full textBou, Abdo Jacques. "Efficient and secure mobile cloud networking." Electronic Thesis or Diss., Paris 6, 2014. http://www.theses.fr/2014PA066551.
Full textMobile cloud computing is a very strong candidate for the title "Next Generation Network" which empowers mobile users with extended mobility, service continuity and superior performance. Users can expect to execute their jobs faster, with lower battery consumption and affordable prices; however this is not always the case. Various mobile applications have been developed to take advantage of this new technology, but each application has its own requirements. Several mobile cloud architectures have been proposed but none was suitable for all mobile applications which resulted in lower customer satisfaction. In addition to that, the absence of a valid business model to motivate investors hindered its deployment on production scale. This dissertation proposes a new mobile cloud architecture which positions the mobile operator at the core of this technology equipped with a revenue-making business model. This architecture, named OCMCA (Operator Centric Mobile Cloud Architecture), connects the user from one side and the Cloud Service Provider (CSP) from the other and hosts a cloud within its network. The OCMCA/user connection can utilize multicast channels leading to a much cheaper service for the users and more revenues, lower congestion and rejection rates for the operator. The OCMCA/CSP connection is based on federation, thus a user who has been registered with any CSP, can request her environment to be offloaded to the mobile operator's hosted cloud in order to receive all OCMCA's services and benefits
Medhioub, Houssem. "Architectures et mécanismes de fédération dans les environnements cloud computing et cloud networking." Thesis, Evry, Institut national des télécommunications, 2015. http://www.theses.fr/2015TELE0009/document.
Full textPresented in the literature as a new technology, Cloud Computing has become essential in the development and delivery of IT services. Given the innovative potential of Cloud, our thesis was conducted in the context of this promising technology. It was clear that the Cloud would change the way we develop, manage and use information systems. However, the adoption and popularization of Cloud were slow and difficult given the youth of the concepts and heterogeneity of the existing solutions. This difficulty in adoption is reflected by the lack of standard, the presence of heterogeneous architectures and APIs, the introduction of Vendor Lock-In imposed by the market leaders and the lack of cloud federation principles and facilitators. The main motivation for our PhD is to simplify the adoption of the cloud paradigm and the migration to cloud environments and technologies. Our goal has consequently been to improve interoperability and enable federation in the cloud. The thesis focused on two main areas. The first concerns the convergence of future networks and clouds and the second the improvement of federation and interoperability between heterogeneous cloud solutions and services. Based on our work in state of the art about Cloud Computing and Cloud Networking, we defined in this thesis two architectures for Cloud federation. The first architecture enables the merging (convergence) of Cloud Computing and Cloud Networking. The second architecture addresses interoperability between services and proposes cloud-brokering solutions. The study enabled the identification of two essential components for cloud federation, namely: a generic interface and a message exchange system. These two components have been two contributions of our thesis. The proposed federation architectures and these two components summarize the four major contributions of our work
Medhioub, Houssem. "Architectures et mécanismes de fédération dans les environnements cloud computing et cloud networking." Electronic Thesis or Diss., Evry, Institut national des télécommunications, 2015. http://www.theses.fr/2015TELE0009.
Full textPresented in the literature as a new technology, Cloud Computing has become essential in the development and delivery of IT services. Given the innovative potential of Cloud, our thesis was conducted in the context of this promising technology. It was clear that the Cloud would change the way we develop, manage and use information systems. However, the adoption and popularization of Cloud were slow and difficult given the youth of the concepts and heterogeneity of the existing solutions. This difficulty in adoption is reflected by the lack of standard, the presence of heterogeneous architectures and APIs, the introduction of Vendor Lock-In imposed by the market leaders and the lack of cloud federation principles and facilitators. The main motivation for our PhD is to simplify the adoption of the cloud paradigm and the migration to cloud environments and technologies. Our goal has consequently been to improve interoperability and enable federation in the cloud. The thesis focused on two main areas. The first concerns the convergence of future networks and clouds and the second the improvement of federation and interoperability between heterogeneous cloud solutions and services. Based on our work in state of the art about Cloud Computing and Cloud Networking, we defined in this thesis two architectures for Cloud federation. The first architecture enables the merging (convergence) of Cloud Computing and Cloud Networking. The second architecture addresses interoperability between services and proposes cloud-brokering solutions. The study enabled the identification of two essential components for cloud federation, namely: a generic interface and a message exchange system. These two components have been two contributions of our thesis. The proposed federation architectures and these two components summarize the four major contributions of our work
Zapolskas, Vytautas. "Securing Cloud Storage Service." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for telematikk, 2012. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-18626.
Full textFawzy, Kamel Menatalla Ashraf. "Vendor Lock-in in the transistion to a Cloud Computing platform." Thesis, KTH, Skolan för informations- och kommunikationsteknik (ICT), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-209121.
Full textUppsatsen presenterar en studie om de sårbarheter som ett företag som Scania IT har mot inlåsning i övergången till molntjänster. Molntjänster är en term som hänvisar till ett nätverk av servrar som finns på internet för att lagra, hantera och processa data, istället för på en lokal server eller en persondator. Inlåsning är ett resultat i vilket orsakar att företagen behöver betala en betydande kostnad för att flytta mellan molnleverantörer. De effekter som orsakar inlåsning vilket kommer att beskrivas är portabilitet, interoperabilitet och federation, dessa kallas inlåsningseffekter. Målet med forskningen är att hjälpa Scania IT att förstå inlåsning och sårbarheter som de kan möta i övergången till molnet. Dessutom är målet att klarlägga riskerna som de kan ha mot att falla i inlåsning. Det huvudsakliga syftet med forskningen är att presentera de olika inlåsningseffekter som är relaterade till övergången från en molnleverantör till en annan samt de sårbarheter som orsakar företagen att falla i inlåsning. Uppsatsen presenterar skäl som motiverar varför Scania IT ska överväga att använda molnet samt den oro som de kan ha mot användning av en molnleverantör. Resultaten kommer att baseras på en fallstudie av ett liknande företag som har flyttat till en molnleverantör och specifikt Microsoft Azure samt en intervju av Microsoft Azure synvinkel med risken för inlåsning. Slutligen, en rad av intervjuer med olika personer från Scania IT för att extrahera den nuvarande flaskhalsen i utvecklingsprocessen som orsakade företaget att tänka på molntjänster. Resultaten visar att företagen bör överväga många risker och faktorer när de flyttar till molnet, som exempelvis inlåsning, cloud maturity index och deras IT-strategier. Som ett resultat ger examensarbetet nödvändiga rekommendationer för att minimera riskerna för molnet samtidigt som positivitet av molnet.
Paolucci, Fabio. "Migrazione concorrente di macchine virtuali su piattaforme open source." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2015. http://amslaurea.unibo.it/8454/.
Full textWinckler, Gabriel Araujo von. "Proposta de arquitetura para federações de nuvens computacionais acadêmicas." Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/45/45134/tde-07042015-210742/.
Full textCloud computing is a new model to provide computing resources. The growing interest and investments on this platform creates an opportunity to share this resources across different institutions. The grid computing is the standard way of achieving this. Using grid as reference, this work survey current technologies and present an alternative design to allow the development of academic cloud computing federations.
Chikhaoui, Amina. "Vers une approche intelligente de placement de données dans un cloud distribué basé sur un système de stockage hybride." Electronic Thesis or Diss., Brest, 2022. http://www.theses.fr/2022BRES0024.
Full textCloud federation makes it possible to seamlessly extend the resources of Cloud Service Providers (CSP) in order to provide a better Quality of Service (QoS) to customers without additional deployment costs. Storage as a Service (StaaS), is one of the main Cloud services offered to customers. For such a service, storage Input/Output (I/O) performance and network latency are among the most important metrics considered by customers. In effect, transactions for some database queries spend 90% of the execution time in I/O operations. In order to satisfy customers, some Cloud companies already include latency guarantees in their Service Level Agreements (SLA) and customers can pay additional fees to further reduce latency. This thesis addresses the data placement problem for a CSP that is part of a federation. Indeed,offering attractive and inexpensive services is a big challenge for CSP. Our goal is to pro-vide intelligent approaches for a better data placement that minimizes the cost of placement for the provider while satisfying the customers QoS requirements.This approach must take into account the heterogeneity of internal and external storage resources in terms of several parameters (such as capacity, performance, pricing) as well as customer characteristics and requirements.Despite the fact that many data placement strategies have been proposed for hybrid storage systems, they are not generalizable to every architecture. Indeed, a placement strategy must be designed according to the system architecture for which it is proposed and the target objectives
Radwan, Ahmed M. "Information Integration in a Grid Environment Applications in the Bioinformatics Domain." Scholarly Repository, 2010. http://scholarlyrepository.miami.edu/oa_dissertations/509.
Full textFerreira, Leite Alessandro. "A user-centered and autonomic multi-cloud architecture for high performance computing applications." Thesis, Paris 11, 2014. http://www.theses.fr/2014PA112355/document.
Full textCloud computing has been seen as an option to execute high performance computing (HPC) applications. While traditional HPC platforms such as grid and supercomputers offer a stable environment in terms of failures, performance, and number of resources, cloud computing offers on-Demand resources generally with unpredictable performance at low financial cost. Furthermore, in cloud environment, failures are part of its normal operation. To overcome the limits of a single cloud, clouds can be combined, forming a cloud federation often with minimal additional costs for the users. A cloud federation can help both cloud providers and cloud users to achieve their goals such as to reduce the execution time, to achieve minimum cost, to increase availability, to reduce power consumption, among others. Hence, cloud federation can be an elegant solution to avoid over provisioning, thus reducing the operational costs in an average load situation, and removing resources that would otherwise remain idle and wasting power consumption, for instance. However, cloud federation increases the range of resources available for the users. As a result, cloud or system administration skills may be demanded from the users, as well as a considerable time to learn about the available options. In this context, some questions arise such as: (a) which cloud resource is appropriate for a given application? (b) how can the users execute their HPC applications with acceptable performance and financial costs, without needing to re-Engineer the applications to fit clouds' constraints? (c) how can non-Cloud specialists maximize the features of the clouds, without being tied to a cloud provider? and (d) how can the cloud providers use the federation to reduce power consumption of the clouds, while still being able to give service-Level agreement (SLA) guarantees to the users? Motivated by these questions, this thesis presents a SLA-Aware application consolidation solution for cloud federation. Using a multi-Agent system (MAS) to negotiate virtual machine (VM) migrations between the clouds, simulation results show that our approach could reduce up to 46% of the power consumption, while trying to meet performance requirements. Using the federation, we developed and evaluated an approach to execute a huge bioinformatics application at zero-Cost. Moreover, we could decrease the execution time in 22.55% over the best single cloud execution. In addition, this thesis presents a cloud architecture called Excalibur to auto-Scale cloud-Unaware application. Executing a genomics workflow, Excalibur could seamlessly scale the applications up to 11 virtual machines, reducing the execution time by 63% and the cost by 84% when compared to a user's configuration. Finally, this thesis presents a product line engineering (PLE) process to handle the variabilities of infrastructure-As-A-Service (IaaS) clouds, and an autonomic multi-Cloud architecture that uses this process to configure and to deal with failures autonomously. The PLE process uses extended feature model (EFM) with attributes to describe the resources and to select them based on users' objectives. Experiments realized with two different cloud providers show that using the proposed model, the users could execute their application in a cloud federation environment, without needing to know the variabilities and constraints of the clouds
Le, Trung-Dung. "Gestion de masses de données dans une fédération de nuages informatiques." Thesis, Rennes 1, 2019. http://www.theses.fr/2019REN1S101.
Full textCloud federations can be seen as major progress in cloud computing, in particular in the medical domain. Indeed, sharing medical data would improve healthcare. Federating resources makes it possible to access any information even on a mobile person with distributed hospital data on several sites. Besides, it enables us to consider larger volumes of data on more patients and thus provide finer statistics. Medical data usually conform to the Digital Imaging and Communications in Medicine (DICOM) standard. DICOM files can be stored on different platforms, such as Amazon, Microsoft, Google Cloud, etc. The management of the files, including sharing and processing, on such platforms, follows the pay-as-you-go model, according to distinct pricing models and relying on various systems (Relational Data Management Systems or DBMSs or NoSQL systems). In addition, DICOM data can be structured following traditional (row or column) or hybrid (row-column) data storages. As a consequence, medical data management in cloud federations raises Multi-Objective Optimization Problems (MOOPs) for (1) query processing and (2) data storage, according to users preferences, related to various measures, such as response time, monetary cost, qualities, etc. These problems are complex to address because of heterogeneous database engines, the variability (due to virtualization, large-scale communications, etc.) and high computational complexity of a cloud federation. To solve these problems, we propose a MedIcal system on clouD federAtionS (MIDAS). First, MIDAS extends IReS, an open source platform for complex analytics workflows executed over multi-engine environments, to solve MOOP in the heterogeneous database engines. Second, we propose an algorithm for estimating of cost values in a cloud environment, called Dynamic REgression AlgorithM (DREAM). This approach adapts the variability of cloud environment by changing the size of data for training and testing process to avoid using the expire information of systems. Third, Non-dominated Sorting Genetic Algorithm based ob Grid partitioning (NSGA-G) is proposed to solve the problem of MOOP is that the candidate space is large. NSGA-G aims to find an approximate optimal solution, while improving the quality of the optimal Pareto set of MOOP. In addition to query processing, we propose to use NSGA-G to find an approximate optimal solution for DICOM data configuration. We provide experimental evaluations to validate DREAM, NSGA-G with various test problem and dataset. DREAM is compared with other machine learning algorithms in providing accurate estimated costs. The quality of NSGA-G is compared to other NSGAs with many problems in MOEA framework. The DICOM dataset is also experimented with NSGA-G to find optimal solutions. Experimental results show the good qualities of our solutions in estimating and optimizing Multi-Objective Problem in a cloud federation
Panjwani, Rizwan. "A Modular architecture for Cloud Federation." Thesis, 2015. http://hdl.handle.net/1828/6959.
Full textGraduate
0984
panjwani.riz@gmail.com
Chen, Chih-Chung, and 陳之中. "Proof of Violation for Cloud Federation." Thesis, 2016. http://ndltd.ncl.edu.tw/handle/03312366907697935464.
Full textLiu, Pei-Yun, and 劉佩芸. "An Efficient Resource Allocation Framework for Cloud Federation." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/40503032363077409283.
Full text國立臺灣科技大學
資訊管理系
101
With the recent popularity of cloud computing, and the evolution of Internet technology, cloud computing is being used for many applications which are referring to the web services in our life. Nevertheless, most of large enterprises are eager to use cloud computing technology, helping business groups achieve cost-effective and high-performance and manage easily. In other words, to provide uninterrupted services to the clients and reduce the monetary cost of cloud services and how to get the rented resources efficiently has become more important. In this study, we focus on the computing resource allocation problem in cloud environment which involves with the management of CPU processing power, network bandwidth, storage space and system load balance. In order to address such problem a resource allocation framework which refers to a cross-Identity Provider (IdP) resource allocation concept based on the inter-trust relationship among clouds is proposed to allow a cloud to borrow available virtualized resources from external clouds via constructed cloud federation architecture. We conduct simulation experiments which compared revised Celesti algorithm and our algorithms and find out that our scheme has better cost effectiveness than revised Celesti algorithm for resource allocation in cloud federation environment.
Yuen, Marco. "GENI in the cloud." Thesis, 2010. http://hdl.handle.net/1828/2905.
Full textGrubitzsch, Philipp. "Intercloud-Kommunikation für Mehrwehrtdienste von Cloud-basierten Architekturen im Internet of Things." Doctoral thesis, 2017. https://tud.qucosa.de/id/qucosa%3A31029.
Full textTRICOMI, GIUSEPPE. "Study and evaluation of service-oriented approaches and techniques to manage and federate Cyber-Physical Systems." Doctoral thesis, 2021. http://hdl.handle.net/11570/3183265.
Full textBhojwani, Sushil. "Interoperability in Federated Clouds." Thesis, 2015. http://hdl.handle.net/1828/6732.
Full textGraduate