Journal articles on the topic 'Cloud Workload prediction'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Cloud Workload prediction.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Mao, Li, Deyu Qi, Weiwei Lin, and Chaoyue Zhu. "A Self-Adaptive Prediction Algorithm for Cloud Workloads." International Journal of Grid and High Performance Computing 7, no. 2 (2015): 65–76. http://dx.doi.org/10.4018/ijghpc.2015040105.
Full textSimhadri Mallikarjuna Rao, Gangadhara Rao Kancherla, and Neelima Guntupalli. "A Hybrid Machine Learning Approach to Cloud Workload Prediction Using Decision Tree for Classification and Random Forest for Regression." International Journal of Scientific Research in Computer Science, Engineering and Information Technology 10, no. 6 (2024): 2240–52. https://doi.org/10.32628/cseit2410488.
Full textKrishnan, Smitha, and B. G. Prasanthi. "SGA Model for Prediction in Cloud Environment." International Journal on Recent and Innovation Trends in Computing and Communication 11, no. 5s (2023): 370–80. http://dx.doi.org/10.17762/ijritcc.v11i5s.7046.
Full textArbat, Shivani, Vinodh Kumaran Jayakumar, Jaewoo Lee, Wei Wang, and In Kee Kim. "Wasserstein Adversarial Transformer for Cloud Workload Prediction." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 11 (2022): 12433–39. http://dx.doi.org/10.1609/aaai.v36i11.21509.
Full textT. Singh, Sanjay, and Mahendra Tiwari. "A STACKED GENERALIZATION BASED META-CLASSIFIER FOR PREDICTION OF CLOUD WORKLOAD." ICTACT Journal on Soft Computing 14, no. 4 (2024): 3340–46. http://dx.doi.org/10.21917/ijsc.2024.0469.
Full textKumar, K. Dinesh, and E. Umamaheswari. "HPCWMF: A Hybrid Predictive Cloud Workload Management Framework Using Improved LSTM Neural Network." Cybernetics and Information Technologies 20, no. 4 (2020): 55–73. http://dx.doi.org/10.2478/cait-2020-0047.
Full textSharma, Kirtikumar J. "Ensemble-Based Cloud Workload Prediction Using Recent AI and ML Methods for Optimized Resource Management & Scheduling." International Journal for Research in Applied Science and Engineering Technology 13, no. 3 (2025): 923–28. https://doi.org/10.22214/ijraset.2025.67534.
Full textBharote, Dinesh Tulasidas, and Prof Pallavi Bagde. "A Review and Taxonomy on Data Driven Regression Models for Estimating Future Cloud Workloads." INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 09, no. 07 (2025): 1–9. https://doi.org/10.55041/ijsrem51229.
Full textLu, Yao, John Panneerselvam, Lu Liu, and Yan Wu. "RVLBPNN: A Workload Forecasting Model for Smart Cloud Computing." Scientific Programming 2016 (2016): 1–9. http://dx.doi.org/10.1155/2016/5635673.
Full textLiu, Yanbing, Bo Gong, Congcong Xing, and Yi Jian. "A Virtual Machine Migration Strategy Based on Time Series Workload Prediction Using Cloud Model." Mathematical Problems in Engineering 2014 (2014): 1–11. http://dx.doi.org/10.1155/2014/973069.
Full textJia, Kai, Jun Xiang, and Baoxia Li. "DuCFF: A Dual-Channel Feature-Fusion Network for Workload Prediction in a Cloud Infrastructure." Electronics 13, no. 18 (2024): 3588. http://dx.doi.org/10.3390/electronics13183588.
Full textMiguel, Carlos, Víctor Rampérez, Javier Soriano, and Shadi Aljawarneh. "Towards SLA-Driven Autoscaling of Cloud Distributed Services for Mobile Communications." Mobile Information Systems 2022 (October 3, 2022): 1–13. http://dx.doi.org/10.1155/2022/3725657.
Full textBorna, Keivan, and Reza Ghanbari. "A self-adaptive deep learning-based model to predict cloud workload." Neural Network World 33, no. 3 (2023): 161–69. http://dx.doi.org/10.14311/nnw.2023.33.010.
Full textLiu, Chunhong, Jie Jiao, Weili Li, Jingxiong Wang, and Junna Zhang. "Tr-Predictior: An Ensemble Transfer Learning Model for Small-Sample Cloud Workload Prediction." Entropy 24, no. 12 (2022): 1770. http://dx.doi.org/10.3390/e24121770.
Full textZou, Ding, Wei Lu, Zhibo Zhu, et al. "OptScaler: A Collaborative Framework for Robust Autoscaling in the Cloud." Proceedings of the VLDB Endowment 17, no. 12 (2024): 4090–103. http://dx.doi.org/10.14778/3685800.3685829.
Full textLi, Lei, Yilin Wang, Lianwen Jin, Xin Zhang, and Huiping Qin. "Two-Stage Adaptive Classification Cloud Workload Prediction Based on Neural Networks." International Journal of Grid and High Performance Computing 11, no. 2 (2019): 1–23. http://dx.doi.org/10.4018/ijghpc.2019040101.
Full textDang-Quang, Nhat-Minh, and Myungsik Yoo. "An Efficient Multivariate Autoscaling Framework Using Bi-LSTM for Cloud Computing." Applied Sciences 12, no. 7 (2022): 3523. http://dx.doi.org/10.3390/app12073523.
Full textAbdullayeva, Fargana J. "Cloud Computing Virtual Machine Workload Prediction Method Based on Variational Autoencoder." International Journal of Systems and Software Security and Protection 12, no. 2 (2021): 33–45. http://dx.doi.org/10.4018/ijsssp.2021070103.
Full textHanif, Muhammad, Choonhwa Lee, and Sumi Helal. "Predictive topology refinements in distributed stream processing system." PLOS ONE 15, no. 11 (2020): e0240424. http://dx.doi.org/10.1371/journal.pone.0240424.
Full textNarek, Narek, and Sandy Montajab Hazzouri. "An Effective Workload Prediction with Rnn-Lstm For Efficient Resource Autoscaling In Private Cloud Environments." International Journal of Advances in Applied Computational Intelligence 7, no. 1 (2025): 63–77. https://doi.org/10.54216/ijaaci.070105.
Full textLi, Lei, and Xue Gao. "Profit-Efficient Elastic Allocation of Cloud Resources Using Two-Stage Adaptive Workload Prediction." Applied Sciences 15, no. 5 (2025): 2347. https://doi.org/10.3390/app15052347.
Full textKarpagam, Thulasi, and Jayashree Kanniappan. "Symmetry-Aware Multi-Dimensional Attention Spiking Neural Network with Optimization Techniques for Accurate Workload and Resource Time Series Prediction in Cloud Computing Systems." Symmetry 17, no. 3 (2025): 383. https://doi.org/10.3390/sym17030383.
Full textSahi, Supreet Kaur, and V. S. Dhaka. "Performance Analysis of Web Applications Working on Cloud Environment Using Workload Prediction Model Based on ANN." International Journal of Emerging Research in Management and Technology 6, no. 6 (2018): 55. http://dx.doi.org/10.23956/ijermt.v6i6.245.
Full textTorana Kamble, Et al. "Predictive Resource Allocation Strategies for Cloud Computing Environments Using Machine Learning." Journal of Electrical Systems 19, no. 2 (2024): 68–77. http://dx.doi.org/10.52783/jes.692.
Full textMyung, Rohyoung, and Sukyong Choi. "Machine-Learning Based Memory Prediction Model for Data Parallel Workloads in Apache Spark." Symmetry 13, no. 4 (2021): 697. http://dx.doi.org/10.3390/sym13040697.
Full textKaurSahi, Supreet, and V. S. Dhaka V.S.Dhaka. "A Review on Workload Prediction of Cloud Services." International Journal of Computer Applications 109, no. 9 (2015): 1–4. http://dx.doi.org/10.5120/19213-0911.
Full textRasheduzzaman, Md, Md Amirul Islam, and Rashedur M. Rahman. "Workload Prediction on Google Cluster Trace." International Journal of Grid and High Performance Computing 6, no. 3 (2014): 34–52. http://dx.doi.org/10.4018/ijghpc.2014070103.
Full textAhamed, Zaakki, Maher Khemakhem, Fathy Eassa, Fawaz Alsolami, and Abdullah S. Al-Malaise Al-Ghamdi. "Technical Study of Deep Learning in Cloud Computing for Accurate Workload Prediction." Electronics 12, no. 3 (2023): 650. http://dx.doi.org/10.3390/electronics12030650.
Full textSinduja, V. Infine, and P. Joesph Charles. "A hybrid approach using attention bidirectional gated recurrent unit and weight-adaptive sparrow search optimization for cloud load balancing." Scientific Temper 16, no. 05 (2025): 4270–83. https://doi.org/10.58414/scientifictemper.2025.16.5.12.
Full textS, Suriya, and Surya Arvindh M. "Prediction of Workloads in Cloud using ARIMA-ANN." Journal of ISMAC 6, no. 4 (2025): 327–42. https://doi.org/10.36548/jismac.2024.4.003.
Full textLiu, Peng, Weisen Zhao, Baoliang Zhang, and Jing Wang. "Hybrid Elastic Scaling Strategy for Container Cloud based on Load Prediction and Reinforcement Learning." Journal of Physics: Conference Series 2732, no. 1 (2024): 012014. http://dx.doi.org/10.1088/1742-6596/2732/1/012014.
Full textGao, Mohan, Kexin Xu, Xiaofeng Gao, Tengwei Cai, and Haoyuan Ge. "Spatial-Temporal Heterogenous Graph Contrastive Learning for Microservice Workload Prediction." Proceedings of the AAAI Conference on Artificial Intelligence 39, no. 11 (2025): 11681–89. https://doi.org/10.1609/aaai.v39i11.33271.
Full textLi, Lei, Min Feng, Lianwen Jin, Shenjin Chen, Lihong Ma, and Jiakai Gao. "Domain Knowledge Embedding Regularization Neural Networks for Workload Prediction and Analysis in Cloud Computing." Journal of Information Technology Research 11, no. 4 (2018): 137–54. http://dx.doi.org/10.4018/jitr.2018100109.
Full textKecskemeti, Gabor, Zsolt Nemeth, Attila Kertesz, and Rajiv Ranjan. "Cloud workload prediction based on workflow execution time discrepancies." Cluster Computing 22, no. 3 (2018): 737–55. http://dx.doi.org/10.1007/s10586-018-2849-9.
Full textSelvan Chenni Chetty, Thirumalai, Vadim Bolshev, Siva Shankar Subramanian, et al. "Optimized Hierarchical Tree Deep Convolutional Neural Network of a Tree-Based Workload Prediction Scheme for Enhancing Power Efficiency in Cloud Computing." Energies 16, no. 6 (2023): 2900. http://dx.doi.org/10.3390/en16062900.
Full textAhamed, Zaakki, Maher Khemakhem, Fathy Eassa, Fawaz Alsolami, Abdullah Basuhail, and Kamal Jambi. "Deep Reinforcement Learning for Workload Prediction in Federated Cloud Environments." Sensors 23, no. 15 (2023): 6911. http://dx.doi.org/10.3390/s23156911.
Full textGadhavi, Lata J., and Madhuri D. Bhavsar. "Prediction Based Efficient Resource Provisioning and Its Impact on QoS Parameters in the Cloud Environment." International Journal of Electrical and Computer Engineering (IJECE) 8, no. 6 (2018): 5359. http://dx.doi.org/10.11591/ijece.v8i6.pp5359-5370.
Full textDaradkeh, Tariq, and Anjali Agarwal. "Cloud Workload and Data Center Analytical Modeling and Optimization Using Deep Machine Learning." Network 2, no. 4 (2022): 643–69. http://dx.doi.org/10.3390/network2040037.
Full textPradeep, Kumar. "Adaptive Workload Modeling using AI for Performance Testing of Cloud-Based Multitenant Enterprise Applications." INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH AND CREATIVE TECHNOLOGY 10, no. 1 (2024): 1–17. https://doi.org/10.5281/zenodo.15087595.
Full textKarimunnisa, Syed, and Yellamma Pachipala. "Deep Learning-Driven Workload Prediction and Optimization for Load Balancing in Cloud Computing Environment." Cybernetics and Information Technologies 24, no. 3 (2024): 21–38. http://dx.doi.org/10.2478/cait-2024-0023.
Full textMarinho, Carlos S. S., Leonardo O. Moreira, Emanuel F. Coutinho, José S. Costa Filho, Flávio R. C. Sousa, and Javam C. Machado. "LABAREDA: A Predictive and Elastic Load Balancing Service for Cloud-Replicated Databases." Journal of Information and Data Management 9, no. 1 (2018): 94. http://dx.doi.org/10.5753/jidm.2018.1639.
Full textHanif, Naufal, Dadang Priyanto, and Neny Sulistianingsih. "Prediksi Beban Kerja Server Secara Real-Time pada Pusat Data Cloud dengan Pendekatan Gabungan Long Short-Term Memory (LSTM) dan Fuzzy Logic." JTIM : Jurnal Teknologi Informasi dan Multimedia 7, no. 3 (2025): 420–32. https://doi.org/10.35746/jtim.v7i3.731.
Full textJeyarani, R., N. Nagaveni, Satish Kumar Sadasivam, and Vasanth Ram Rajarathinam. "Power Aware Meta Scheduler for Adaptive VM Provisioning in IaaS Cloud." International Journal of Cloud Applications and Computing 1, no. 3 (2011): 36–51. http://dx.doi.org/10.4018/ijcac.2011070104.
Full textKapil Pothakanoori. "Energy-efficient Cloud Infrastructure for IoT Device Management: A Comprehensive Analysis of Edge-Cloud Workload Distribution Strategies." International Journal of Scientific Research in Computer Science, Engineering and Information Technology 10, no. 6 (2024): 1439–49. https://doi.org/10.32628/cseit241061190.
Full textTri Fidrian Arya, Reza Fuad Rachmad, and Achmad Affandi. "Cloud Node Auto-Scaling System Automation Based on Computing Workload Prediction." Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) 8, no. 5 (2024): 597–606. https://doi.org/10.29207/resti.v8i5.5928.
Full textKenga, Derdus, Vincent Omwenga, and Patrick Ogao. "Virtual Machine Customization Using Resource Using Prediction for Efficient Utilization of Resources in IaaS Public Clouds." Journal of Information Technology and Computer Science 6, no. 2 (2021): 170–82. http://dx.doi.org/10.25126/jitecs.202162196.
Full textFeng, Binbin, and Zhijun Ding. "Application-Oriented Cloud Workload Prediction: A Survey and New Perspectives." Tsinghua Science and Technology 30, no. 1 (2025): 34–54. http://dx.doi.org/10.26599/tst.2024.9010024.
Full textLi, Zhulin, Cuirong Wang, Haiyan Lv, and Tongyu Xu. "Research on CPU Workload Prediction and Balancing in Cloud Environment." International Journal of Hybrid Information Technology 8, no. 2 (2015): 159–72. http://dx.doi.org/10.14257/ijhit.2015.8.2.14.
Full textJingwen Liu and Yifan Zhou. "Predictive CPU Utilization Modeling in Cloud Operating Systems Using Machine Learning." Frontiers in Robotics and Automation 2, no. 1 (2025): 25–32. https://doi.org/10.71465/fra280.
Full textVelayutham, Vijayasherly, and Srimathi Chandrasekaran. "A Prediction based Cloud Resource Provisioning using SVM." Recent Advances in Computer Science and Communications 13, no. 3 (2020): 531–35. http://dx.doi.org/10.2174/2666255813666200206124025.
Full text