Journal articles on the topic 'Cloud models'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Cloud models.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Tjernström, Michael, Joseph Sedlar, and Matthew D. Shupe. "How Well Do Regional Climate Models Reproduce Radiation and Clouds in the Arctic? An Evaluation of ARCMIP Simulations." Journal of Applied Meteorology and Climatology 47, no. 9 (2008): 2405–22. http://dx.doi.org/10.1175/2008jamc1845.1.
Full textGrabowski, Wojciech W. "Representation of Turbulent Mixing and Buoyancy Reversal in Bulk Cloud Models." Journal of the Atmospheric Sciences 64, no. 10 (2007): 3666–80. http://dx.doi.org/10.1175/jas4047.1.
Full textChou, Ming-Dah, Kyu-Tae Lee, Si-Chee Tsay, and Qiang Fu. "Parameterization for Cloud Longwave Scattering for Use in Atmospheric Models." Journal of Climate 12, no. 1 (1999): 159–69. http://dx.doi.org/10.1175/1520-0442-12.1.159.
Full textYu, Shanshan, Xiaozhou Xin, Hailong Zhang, Li Li, Lin Zhu, and Qinhuo Liu. "A Cloud Water Path-Based Model for Cloudy-Sky Downward Longwave Radiation Estimation from FY-4A Data." Remote Sensing 15, no. 23 (2023): 5531. http://dx.doi.org/10.3390/rs15235531.
Full textMieslinger, Theresa, Bjorn Stevens, Tobias Kölling, Manfred Brath, Martin Wirth, and Stefan A. Buehler. "Optically thin clouds in the trades." Atmospheric Chemistry and Physics 22, no. 10 (2022): 6879–98. http://dx.doi.org/10.5194/acp-22-6879-2022.
Full textZhu, Ping, James J. Hack, and Jeffrey T. Kiehl. "Diagnosing Cloud Feedbacks in General Circulation Models." Journal of Climate 20, no. 11 (2007): 2602–22. http://dx.doi.org/10.1175/jcli4140.1.
Full textYuan, T. "Cloud macroscopic organization: order emerging from randomness." Atmospheric Chemistry and Physics 11, no. 15 (2011): 7483–90. http://dx.doi.org/10.5194/acp-11-7483-2011.
Full textSchulte, Richard M., Matthew D. Lebsock, and John M. Haynes. "What CloudSat cannot see: liquid water content profiles inferred from MODIS and CALIOP observations." Atmospheric Measurement Techniques 16, no. 14 (2023): 3531–46. http://dx.doi.org/10.5194/amt-16-3531-2023.
Full textYuan, T. "Cloud macroscopic organization: order emerging from randomness." Atmospheric Chemistry and Physics Discussions 11, no. 1 (2011): 1105–19. http://dx.doi.org/10.5194/acpd-11-1105-2011.
Full textWolf, Kevin, Evelyn Jäkel, André Ehrlich, et al. "Impact of stratiform liquid water clouds on vegetation albedo quantified by coupling an atmosphere and a vegetation radiative transfer model." Biogeosciences 22, no. 12 (2025): 2909–33. https://doi.org/10.5194/bg-22-2909-2025.
Full textHall, Samuel R., Kirk Ullmann, Michael J. Prather, et al. "Cloud impacts on photochemistry: building a climatology of photolysis rates from the Atmospheric Tomography mission." Atmospheric Chemistry and Physics 18, no. 22 (2018): 16809–28. http://dx.doi.org/10.5194/acp-18-16809-2018.
Full textLin, Jia-Lin, Taotao Qian, and Toshiaki Shinoda. "Stratocumulus Clouds in Southeastern Pacific Simulated by Eight CMIP5–CFMIP Global Climate Models." Journal of Climate 27, no. 8 (2014): 3000–3022. http://dx.doi.org/10.1175/jcli-d-13-00376.1.
Full textTaylor, Patrick C., Robyn C. Boeke, Ying Li, and David W. J. Thompson. "Arctic cloud annual cycle biases in climate models." Atmospheric Chemistry and Physics 19, no. 13 (2019): 8759–82. http://dx.doi.org/10.5194/acp-19-8759-2019.
Full textCzerkawski, Mikolaj, Robert Atkinson, Craig Michie, and Christos Tachtatzis. "SatelliteCloudGenerator: Controllable Cloud and Shadow Synthesis for Multi-Spectral Optical Satellite Images." Remote Sensing 15, no. 17 (2023): 4138. http://dx.doi.org/10.3390/rs15174138.
Full textStevens, Robin G., Katharina Loewe, Christopher Dearden, et al. "A model intercomparison of CCN-limited tenuous clouds in the high Arctic." Atmospheric Chemistry and Physics 18, no. 15 (2018): 11041–71. http://dx.doi.org/10.5194/acp-18-11041-2018.
Full textWall, Casey J., Tsubasa Kohyama, and Dennis L. Hartmann. "Low-Cloud, Boundary Layer, and Sea Ice Interactions over the Southern Ocean during Winter." Journal of Climate 30, no. 13 (2017): 4857–71. http://dx.doi.org/10.1175/jcli-d-16-0483.1.
Full textLacour, A., H. Chepfer, N. B. Miller, et al. "How Well Are Clouds Simulated over Greenland in Climate Models? Consequences for the Surface Cloud Radiative Effect over the Ice Sheet." Journal of Climate 31, no. 22 (2018): 9293–312. http://dx.doi.org/10.1175/jcli-d-18-0023.1.
Full textZelinka, Mark D., Li-Wei Chao, Timothy A. Myers, Yi Qin, and Stephen A. Klein. "Technical note: Recommendations for diagnosing cloud feedbacks and rapid cloud adjustments using cloud radiative kernels." Atmospheric Chemistry and Physics 25, no. 3 (2025): 1477–95. https://doi.org/10.5194/acp-25-1477-2025.
Full textPincus, Robert, Steven Platnick, Steven A. Ackerman, Richard S. Hemler, and Robert J. Patrick Hofmann. "Reconciling Simulated and Observed Views of Clouds: MODIS, ISCCP, and the Limits of Instrument Simulators." Journal of Climate 25, no. 13 (2012): 4699–720. http://dx.doi.org/10.1175/jcli-d-11-00267.1.
Full textSun, J., H. Leighton, M. K. Yau, and P. Ariya. "Numerical evidence for cloud droplet nucleation at the cloud-environment interface." Atmospheric Chemistry and Physics Discussions 12, no. 7 (2012): 17723–42. http://dx.doi.org/10.5194/acpd-12-17723-2012.
Full textSun, J., H. Leighton, M. K. Yau, and P. Ariya. "Numerical evidence for cloud droplet nucleation at the cloud-environment interface." Atmospheric Chemistry and Physics 12, no. 24 (2012): 12155–64. http://dx.doi.org/10.5194/acp-12-12155-2012.
Full textWalsh, John E., William L. Chapman, and Diane H. Portis. "Arctic Cloud Fraction and Radiative Fluxes in Atmospheric Reanalyses." Journal of Climate 22, no. 9 (2009): 2316–34. http://dx.doi.org/10.1175/2008jcli2213.1.
Full textRobbins-Blanch, Nina, Tiffany Kataria, Natasha E. Batalha, and Danica J. Adams. "Cloudy and Cloud-free Thermal Phase Curves with PICASO: Applications to WASP-43b." Astrophysical Journal 930, no. 1 (2022): 93. http://dx.doi.org/10.3847/1538-4357/ac658c.
Full textPlant, R. S. "Statistical properties of cloud lifecycles in cloud-resolving models." Atmospheric Chemistry and Physics Discussions 8, no. 6 (2008): 20537–64. http://dx.doi.org/10.5194/acpd-8-20537-2008.
Full textPlant, R. S. "Statistical properties of cloud lifecycles in cloud-resolving models." Atmospheric Chemistry and Physics 9, no. 6 (2009): 2195–205. http://dx.doi.org/10.5194/acp-9-2195-2009.
Full textRangno, Arthur L. "How Good Are Our Conceptual Models of Orographic Cloud Seeding?" Meteorological Monographs 43 (December 1, 1986): 115. http://dx.doi.org/10.1175/0065-9401-21.43.115.
Full textAlexandrov, Mikhail D., Alexander Marshak, and Andrew S. Ackerman. "Cellular Statistical Models of Broken Cloud Fields. Part I: Theory." Journal of the Atmospheric Sciences 67, no. 7 (2010): 2125–51. http://dx.doi.org/10.1175/2010jas3364.1.
Full textTarafdar, S. P., S. K. Ghosh, K. R. Heere, and S. S. Prasad. "Some Salient Features of Evolving Models of Interstellar Clouds." Highlights of Astronomy 8 (1989): 345–55. http://dx.doi.org/10.1017/s1539299600007978.
Full textBangert, M., C. Kottmeier, B. Vogel, and H. Vogel. "Regional scale effects of the aerosol cloud interaction simulated with an online coupled comprehensive chemistry model." Atmospheric Chemistry and Physics Discussions 11, no. 1 (2011): 1–37. http://dx.doi.org/10.5194/acpd-11-1-2011.
Full textMang, James, Caroline V. Morley, Tyler D. Robinson, and Peter Gao. "Microphysical Prescriptions for Parameterized Water Cloud Formation on Ultra-cool Substellar Objects." Astrophysical Journal 974, no. 2 (2024): 190. http://dx.doi.org/10.3847/1538-4357/ad6c4c.
Full textHenderson, David S., Jason A. Otkin, and John R. Mecikalski. "Evaluating Convective Initiation in High-Resolution Numerical Weather Prediction Models Using GOES-16 Infrared Brightness Temperatures." Monthly Weather Review 149, no. 4 (2021): 1153–72. http://dx.doi.org/10.1175/mwr-d-20-0272.1.
Full textVárnai, Tamás, and Alexander Marshak. "Analysis of Near-Cloud Changes in Atmospheric Aerosols Using Satellite Observations and Global Model Simulations." Remote Sensing 13, no. 6 (2021): 1151. http://dx.doi.org/10.3390/rs13061151.
Full textHamill, Colin D., Alexandria V. Johnson, Natasha Batalha, et al. "Reflected-light Phase Curves with PICASO: A Kepler-7b Case Study." Astrophysical Journal 976, no. 2 (2024): 181. http://dx.doi.org/10.3847/1538-4357/ad7de6.
Full textČrnivec, Nina, and Bernhard Mayer. "Quantifying the bias of radiative heating rates in numerical weather prediction models for shallow cumulus clouds." Atmospheric Chemistry and Physics 19, no. 12 (2019): 8083–100. http://dx.doi.org/10.5194/acp-19-8083-2019.
Full textSlobodda, J., A. Hünerbein, R. Lindstrot, R. Preusker, K. Ebell, and J. Fischer. "Multichannel analysis of correlation length of SEVIRI images around ground-based cloud observatories to determine their representativeness." Atmospheric Measurement Techniques 8, no. 2 (2015): 567–78. http://dx.doi.org/10.5194/amt-8-567-2015.
Full textLiu, Qun, Matthew Collins, Penelope Maher, Stephen I. Thomson, and Geoffrey K. Vallis. "SimCloud version 1.0: a simple diagnostic cloud scheme for idealized climate models." Geoscientific Model Development 14, no. 5 (2021): 2801–26. http://dx.doi.org/10.5194/gmd-14-2801-2021.
Full textLi, Yang, Fanchen Peng, Feng Dou, Yao Xiao, and Yi Li. "PCCDiff: Point Cloud Completion with Conditional Denoising Diffusion Probabilistic Models." Symmetry 16, no. 12 (2024): 1680. https://doi.org/10.3390/sym16121680.
Full textMollière, P., T. Stolker, S. Lacour, et al. "Retrieving scattering clouds and disequilibrium chemistry in the atmosphere of HR 8799e." Astronomy & Astrophysics 640 (August 2020): A131. http://dx.doi.org/10.1051/0004-6361/202038325.
Full textKuma, Peter, Frida A. M. Bender, Alex Schuddeboom, Adrian J. McDonald, and Øyvind Seland. "Machine learning of cloud types in satellite observations and climate models." Atmospheric Chemistry and Physics 23, no. 1 (2023): 523–49. http://dx.doi.org/10.5194/acp-23-523-2023.
Full textKuma, Peter, Frida A.-M. Bender, Alex Schuddeboom, Adrian J. McDonald, and Øyvind Seland. "Machine learning of cloud types in satellite observations and climate models." Atmospheric Chemistry and Physics 23, no. 1 (2023): 523–49. https://doi.org/10.5281/zenodo.7533870.
Full textMedeiros, Brian, and Louise Nuijens. "Clouds at Barbados are representative of clouds across the trade wind regions in observations and climate models." Proceedings of the National Academy of Sciences 113, no. 22 (2016): E3062—E3070. http://dx.doi.org/10.1073/pnas.1521494113.
Full textZhang, Qi, Yi Yu, Weimin Zhang, Tengling Luo, and Xiang Wang. "Cloud Detection from FY-4A’s Geostationary Interferometric Infrared Sounder Using Machine Learning Approaches." Remote Sensing 11, no. 24 (2019): 3035. http://dx.doi.org/10.3390/rs11243035.
Full textBernet, Leonie, Francisco Navas-Guzmán, and Niklaus Kämpfer. "The effect of cloud liquid water on tropospheric temperature retrievals from microwave measurements." Atmospheric Measurement Techniques 10, no. 11 (2017): 4421–37. http://dx.doi.org/10.5194/amt-10-4421-2017.
Full textČrnivec, Nina, та Bernhard Mayer. "The incorporation of the Tripleclouds concept into the <i>δ</i>-Eddington two-stream radiation scheme: solver characterization and its application to shallow cumulus clouds". Atmospheric Chemistry and Physics 20, № 17 (2020): 10733–55. http://dx.doi.org/10.5194/acp-20-10733-2020.
Full textCesana, G., D. E. Waliser, D. Henderson, T. S. L’Ecuyer, X. Jiang, and J. L. F. Li. "The Vertical Structure of Radiative Heating Rates: A Multimodel Evaluation Using A-Train Satellite Observations." Journal of Climate 32, no. 5 (2019): 1573–90. http://dx.doi.org/10.1175/jcli-d-17-0136.1.
Full textBangert, M., C. Kottmeier, B. Vogel, and H. Vogel. "Regional scale effects of the aerosol cloud interaction simulated with an online coupled comprehensive chemistry model." Atmospheric Chemistry and Physics 11, no. 9 (2011): 4411–23. http://dx.doi.org/10.5194/acp-11-4411-2011.
Full textZhang, Kun, Shiquan Qiao, Xiaohong Wang, Yongtao Yang, and Yongqiang Zhang. "Feature-Preserved Point Cloud Simplification Based on Natural Quadric Shape Models." Applied Sciences 9, no. 10 (2019): 2130. http://dx.doi.org/10.3390/app9102130.
Full textJiang, Zonglin. "The Clouds Observation and Classification Based on Satellites Data." Theoretical and Natural Science 83, no. 1 (2025): 157–66. https://doi.org/10.54254/2753-8818/2025.20201.
Full textErrico, Ronald M., George Ohring, Fuzhong Weng, et al. "Assimilation of Satellite Cloud and Precipitation Observations in Numerical Weather Prediction Models: Introduction to the JAS Special Collection." Journal of the Atmospheric Sciences 64, no. 11 (2007): 3737–41. http://dx.doi.org/10.1175/2007jas2622.1.
Full textPerkins, R. J., N. A. Malik, and J. C. H. Fung. "Cloud dispersion models." Applied Scientific Research 51, no. 1-2 (1993): 539–45. http://dx.doi.org/10.1007/bf01082588.
Full text