Academic literature on the topic 'Cluster Donaldson–Thomas theory'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Cluster Donaldson–Thomas theory.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Cluster Donaldson–Thomas theory"

1

Nagao, Kentaro. "Donaldson–Thomas theory and cluster algebras." Duke Mathematical Journal 162, no. 7 (2013): 1313–67. http://dx.doi.org/10.1215/00127094-2142753.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Reading, Nathan. "Scattering Fans." International Mathematics Research Notices 2020, no. 23 (2018): 9640–73. http://dx.doi.org/10.1093/imrn/rny260.

Full text
Abstract:
Abstract Scattering diagrams arose in the context of mirror symmetry, Donaldson–Thomas theory, and integrable systems. We show that a consistent scattering diagram with minimal support cuts the ambient space into a complete fan. A special class of scattering diagrams, the cluster scattering diagrams, is closely related to cluster algebras. We show that the cluster scattering fan associated to an exchange matrix $B$ refines the mutation fan for $B$ (a complete fan that encodes the geometry of mutations of $B$). We conjecture that, when $B$ is $n\times n$ for $n>2$, these two fans coincid
APA, Harvard, Vancouver, ISO, and other styles
3

Gholampour, Amin, Artan Sheshmani, and Shing-Tung Yau. "Localized Donaldson-Thomas theory of surfaces." American Journal of Mathematics 142, no. 2 (2020): 405–42. http://dx.doi.org/10.1353/ajm.2020.0011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Fasola, Nadir, and Sergej Monavari. "Tetrahedron instantons in Donaldson-Thomas theory." Advances in Mathematics 462 (February 2025): 110099. https://doi.org/10.1016/j.aim.2024.110099.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Maulik, Davesh, та Alexei Oblomkov. "Donaldson–Thomas theory of 𝒜n×P1". Compositio Mathematica 145, № 5 (2009): 1249–76. http://dx.doi.org/10.1112/s0010437x09003972.

Full text
Abstract:
AbstractWe study the relative Donaldson–Thomas theory of 𝒜n×P1, where 𝒜n is the surface resolution of type An singularity. The action of divisor operators in the theory is expressed in terms of operators of the affine algebra $\glh $ on Fock space. Assuming a nondegeneracy conjecture, this gives a complete solution for the theory. The results complete the comparison of this theory with the Gromov–Witten theory of 𝒜n×P1 and the quantum cohomology of the Hilbert scheme of points on 𝒜n.
APA, Harvard, Vancouver, ISO, and other styles
6

Okounkov, Andrei. "Takagi Lectures on Donaldson–Thomas theory." Japanese Journal of Mathematics 14, no. 1 (2019): 67–133. http://dx.doi.org/10.1007/s11537-018-1744-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Maulik, D., N. Nekrasov, A. Okounkov, and R. Pandharipande. "Gromov–Witten theory and Donaldson–Thomas theory, I." Compositio Mathematica 142, no. 05 (2006): 1263–85. http://dx.doi.org/10.1112/s0010437x06002302.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Maulik, D., N. Nekrasov, A. Okounkov, and R. Pandharipande. "Gromov–Witten theory and Donaldson–Thomas theory, II." Compositio Mathematica 142, no. 05 (2006): 1286–304. http://dx.doi.org/10.1112/s0010437x06002314.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kinjo, Tasuki. "Dimensional reduction in cohomological Donaldson–Thomas theory." Compositio Mathematica 158, no. 1 (2022): 123–67. http://dx.doi.org/10.1112/s0010437x21007740.

Full text
Abstract:
For oriented $-1$-shifted symplectic derived Artin stacks, Ben-Bassat, Brav, Bussi and Joyce introduced certain perverse sheaves on them which can be regarded as sheaf-theoretic categorifications of the Donaldson–Thomas invariants. In this paper, we prove that the hypercohomology of the above perverse sheaf on the $-1$-shifted cotangent stack over a quasi-smooth derived Artin stack is isomorphic to the Borel–Moore homology of the base stack up to a certain shift of degree. This is a global version of the dimensional reduction theorem due to Davison. We give two applications of our main theorem
APA, Harvard, Vancouver, ISO, and other styles
10

Cirafici, Michele, Annamaria Sinkovics, and Richard J. Szabo. "Instantons, quivers and noncommutative Donaldson–Thomas theory." Nuclear Physics B 853, no. 2 (2011): 508–605. http://dx.doi.org/10.1016/j.nuclphysb.2011.08.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Cluster Donaldson–Thomas theory"

1

Nagao, Kentaro. "Mutations and noncommutative Donaldson-Thomas theory." 名古屋大学多元数理科学研究科, 2009. http://hdl.handle.net/2237/12261.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bussi, Vittoria. "Derived symplectic structures in generalized Donaldson-Thomas theory and categorification." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:54896cc4-b3fa-4d93-9fa9-2a842ad5e4df.

Full text
Abstract:
This thesis presents a series of results obtained in [13, 18, 19, 23{25, 87]. In [19], we prove a Darboux theorem for derived schemes with symplectic forms of degree k < 0, in the sense of [142]. We use this to show that the classical scheme X = t<sub>0</sub>(X) has the structure of an algebraic d-critical locus, in the sense of Joyce [87]. Then, if (X, s) is an oriented d-critical locus, we prove in [18] that there is a natural perverse sheaf P·<sub>X,s</sub> on X, and in [25], we construct a natural motive MF<sub>X,s</sub>, in a certain quotient ring M<sup>μ</sup><sub>X</sub> of the μ-equiva
APA, Harvard, Vancouver, ISO, and other styles
3

Young, Benjamin. "Counting coloured boxes." Thesis, University of British Columbia, 2008. http://hdl.handle.net/2429/731.

Full text
Abstract:
This thesis consists of the manuscripts of two research papers. In the first paper, we verify a recent conjecture of Kenyon/Szendroi by computing the generating function for pyramid partitions. Pyramid partitions are closely related to Aztec Diamonds; their generating function turns out to be the partition function for the Donaldson-Thomas theory of a non-commutative resolution of the conifold singularity {x₁‚x₂‚‚ - x₃‚ƒx₄‚„ = 0}⊂ C⁴. The proof does not require algebraic geometry; it uses a modified version of the domino (or dimer) shuffling algorithm of Elkies, Kuperberg, Larsen and Propp.
APA, Harvard, Vancouver, ISO, and other styles
4

Ranganathan, Dhruv. "Gromov-Witten Theory of Blowups of Toric Threefolds." Scholarship @ Claremont, 2012. https://scholarship.claremont.edu/hmc_theses/31.

Full text
Abstract:
We use toric symmetry and blowups to study relationships in the Gromov-Witten theories of $\mathbb{P}^3$ and $\mathbb{P}^1\!\times\!\mathbb{P}^1\!\times\!\mathbb{P}^1$. These two spaces are birationally equivalent via the common blowup space, the permutohedral variety. We prove an equivalence of certain invariants on blowups at only points of $\mathbb{P}^3$ and $\mathbb{P}^1\!\times\!\mathbb{P}^1\!\times\!\mathbb{P}^1$ by showing that these invariants descend from the blowup. Further, the permutohedral variety has nontrivial automorphisms of its cohomology coming from toric symmetry. These sym
APA, Harvard, Vancouver, ISO, and other styles
5

Jagau, Thomas-Christian [Verfasser]. "Higher-order molecular properties and excitation energies in single-reference and multireference coupled-cluster theory / Thomas-Christian Jagau." Mainz : Universitätsbibliothek Mainz, 2013. http://d-nb.info/1035840286/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Song, Yinan. "On the Local Donaldson-Thomas theory of curves." Thesis, 2006. http://hdl.handle.net/2429/18570.

Full text
Abstract:
In this thesis, we study the Donaldson-Thomas theory of local curves. The motivation is the Gromov-Witten/Donaldson-Thomas correspondence. First, we review the gauge theory motivation of the original construction and the history of the Donaldson-Thomas theory. Then we review the construction of Gieseker-Maruyama-Simpson moduli spaces and their relation with Hilbert schemes of threefolds. We also review the concept of a perfect obstruction theory and its relation with the virtual fundamental classes. Then we describe the Gromov-Witten/Donaldson-Thomas correspondence and the equivariant generali
APA, Harvard, Vancouver, ISO, and other styles
7

"Donaldson-Thomas theory for Calabi-Yau four-folds." 2013. http://library.cuhk.edu.hk/record=b5549280.

Full text
Abstract:
令X 為個帶有凱勒形式(Kähler form ω) 以及全純四形式( holomorphic four- form Ω )的四維緊致卡拉比丘空間(Calabi-Yau manifolds) 。在一些假設條件下,通過研究Donaldson- Thomas方程所決定的模空間,我們定義了四維Donaldson-Thomas不變量。我們也對四維局部卡拉比丘空間(local Calabi-Yau four-folds) 定義了四維Donaldson-Thomas 不變量,並且將之聯繫到三維Fano空間的Donaldson- Thomas 不變量。在一些情況下,我們還研究了DT/GW不變量對應。最后,我們在模空間光滑時計算了一些四維Donaldson- Thomas不變量。<br>Let X be a complex four-dimensional compact Calabi-Yau manifold equipped with a Kahler form ω and a holomorphic four-form Ω. Under certain assumptions, we de ne Donaldson-Thomas type deformation invariants by studying the moduli space of the solutions of Donal
APA, Harvard, Vancouver, ISO, and other styles
8

Zhou, Zijun. "Relative Orbifold Donaldson-Thomas Theory and the Degeneration Formula." Thesis, 2017. https://doi.org/10.7916/D8PC37RX.

Full text
Abstract:
We generalize the notion of expanded degenerations and pairs for a simple degeneration or smooth pair to the case of smooth Deligne-Mumford stacks. We then define stable quotients on the classifying stacks of expanded degenerations and pairs and prove the properness of their moduli’s. On 3-dimensional smooth projective DM stacks this leads to a definition of relative Donaldson-Thomas invariants and the associated degeneration formula.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Cluster Donaldson–Thomas theory"

1

Toda, Yukinobu. Recent Progress on the Donaldson–Thomas Theory. Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-7838-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

1977-, Song Yinan, ed. A theory of generalized Donaldson-Thomas invariants. American Mathematical Society, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Toda, Yukinobu. Categorical Donaldson-Thomas Theory for Local Surfaces. Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-61705-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zhou, Zijun. Relative Orbifold Donaldson-Thomas Theory and the Degeneration Formula. [publisher not identified], 2017.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

(Dietmar), Salamon D., ed. J-holomorphic curves and symplectic topology. 2nd ed. American Mathematical Society, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Categorical Donaldson-Thomas Theory for Local Surfaces. Springer, 2024.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Toda, Yukinobu. Recent Progress on the Donaldson-Thomas Theory: Wall-Crossing and Refined Invariants. Springer Singapore Pte. Limited, 2022.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Many-body theory of molecules, clusters, and condensed phases. World Scientific, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

String-Math 2015. American Mathematical Society, 2017.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Surveys on Recent Developments in Algebraic Geometry. American Mathematical Society, 2017.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Cluster Donaldson–Thomas theory"

1

Kinjo, Tasuki. "An Introduction to Cohomological Donaldson–Thomas Theory." In KIAS Springer Series in Mathematics. Springer Nature Singapore, 2025. https://doi.org/10.1007/978-981-97-8249-9_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Toda, Yukinobu. "Categorical DT Theory for Local Surfaces." In Categorical Donaldson-Thomas Theory for Local Surfaces. Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-61705-8_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Toda, Yukinobu. "Categorical Wall-Crossing via Koszul Duality." In Categorical Donaldson-Thomas Theory for Local Surfaces. Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-61705-8_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Toda, Yukinobu. "Window Theorem for DT Categories." In Categorical Donaldson-Thomas Theory for Local Surfaces. Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-61705-8_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Toda, Yukinobu. "D-Critical D/K Equivalence Conjectures." In Categorical Donaldson-Thomas Theory for Local Surfaces. Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-61705-8_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Toda, Yukinobu. "Some Auxiliary Results." In Categorical Donaldson-Thomas Theory for Local Surfaces. Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-61705-8_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Toda, Yukinobu. "Koszul Duality Equivalence." In Categorical Donaldson-Thomas Theory for Local Surfaces. Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-61705-8_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Toda, Yukinobu. "Categorified Hall Products on DT Categories." In Categorical Donaldson-Thomas Theory for Local Surfaces. Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-61705-8_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Toda, Yukinobu. "Introduction." In Categorical Donaldson-Thomas Theory for Local Surfaces. Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-61705-8_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Koshevoy, Gleb. "Cluster Decorated Geometric Crystals, Generalized Geometric RSK-Correspondences, and Donaldson-Thomas Transformations." In 2017 MATRIX Annals. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-04161-8_25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!