Journal articles on the topic 'CMOS compatible fabrication'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'CMOS compatible fabrication.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Buyong, Muhamad Ramdzan, Norazreen Abd Aziz, and Burhanuddin Yeop Majlis. "Characterization and Optimization of Seals-Off for Very Low Pressure Sensors (VLPS) Fabricated by CMOS MEMS Process." Advanced Materials Research 74 (June 2009): 231–34. http://dx.doi.org/10.4028/www.scientific.net/amr.74.231.
Full textBi, Cheng, and Yanfei Liu. "CMOS-Compatible Optoelectronic Imagers." Coatings 12, no. 11 (2022): 1609. http://dx.doi.org/10.3390/coatings12111609.
Full textYu, Le, Yaozu Guo, Haoyu Zhu, Mingcheng Luo, Ping Han, and Xiaoli Ji. "Low-Cost Microbolometer Type Infrared Detectors." Micromachines 11, no. 9 (2020): 800. http://dx.doi.org/10.3390/mi11090800.
Full textKempf, P., R. Hadaway, and J. Kolk. "Complementary metal oxide semiconductor compatible high-voltage transistors." Canadian Journal of Physics 65, no. 8 (1987): 1003–8. http://dx.doi.org/10.1139/p87-161.
Full textRasmussen, A., M. Gaitan, L. E. Locascio, and M. E. Zaghloul. "Fabrication techniques to realize CMOS-compatible microfluidic microchannels." Journal of Microelectromechanical Systems 10, no. 2 (2001): 286–97. http://dx.doi.org/10.1109/84.925785.
Full textLv, Hongming, Huaqiang Wu, Jinbiao Liu, et al. "Inverted process for graphene integrated circuits fabrication." Nanoscale 6, no. 11 (2014): 5826–30. http://dx.doi.org/10.1039/c3nr06904d.
Full textWu, Wenhao, Yu Yu, Wei Liu, and Xinliang Zhang. "Fully integrated CMOS-compatible polarization analyzer." Nanophotonics 8, no. 3 (2019): 467–74. http://dx.doi.org/10.1515/nanoph-2018-0205.
Full textAGARWAL, AJAY, N. BALASUBRAMANIAN, N. RANGANATHAN, and R. KUMAR. "SILICON NANOWIRES FORMATION IN CMOS COMPATIBLE MANNER." International Journal of Nanoscience 05, no. 04n05 (2006): 445–51. http://dx.doi.org/10.1142/s0219581x06004619.
Full textXiong, Chunle, Bryn Bell, and Benjamin J. Eggleton. "CMOS-compatible photonic devices for single-photon generation." Nanophotonics 5, no. 3 (2016): 427–39. http://dx.doi.org/10.1515/nanoph-2016-0022.
Full textKang, G. B., J. M. Park, S. G. Kim, et al. "Fabrication and characterisation of CMOS compatible silicon nanowire biosensor." Electronics Letters 44, no. 16 (2008): 953. http://dx.doi.org/10.1049/el:20081876.
Full textCuiling Gong and Tim Hogan. "CMOS Compatible Fabrication Processes for the Digital Micromirror Device." IEEE Journal of the Electron Devices Society 2, no. 3 (2014): 27–32. http://dx.doi.org/10.1109/jeds.2014.2309129.
Full textPotts, A., G. J. Parker, J. J. Baumberg, and P. A. J. de Groot. "CMOS compatible fabrication methods for submicron Josephson junction qubits." IEE Proceedings - Science, Measurement and Technology 148, no. 5 (2001): 225–28. http://dx.doi.org/10.1049/ip-smt:20010395.
Full textRay, Vishva, Ramkumar Subramanian, Pradeep Bhadrachalam, Liang-Chieh Ma, Choong-Un Kim, and Seong Jin Koh. "CMOS-compatible fabrication of room-temperature single-electron devices." Nature Nanotechnology 3, no. 10 (2008): 603–8. http://dx.doi.org/10.1038/nnano.2008.267.
Full textBolten, Jens, Jens Hofrichter, Nikolaj Moll, et al. "CMOS compatible cost-efficient fabrication of SOI grating couplers." Microelectronic Engineering 86, no. 4-6 (2009): 1114–16. http://dx.doi.org/10.1016/j.mee.2008.11.038.
Full textZhou, Huajie, Yi Song, Qiuxia Xu, Yongliang Li, and Huaxiang Yin. "Fabrication of Bulk-Si FinFET using CMOS compatible process." Microelectronic Engineering 94 (June 2012): 26–28. http://dx.doi.org/10.1016/j.mee.2012.01.004.
Full textKoczorowski, W., P. Kuświk, M. Przychodnia, et al. "CMOS- compatible fabrication method of graphene-based micro devices." Materials Science in Semiconductor Processing 67 (August 2017): 92–97. http://dx.doi.org/10.1016/j.mssp.2017.05.021.
Full textXie, Sheng, Xuetao Luo, Luhong Mao, and Haiou Li. "Design, Fabrication, and Modeling of CMOS-Compatible Double Photodiode." Transactions of Tianjin University 23, no. 2 (2017): 163–67. http://dx.doi.org/10.1007/s12209-017-0038-1.
Full textZhang Chi, 张弛, та 肖淑敏 Xiao Shumin. "介质超构表面的CMOS兼容制备工艺的进展". Acta Optica Sinica 43, № 8 (2023): 0822003. http://dx.doi.org/10.3788/aos230489.
Full textMujeeb-U-Rahman, Muhammad, Dvin Adalian, and Axel Scherer. "Fabrication of Patterned Integrated Electrochemical Sensors." Journal of Nanotechnology 2015 (2015): 1–13. http://dx.doi.org/10.1155/2015/467190.
Full textVaha-Heikkila, T., and M. Ylonen. "$G$-Band Distributed Microelectromechanical Components Based on CMOS Compatible Fabrication." IEEE Transactions on Microwave Theory and Techniques 56, no. 3 (2008): 720–28. http://dx.doi.org/10.1109/tmtt.2008.916885.
Full textLi, Ying, Jun Yu, Hao Wu, and Zhenan Tang. "Design and fabrication of a CMOS-compatible MHP gas sensor." AIP Advances 4, no. 3 (2014): 031339. http://dx.doi.org/10.1063/1.4869616.
Full textKhondaker, Saiful I. "Parallel Fabrication of CMOS Compatible Single Walled Carbon Nanotube Devices." Reviews in Nanoscience and Nanotechnology 1, no. 3 (2012): 187–99. http://dx.doi.org/10.1166/rnn.2012.1013.
Full textYin, Mei, Wei Yang, Yanping Li, Xingjun Wang, and Hongbin Li. "CMOS-compatible and fabrication-tolerant MMI-based polarization beam splitter." Optics Communications 335 (January 2015): 48–52. http://dx.doi.org/10.1016/j.optcom.2014.08.060.
Full textZhu, Huixian, Tai-Chin Lo, Ralf Lenigk, and Reinhard Renneberg. "Fabrication of a novel oxygen sensor with CMOS compatible processes." Sensors and Actuators B: Chemical 46, no. 2 (1998): 155–59. http://dx.doi.org/10.1016/s0925-4005(98)00044-6.
Full textPakula, L. S., H. Yang, H. T. M. Pham, P. J. French, and P. M. Sarro. "Fabrication of a CMOS compatible pressure sensor for harsh environments." Journal of Micromechanics and Microengineering 14, no. 11 (2004): 1478–83. http://dx.doi.org/10.1088/0960-1317/14/11/007.
Full textNg, E. J., T. Myint, N. Shen, et al. "High density vertical silicon NEM switches with CMOS-compatible fabrication." Electronics Letters 47, no. 13 (2011): 759–60. http://dx.doi.org/10.1049/el.2011.1073.
Full textKoryazhkina, Maria N., Dmitry O. Filatov, Stanislav V. Tikhov, et al. "Electrical Characteristics of CMOS-Compatible SiOx-Based Resistive-Switching Devices." Nanomaterials 13, no. 14 (2023): 2082. http://dx.doi.org/10.3390/nano13142082.
Full textErfanian, Alireza, Hamed Mehrara, Mahdi Khaje, and Ahmad Afifi. "A room temperature 2 × 128 PtSi/Si-nanostructure photodetector array compatible with CMOS process." Sensor Review 35, no. 3 (2015): 282–86. http://dx.doi.org/10.1108/sr-11-2014-0736.
Full textTang, Xiaoyu, Tao Hua, Yujie Liu, and Zhezhe Han. "Heterogeneous CMOS Integration of InGaAs-OI nMOSFETs and Ge pMOSFETs Based on Dual-Gate Oxide Technique." Micromachines 13, no. 11 (2022): 1806. http://dx.doi.org/10.3390/mi13111806.
Full textPérez-Campos, A., G. F. Iriarte, J. Hernando-Garcia, and F. Calle. "Post-CMOS compatible high-throughput fabrication of AlN-based piezoelectric microcantilevers." Journal of Micromechanics and Microengineering 25, no. 2 (2015): 025003. http://dx.doi.org/10.1088/0960-1317/25/2/025003.
Full textSmith, Melissa Alyson, Isaac Weaver, and Mordechai Rothschild. "Wafer-scale fabrication of CMOS-compatible, high aspect ratio encapsulated nanochannels." Journal of Vacuum Science & Technology B 36, no. 5 (2018): 051801. http://dx.doi.org/10.1116/1.5034463.
Full textMusick, Katherine M., Joel R. Wendt, Paul J. Resnick, Michael B. Sinclair, and D. Bruce Burckel. "Assessing the manufacturing tolerances and uniformity of CMOS compatible metamaterial fabrication." Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena 36, no. 1 (2018): 011208. http://dx.doi.org/10.1116/1.5009918.
Full textVitale, Wolfgang A., Clara F. Moldovan, Antonio Paone, Andreas Schüler, and Adrian M. Ionescu. "Fabrication of CMOS-compatible abrupt electronic switches based on vanadium dioxide." Microelectronic Engineering 145 (September 2015): 117–19. http://dx.doi.org/10.1016/j.mee.2015.03.055.
Full textXiao, Jing, Fuchuan Song, Kijeong Han, and Sang-Woo Seo. "Fabrication of CMOS-compatible optical filter arrays using gray-scale lithography." Journal of Micromechanics and Microengineering 22, no. 2 (2012): 025006. http://dx.doi.org/10.1088/0960-1317/22/2/025006.
Full textYu, Huiyang, Xuke Yu, and Yifeng Li. "Design, fabrication and optimization of a CMOS compatible capacitive pressure sensor." Journal of Micromechanics and Microengineering 29, no. 2 (2019): 025009. http://dx.doi.org/10.1088/1361-6439/aaf599.
Full textKaram, J. M., B. Courtois, and J. M. Paret. "Collective fabrication of microsystems compatible with CMOS through the CMP service." Materials Science and Engineering: B 35, no. 1-3 (1995): 219–23. http://dx.doi.org/10.1016/0921-5107(95)01337-7.
Full textSugimoto, Yasuhiro, Hiroyuki Hara, Tsutomu Koyanagi, and Hiroyuki Miyakawa. "Fabrication and Evaluation of the ECL/TTL Compatible BI-CMOS Gate Array." IEEJ Transactions on Electronics, Information and Systems 108, no. 12 (1988): 981–88. http://dx.doi.org/10.1541/ieejeiss1987.108.12_981.
Full textRoy, Avisek, Mehdi Azadmehr, Bao Q. Ta, Philipp Häfliger, and Knut E. Aasmundtveit. "Design and Fabrication of CMOS Microstructures to Locally Synthesize Carbon Nanotubes for Gas Sensing." Sensors 19, no. 19 (2019): 4340. http://dx.doi.org/10.3390/s19194340.
Full textFaruque, M. O., R. Al Mahmud, and R. H. Sagor. "CMOS Compatible Plasmonic Refractive Index Sensor based on Heavily Doped Silicon Waveguide." Engineering, Technology & Applied Science Research 10, no. 1 (2020): 5295–300. http://dx.doi.org/10.48084/etasr.3264.
Full textTabassum, Natasha, Mounika Kotha, Vidya Kaushik, et al. "On-Demand CMOS-Compatible Fabrication of Ultrathin Self-Aligned SiC Nanowire Arrays." Nanomaterials 8, no. 11 (2018): 906. http://dx.doi.org/10.3390/nano8110906.
Full textHu, Juejun, Vladimir Tarasov, Nathan Carlie, et al. "Si-CMOS-compatible lift-off fabrication of low-loss planar chalcogenide waveguides." Optics Express 15, no. 19 (2007): 11798. http://dx.doi.org/10.1364/oe.15.011798.
Full textSmith, A. D., Q. Li, A. Anderson, et al. "Toward CMOS compatible wafer-scale fabrication of carbon-based microsupercapacitors for IoT." Journal of Physics: Conference Series 1052 (July 2018): 012143. http://dx.doi.org/10.1088/1742-6596/1052/1/012143.
Full textKoppinen, P. J., M. D. Stewart, and Neil M. Zimmerman. "Fabrication and Electrical Characterization of Fully CMOS-Compatible Si Single-Electron Devices." IEEE Transactions on Electron Devices 60, no. 1 (2013): 78–83. http://dx.doi.org/10.1109/ted.2012.2227322.
Full textLi, Y., W. Parkes, L. I. Haworth, et al. "Anodic Ta2O5 for CMOS compatible low voltage electrowetting-on-dielectric device fabrication." Solid-State Electronics 52, no. 9 (2008): 1382–87. http://dx.doi.org/10.1016/j.sse.2008.04.030.
Full textLi, Nanxi, Chong Pei Ho, Shiyang Zhu, Yuan Hsing Fu, Yao Zhu, and Lennon Yao Ting Lee. "Aluminium nitride integrated photonics: a review." Nanophotonics 10, no. 9 (2021): 2347–87. http://dx.doi.org/10.1515/nanoph-2021-0130.
Full textGonzález-Fernández, Alfredo A., Mariano Aceves-Mijares, Oscar Pérez-Díaz, Joaquin Hernández-Betanzos, and Carlos Domínguez. "Embedded Silicon Nanoparticles as Enabler of a Novel CMOS-Compatible Fully Integrated Silicon Photonics Platform." Crystals 11, no. 6 (2021): 630. http://dx.doi.org/10.3390/cryst11060630.
Full textRanacher, Christian, Cristina Consani, Andreas Tortschanoff, et al. "A CMOS Compatible Pyroelectric Mid-Infrared Detector Based on Aluminium Nitride." Sensors 19, no. 11 (2019): 2513. http://dx.doi.org/10.3390/s19112513.
Full textFilipovic, Lado, and Siegfried Selberherr. "Application of Two-Dimensional Materials towards CMOS-Integrated Gas Sensors." Nanomaterials 12, no. 20 (2022): 3651. http://dx.doi.org/10.3390/nano12203651.
Full textMarcoux, J., J. Orchard-Webb, and J. F. Currie. "Complementary metal oxide semiconductor-compatible junction field-effect transistor characterization." Canadian Journal of Physics 65, no. 8 (1987): 982–86. http://dx.doi.org/10.1139/p87-156.
Full textKuo, Yi-Shan, Shen-Yang Lee, Chia-Chin Lee, Shou-Wei Li, and Tien-Sheng Chao. "CMOS-Compatible Fabrication of Low-Power Ferroelectric Tunnel Junction for Neural Network Applications." IEEE Transactions on Electron Devices 68, no. 2 (2021): 879–84. http://dx.doi.org/10.1109/ted.2020.3045955.
Full text