Academic literature on the topic 'Clusterwise linear regression'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Clusterwise linear regression.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Clusterwise linear regression"
Li, Ting, Xinyuan Song, Yingying Zhang, Hongtu Zhu, and Zhongyi Zhu. "Clusterwise functional linear regression models." Computational Statistics & Data Analysis 158 (June 2021): 107192. http://dx.doi.org/10.1016/j.csda.2021.107192.
Full textGalimberti, Giuliano, and Gabriele Soffritti. "Seemingly unrelated clusterwise linear regression." Advances in Data Analysis and Classification 14, no. 2 (August 12, 2019): 235–60. http://dx.doi.org/10.1007/s11634-019-00369-4.
Full textJoki, Kaisa, Adil M. Bagirov, Napsu Karmitsa, Marko M. Mäkelä, and Sona Taheri. "Clusterwise support vector linear regression." European Journal of Operational Research 287, no. 1 (November 2020): 19–35. http://dx.doi.org/10.1016/j.ejor.2020.04.032.
Full textPark, Young Woong, Yan Jiang, Diego Klabjan, and Loren Williams. "Algorithms for Generalized Clusterwise Linear Regression." INFORMS Journal on Computing 29, no. 2 (May 2017): 301–17. http://dx.doi.org/10.1287/ijoc.2016.0729.
Full textSpäth, H. "Clusterwise linear least absolute deviations regression." Computing 37, no. 4 (December 1986): 371–77. http://dx.doi.org/10.1007/bf02251095.
Full textGarcía-Escudero, L. A., A. Gordaliza, A. Mayo-Iscar, and R. San Martín. "Robust clusterwise linear regression through trimming." Computational Statistics & Data Analysis 54, no. 12 (December 2010): 3057–69. http://dx.doi.org/10.1016/j.csda.2009.07.002.
Full textWedel, Michel, and Cor Kistemaker. "Consumer benefit segmentation using clusterwise linear regression." International Journal of Research in Marketing 6, no. 1 (September 1989): 45–59. http://dx.doi.org/10.1016/0167-8116(89)90046-3.
Full textHennig, C. "Identifiablity of Models for Clusterwise Linear Regression." Journal of Classification 17, no. 2 (July 1, 2000): 273–96. http://dx.doi.org/10.1007/s003570000022.
Full textKhadka, Mukesh, and Alexander Paz. "Comprehensive Clusterwise Linear Regression for Pavement Management Systems." Journal of Transportation Engineering, Part B: Pavements 143, no. 4 (December 2017): 04017014. http://dx.doi.org/10.1061/jpeodx.0000009.
Full textDi Mari, Roberto, Roberto Rocci, and Stefano Antonio Gattone. "Clusterwise linear regression modeling with soft scale constraints." International Journal of Approximate Reasoning 91 (December 2017): 160–78. http://dx.doi.org/10.1016/j.ijar.2017.09.006.
Full textDissertations / Theses on the topic "Clusterwise linear regression"
Mirzayeva, Hijran. "Nonsmooth optimization algorithms for clusterwise linear regression." Thesis, University of Ballarat, 2013. http://researchonline.federation.edu.au/vital/access/HandleResolver/1959.17/41975.
Full textDoctor of Philosophy
Mahmood, Arshad. "Rainfall prediction in Australia : Clusterwise linear regression approach." Thesis, Federation University Australia, 2017. http://researchonline.federation.edu.au/vital/access/HandleResolver/1959.17/159251.
Full textDoctor of Philosophy
SILVA, Ricardo Azevedo Moreira da. "Combinando regressão linear clusterwise e k-means com ponderação automática das variáveis explicativas." Universidade Federal de Pernambuco, 2017. https://repositorio.ufpe.br/handle/123456789/26011.
Full textApproved for entry into archive by Alice Araujo (alice.caraujo@ufpe.br) on 2018-08-29T19:40:07Z (GMT) No. of bitstreams: 2 license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5) DISSERTAÇÃO Ricardo Azevedo Moreira da Silva.pdf: 3866848 bytes, checksum: 4fb1080cdd975057fc1dff03a0338e22 (MD5)
Made available in DSpace on 2018-08-29T19:40:07Z (GMT). No. of bitstreams: 2 license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5) DISSERTAÇÃO Ricardo Azevedo Moreira da Silva.pdf: 3866848 bytes, checksum: 4fb1080cdd975057fc1dff03a0338e22 (MD5) Previous issue date: 2017-07-21
Este trabalho propõe um método de regressão linear do tipo clusterwise cujo objetivo é fornecer modelos de regressão linear baseados em grupos homogêneos de observações em relação às variáveis explicativas e que são bem ajustados em relação à variável de resposta. Para atingir esse objetivo, este método combina o método regressão linear do tipo clusterwise padrão e o método de agrupamento K-means com a ponderação automática das variáveis explicativas. Os pesos das variáveis explicativas mudam em cada iteração do algoritmo e são diferentes de uma variável para outra. Assim, este método é capaz de selecionar as variáveis relevantes na busca por clusters homogêneos em relação às variáveis explicativas. Por fim, uma vez que ele aprende simultaneamente um protótipo de grupo e um modelo de regressão linear para cada cluster, ele é capaz de atribuir um modelo de regressão apropriado para uma observação desconhecida com base na sua descrição através de suas variáveis explicativas. Experimentos com conjuntos de dados sintéticos e reais corroboram a utilidade do método proposto.
This work gives a linear regression method of the clusterwise type aiming to provide linear regression models that are based on homogeneous clusters of observations w.r.t. the explanatory variables and that are well fitted w.r.t. the response variable. To achieve this goal, this method combines the standard clusterwise linear regression method and the K-means clustering method with the automatic weighting of the explanatory variables. The relevance weights of the explanatory variables change in each iteration of the algorithm and are different from one variable to another. Thus, this method is able to select the relevant variables in the search for homogeneous clusters w.r.t. the explanatory variables. Finally, since it simultaneously learns a prototype and a linear regression model for each cluster, this method is able to assign an appropriate regression model to an unknown observation based on its description through its explanatory variables. Experiments with synthetic and real datasets corroborate the utility of the proposed method.
"Least median squares algorithm for clusterwise linear regression." 2009. http://library.cuhk.edu.hk/record=b5894193.
Full textThesis (M.Phil.)--Chinese University of Hong Kong, 2009.
Includes bibliographical references (leaves 53-54).
Abstract also in Chinese.
Chapter 1 --- Introduction --- p.1
Chapter 2 --- The Exchange Algorithm Framework --- p.4
Chapter 2.1 --- Ordinary Least Squares Linear Regression --- p.5
Chapter 2.2 --- The Exchange Algorithm --- p.6
Chapter 3 --- Methodology --- p.12
Chapter 3.1 --- Least Median Squares Linear Regression --- p.12
Chapter 3.2 --- Least Median Squares Algorithm for Clusterwise Linear Re- gression --- p.16
Chapter 3.3 --- Measures of Performance --- p.20
Chapter 3.4 --- An Illustrative Example --- p.24
Chapter 4 --- Monte Carlo Simulation Study --- p.34
Chapter 4.1 --- Simulation Plan --- p.34
Chapter 4.2 --- Simulation Results --- p.41
Chapter 4.2.1 --- Effects of the Six factors --- p.41
Chapter 4.2.2 --- Comparisons between LMSA and the Exchange Algorithm --- p.47
Chapter 4.2.3 --- Evaluation of the Improvement of Regression Parame- ters by Performing Stage 3 in LMSA --- p.50
Chapter 5 --- Concluding Remarks --- p.51
Bibliography --- p.52
Book chapters on the topic "Clusterwise linear regression"
Hennig, C. "Models and Methods for Clusterwise Linear Regression." In Studies in Classification, Data Analysis, and Knowledge Organization, 179–87. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-60187-3_17.
Full textKarmitsa, Napsu, Adil M. Bagirov, Sona Taheri, and Kaisa Joki. "Limited Memory Bundle Method for Clusterwise Linear Regression." In Intelligent Systems, Control and Automation: Science and Engineering, 109–22. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-70787-3_8.
Full textPreda, Cristian, and Gilbert Saporta. "PLS Approach for Clusterwise Linear Regression on Functional Data." In Classification, Clustering, and Data Mining Applications, 167–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-642-17103-1_17.
Full textDi Mari, Roberto, Stefano Antonio Gattone, and Roberto Rocci. "Penalized Versus Constrained Approaches for Clusterwise Linear Regression Modeling." In Statistical Learning and Modeling in Data Analysis, 89–95. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-69944-4_10.
Full textKayış, Enis. "Designing an Efficient Gradient Descent Based Heuristic for Clusterwise Linear Regression for Large Datasets." In Communications in Computer and Information Science, 154–71. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-83014-4_8.
Full textda Silva, Ricardo A. M., and Francisco de A. T. de Carvalho. "On Combining Clusterwise Linear Regression and K-Means with Automatic Weighting of the Explanatory Variables." In Artificial Neural Networks and Machine Learning – ICANN 2017, 402–10. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-68612-7_46.
Full text