Journal articles on the topic 'Cloud level'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Cloud level.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Korshunova, N. N., and T. V. Dementieva . "Changes in cloud characteristics on the territory of Russia." Hydrometeorological research and forecasting 3 (September 30, 2023): 139–51. http://dx.doi.org/10.37162/2618-9631-2023-3-139-151.
Full textSedlar, Joseph. "Implications of Limited Liquid Water Path on Static Mixing within Arctic Low-Level Clouds." Journal of Applied Meteorology and Climatology 53, no. 12 (2014): 2775–89. http://dx.doi.org/10.1175/jamc-d-14-0065.1.
Full textLi, J., Z. Wu, Z. Hu, Y. Zhang, and M. Molinier. "AUTOMATIC CLOUD DETECTION METHOD BASED ON GENERATIVE ADVERSARIAL NETWORKS IN REMOTE SENSING IMAGES." ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences V-2-2020 (August 3, 2020): 885–92. http://dx.doi.org/10.5194/isprs-annals-v-2-2020-885-2020.
Full textPangaud, Thomas, Nadia Fourrie, Vincent Guidard, Mohamed Dahoui, and Florence Rabier. "Assimilation of AIRS Radiances Affected by Mid- to Low-Level Clouds." Monthly Weather Review 137, no. 12 (2009): 4276–92. http://dx.doi.org/10.1175/2009mwr3020.1.
Full textShikwambana, Lerato, and Venkataraman Sivakumar. "Observation of Clouds Using the CSIR Transportable LIDAR: A Case Study over Durban, South Africa." Advances in Meteorology 2016 (2016): 1–9. http://dx.doi.org/10.1155/2016/4184512.
Full textLiu, X., M. J. Newchurch, and J. H. Kim. "Occurrence of ozone anomalies over cloudy areas in TOMS version-7 level-2 data." Atmospheric Chemistry and Physics Discussions 3, no. 1 (2003): 187–223. http://dx.doi.org/10.5194/acpd-3-187-2003.
Full textLiu, X., M. J. Newchurch, and J. H. Kim. "Occurrence of ozone anomalies over cloudy areas in TOMS version-7 level-2 data." Atmospheric Chemistry and Physics 3, no. 4 (2003): 1113–29. http://dx.doi.org/10.5194/acp-3-1113-2003.
Full textSchirmacher, Imke, Pavlos Kollias, Katia Lamer, et al. "Assessing Arctic low-level clouds and precipitation from above – a radar perspective." Atmospheric Measurement Techniques 16, no. 17 (2023): 4081–100. http://dx.doi.org/10.5194/amt-16-4081-2023.
Full textAdebiyi, Adeyemi A., Paquita Zuidema, Ian Chang, Sharon P. Burton, and Brian Cairns. "Mid-level clouds are frequent above the southeast Atlantic stratocumulus clouds." Atmospheric Chemistry and Physics 20, no. 18 (2020): 11025–43. http://dx.doi.org/10.5194/acp-20-11025-2020.
Full textSirch, Tobias, Luca Bugliaro, Tobias Zinner, Matthias Möhrlein, and Margarita Vazquez-Navarro. "Cloud and DNI nowcasting with MSG/SEVIRI for the optimized operation of concentrating solar power plants." Atmospheric Measurement Techniques 10, no. 2 (2017): 409–29. http://dx.doi.org/10.5194/amt-10-409-2017.
Full textZelinka, Mark D., Li-Wei Chao, Timothy A. Myers, Yi Qin, and Stephen A. Klein. "Technical note: Recommendations for diagnosing cloud feedbacks and rapid cloud adjustments using cloud radiative kernels." Atmospheric Chemistry and Physics 25, no. 3 (2025): 1477–95. https://doi.org/10.5194/acp-25-1477-2025.
Full textAdler, Bianca, Norbert Kalthoff, and Leonhard Gantner. "Nocturnal low-level clouds over southern West Africa analysed using high-resolution simulations." Atmospheric Chemistry and Physics 17, no. 2 (2017): 899–910. http://dx.doi.org/10.5194/acp-17-899-2017.
Full textCarbajal Henken, C. K., R. Lindstrot, R. Preusker, and J. Fischer. "FAME-C: cloud property retrieval using synergistic AATSR and MERIS observations." Atmospheric Measurement Techniques 7, no. 11 (2014): 3873–90. http://dx.doi.org/10.5194/amt-7-3873-2014.
Full textKarlsson, Linn, Radovan Krejci, Makoto Koike, Kerstin Ebell, and Paul Zieger. "A long-term study of cloud residuals from low-level Arctic clouds." Atmospheric Chemistry and Physics 21, no. 11 (2021): 8933–59. http://dx.doi.org/10.5194/acp-21-8933-2021.
Full textLonardi, Michael, Elisa F. Akansu, André Ehrlich, et al. "Tethered balloon-borne observations of thermal-infrared irradiance and cooling rate profiles in the Arctic atmospheric boundary layer." Atmospheric Chemistry and Physics 24, no. 3 (2024): 1961–78. http://dx.doi.org/10.5194/acp-24-1961-2024.
Full textLiu, Fangjian, Fengyi Zhang, Mi Wang, and Qizhi Xu. "Two-Level Supervised Network for Small Ship Target Detection in Shallow Thin Cloud-Covered Optical Satellite Images." Applied Sciences 14, no. 24 (2024): 11558. https://doi.org/10.3390/app142411558.
Full textMarinou, Eleni, Kalliopi Artemis Voudouri, Ioanna Tsikoudi, et al. "Geometrical and Microphysical Properties of Clouds Formed in the Presence of Dust above the Eastern Mediterranean." Remote Sensing 13, no. 24 (2021): 5001. http://dx.doi.org/10.3390/rs13245001.
Full textDawe, J. T., and P. H. Austin. "Statistical analysis of a LES shallow cumulus cloud ensemble using a cloud tracking algorithm." Atmospheric Chemistry and Physics Discussions 11, no. 8 (2011): 23231–73. http://dx.doi.org/10.5194/acpd-11-23231-2011.
Full textDawe, J. T., and P. H. Austin. "Statistical analysis of an LES shallow cumulus cloud ensemble using a cloud tracking algorithm." Atmospheric Chemistry and Physics 12, no. 2 (2012): 1101–19. http://dx.doi.org/10.5194/acp-12-1101-2012.
Full textZhang, L., P. van Oosterom, and H. Liu. "VISUALIZATION OF POINT CLOUD MODELS IN MOBILE AUGMENTED REALITY USING CONTINUOUS LEVEL OF DETAIL METHOD." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLIV-4/W1-2020 (September 3, 2020): 167–70. http://dx.doi.org/10.5194/isprs-archives-xliv-4-w1-2020-167-2020.
Full textStengel, Martin, Cornelia Schlundt, Stefan Stapelberg, et al. "Comparing ERA-Interim clouds with satellite observations using a simplified satellite simulator." Atmospheric Chemistry and Physics 18, no. 23 (2018): 17601–14. http://dx.doi.org/10.5194/acp-18-17601-2018.
Full textStubenrauch, C. J., S. Cros, A. Guignard, and N. Lamquin. "A 6-year global cloud climatology from the Atmospheric InfraRed Sounder AIRS and a statistical analysis in synergy with CALIPSO and CloudSat." Atmospheric Chemistry and Physics Discussions 10, no. 3 (2010): 8247–96. http://dx.doi.org/10.5194/acpd-10-8247-2010.
Full textStubenrauch, C. J., S. Cros, A. Guignard, and N. Lamquin. "A 6-year global cloud climatology from the Atmospheric InfraRed Sounder AIRS and a statistical analysis in synergy with CALIPSO and CloudSat." Atmospheric Chemistry and Physics 10, no. 15 (2010): 7197–214. http://dx.doi.org/10.5194/acp-10-7197-2010.
Full textDai, Peiyu, Shunping Ji, and Yongjun Zhang. "Gated Convolutional Networks for Cloud Removal From Bi-Temporal Remote Sensing Images." Remote Sensing 12, no. 20 (2020): 3427. http://dx.doi.org/10.3390/rs12203427.
Full textTaylor, Jonathan W., Sophie L. Haslett, Keith Bower, et al. "Aerosol influences on low-level clouds in the West African monsoon." Atmospheric Chemistry and Physics 19, no. 13 (2019): 8503–22. http://dx.doi.org/10.5194/acp-19-8503-2019.
Full textNarendra Reddy, Nelli, Madineni Venkat Ratnam, Ghouse Basha, and Varaha Ravikiran. "Cloud vertical structure over a tropical station obtained using long-term high-resolution radiosonde measurements." Atmospheric Chemistry and Physics 18, no. 16 (2018): 11709–27. http://dx.doi.org/10.5194/acp-18-11709-2018.
Full textSong, Hua, Wuyin Lin, Yanluan Lin, et al. "Evaluation of Cloud Fraction Simulated by Seven SCMs against the ARM Observations at the SGP Site*." Journal of Climate 27, no. 17 (2014): 6698–719. http://dx.doi.org/10.1175/jcli-d-13-00555.1.
Full textEhrlich, A., E. Bierwirth, M. Wendisch, et al. "Cloud phase identification of low-level Arctic clouds from airborne spectral radiation measurements: test of three approaches." Atmospheric Chemistry and Physics Discussions 8, no. 4 (2008): 15901–39. http://dx.doi.org/10.5194/acpd-8-15901-2008.
Full textWinker, David, Xia Cai, Mark Vaughan, et al. "A Level 3 monthly gridded ice cloud dataset derived from 12 years of CALIOP measurements." Earth System Science Data 16, no. 6 (2024): 2831–55. http://dx.doi.org/10.5194/essd-16-2831-2024.
Full textEguchi, Nawo, and Yukio Yoshida. "A high-level cloud detection method utilizing the GOSAT TANSO-FTS water vapor saturated band." Atmospheric Measurement Techniques 12, no. 1 (2019): 389–403. http://dx.doi.org/10.5194/amt-12-389-2019.
Full textMarchant, Benjamin, Steven Platnick, Kerry Meyer, G. Thomas Arnold, and Jérôme Riedi. "MODIS Collection 6 shortwave-derived cloud phase classification algorithm and comparisons with CALIOP." Atmospheric Measurement Techniques 9, no. 4 (2016): 1587–99. http://dx.doi.org/10.5194/amt-9-1587-2016.
Full textMarchant, B., S. Platnick, K. Meyer, G. T. Arnold, and J. Riedi. "MODIS Collection 6 shortwave-derived cloud phase classification algorithm and comparisons with CALIOP." Atmospheric Measurement Techniques Discussions 8, no. 11 (2015): 11893–924. http://dx.doi.org/10.5194/amtd-8-11893-2015.
Full textMotos, Ghislain, Gabriel Freitas, Paraskevi Georgakaki, et al. "Aerosol and dynamical contributions to cloud droplet formation in Arctic low-level clouds." Atmospheric Chemistry and Physics 23, no. 21 (2023): 13941–56. http://dx.doi.org/10.5194/acp-23-13941-2023.
Full textZouzoua, Maurin, Fabienne Lohou, Paul Assamoi, et al. "Breakup of nocturnal low-level stratiform clouds during the southern West African monsoon season." Atmospheric Chemistry and Physics 21, no. 3 (2021): 2027–51. http://dx.doi.org/10.5194/acp-21-2027-2021.
Full textRossow, William B., and Yuanchong Zhang. "Evaluation of a Statistical Model of Cloud Vertical Structure Using Combined CloudSat and CALIPSO Cloud Layer Profiles." Journal of Climate 23, no. 24 (2010): 6641–53. http://dx.doi.org/10.1175/2010jcli3734.1.
Full textRosenfeld, Daniel, Yannian Zhu, Minghuai Wang, Youtong Zheng, Tom Goren, and Shaocai Yu. "Aerosol-driven droplet concentrations dominate coverage and water of oceanic low-level clouds." Science 363, no. 6427 (2019): eaav0566. http://dx.doi.org/10.1126/science.aav0566.
Full textCesana, G., D. E. Waliser, D. Henderson, T. S. L’Ecuyer, X. Jiang, and J. L. F. Li. "The Vertical Structure of Radiative Heating Rates: A Multimodel Evaluation Using A-Train Satellite Observations." Journal of Climate 32, no. 5 (2019): 1573–90. http://dx.doi.org/10.1175/jcli-d-17-0136.1.
Full textChang, Fu-Lung, and James A. Coakley. "Relationships between Marine Stratus Cloud Optical Depth and Temperature: Inferences from AVHRR Observations." Journal of Climate 20, no. 10 (2007): 2022–36. http://dx.doi.org/10.1175/jcli4115.1.
Full textWind, Galina, Steven Platnick, Michael D. King, et al. "Multilayer Cloud Detection with the MODIS Near-Infrared Water Vapor Absorption Band." Journal of Applied Meteorology and Climatology 49, no. 11 (2010): 2315–33. http://dx.doi.org/10.1175/2010jamc2364.1.
Full textWang, P., and P. Stammes. "Evaluation of SCIAMACHY Oxygen A band cloud heights using Cloudnet measurements." Atmospheric Measurement Techniques 7, no. 5 (2014): 1331–50. http://dx.doi.org/10.5194/amt-7-1331-2014.
Full textXu, Wenjing, and Daren Lyu. "Evaluation of Cloud Mask and Cloud Top Height from Fengyun-4A with MODIS Cloud Retrievals over the Tibetan Plateau." Remote Sensing 13, no. 8 (2021): 1418. http://dx.doi.org/10.3390/rs13081418.
Full textChen, Julong, Bin Wang, Rundong Gan, Xuepeng Mou, Shiping Yang, and Ling Tan. "Multi-Level Particle System Modeling Algorithm with WRF." Atmosphere 16, no. 5 (2025): 571. https://doi.org/10.3390/atmos16050571.
Full textNaud, C. M., J. P. Muller, E. E. Clothiaux, B. A. Baum, and W. P. Menzel. "Intercomparison of multiple years of MODIS, MISR and radar cloud-top heights." Annales Geophysicae 23, no. 7 (2005): 2415–24. http://dx.doi.org/10.5194/angeo-23-2415-2005.
Full textLima, Prijith, Sesha Sai, Rao, Niranjan, and Ramana. "Retrieval and Validation of Cloud Top Temperature from the Geostationary Satellite INSAT-3D." Remote Sensing 11, no. 23 (2019): 2811. http://dx.doi.org/10.3390/rs11232811.
Full textSchreiner, Anthony J., Steven A. Ackerman, Bryan A. Baum, and Andrew K. Heidinger. "A Multispectral Technique for Detecting Low-Level Cloudiness near Sunrise." Journal of Atmospheric and Oceanic Technology 24, no. 10 (2007): 1800–1810. http://dx.doi.org/10.1175/jtech2092.1.
Full textYue, Zhiguo, Daniel Rosenfeld, Guihua Liu, et al. "Automated Mapping of Convective Clouds (AMCC) Thermodynamical, Microphysical, and CCN Properties from SNPP/VIIRS Satellite Data." Journal of Applied Meteorology and Climatology 58, no. 4 (2019): 887–902. http://dx.doi.org/10.1175/jamc-d-18-0144.1.
Full textHong, Gang, Ping Yang, Bo-Cai Gao, et al. "High Cloud Properties from Three Years of MODIS Terra and Aqua Collection-4 Data over the Tropics." Journal of Applied Meteorology and Climatology 46, no. 11 (2007): 1840–56. http://dx.doi.org/10.1175/2007jamc1583.1.
Full textZanatta, Marco, Stephan Mertes, Olivier Jourdan, et al. "Airborne investigation of black carbon interaction with low-level, persistent, mixed-phase clouds in the Arctic summer." Atmospheric Chemistry and Physics 23, no. 14 (2023): 7955–73. http://dx.doi.org/10.5194/acp-23-7955-2023.
Full textSporre, M. K., E. Swietlicki, P. Glantz, and M. Kulmala. "Aerosol indirect effects on continental low-level clouds over Sweden and Finland." Atmospheric Chemistry and Physics Discussions 14, no. 9 (2014): 12931–66. http://dx.doi.org/10.5194/acpd-14-12931-2014.
Full textSporre, M. K., E. Swietlicki, P. Glantz, and M. Kulmala. "Aerosol indirect effects on continental low-level clouds over Sweden and Finland." Atmospheric Chemistry and Physics 14, no. 22 (2014): 12167–79. http://dx.doi.org/10.5194/acp-14-12167-2014.
Full text