Journal articles on the topic 'CMOS op amp'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'CMOS op amp.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
SOLIMAN, AHMED M., and AHMED H. MADIAN. "MOS-C TOW-THOMAS FILTER USING VOLTAGE OP AMP, CURRENT FEEDBACK OP AMP AND OPERATIONAL TRANSRESISTANCE AMPLIFIER." Journal of Circuits, Systems and Computers 18, no. 01 (2009): 151–79. http://dx.doi.org/10.1142/s0218126609004995.
Full textBabanazhad, J. N. "A rail-to-rail CMOS op amp." IEEE Journal of Solid-State Circuits 23, no. 6 (1988): 1414–17. http://dx.doi.org/10.1109/4.90040.
Full textGupta, Pragati, and Shyam Akashe. "Implementation of an Ultra Low Power Process-Insensitive Two Stage Complementary Metal Oxide Semiconductor Operational Amplifier with Enhanced Direct Current Gain at 45 nm Technology Node." Sensor Letters 18, no. 10 (2020): 770–75. http://dx.doi.org/10.1166/sl.2020.4277.
Full textAL-Qaysi, Hayder Khaleel, Musaab Mohammed Jasim, and Siraj Manhal Hameed. "Design of very low-voltages and high-performance CMOS gate-driven operational amplifier." Indonesian Journal of Electrical Engineering and Computer Science 20, no. 2 (2020): 670. http://dx.doi.org/10.11591/ijeecs.v20.i2.pp670-679.
Full textZarabadi, S. R., F. Larsen, and M. Ismail. "A reconfigurable op-amp/DDA CMOS amplifier architecture." IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 39, no. 6 (1992): 484–87. http://dx.doi.org/10.1109/81.153646.
Full textLooby, C. A., and C. Lyden. "Op-amp based CMOS field-programmable analogue array." IEE Proceedings - Circuits, Devices and Systems 147, no. 2 (2000): 93. http://dx.doi.org/10.1049/ip-cds:20000030.
Full textSOLIMAN, AHMED M., and AHMED H. MADIAN. "MOS-C KHN FILTER USING VOLTAGE OP AMP, CFOA, OTRA AND DCVC." Journal of Circuits, Systems and Computers 18, no. 04 (2009): 733–69. http://dx.doi.org/10.1142/s021812660900523x.
Full textDadashi, Ali, Shamin Sadrafshari, Khayrollah Hadidi, and Abdollah Khoei. "Fast-settling CMOS Op-Amp with improved DC-gain." Analog Integrated Circuits and Signal Processing 70, no. 3 (2011): 283–92. http://dx.doi.org/10.1007/s10470-011-9668-8.
Full textMOTTAGHI-KASHTIBAN, M. "Modified CMOS Op-Amp with Improved Gain and Bandwidth." IEICE Transactions on Electronics E89-C, no. 6 (2006): 775–80. http://dx.doi.org/10.1093/ietele/e89-c.6.775.
Full textLloyd, J., and Hae-Seung Lee. "A CMOS op amp with fully-differential gain-enhancement." IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing 41, no. 3 (1994): 241–43. http://dx.doi.org/10.1109/82.279212.
Full textMita, R., G. Palumbo, and S. Pennisi. "Low-voltage high-drive CMOS current feedback op-amp." IEEE Transactions on Circuits and Systems II: Express Briefs 52, no. 6 (2005): 317–21. http://dx.doi.org/10.1109/tcsii.2005.849004.
Full textMandal, P., and V. Visvanathan. "CMOS op-amp sizing using a geometric programming formulation." IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 20, no. 1 (2001): 22–38. http://dx.doi.org/10.1109/43.905672.
Full textPalmisano, G., G. Palumbo, and R. Salerno. "A 1.5-V high drive capability CMOS op-amp." IEEE Journal of Solid-State Circuits 34, no. 2 (1999): 248–52. http://dx.doi.org/10.1109/4.743789.
Full textLiang Dai and R. Harjani. "CMOS switched-op-amp-based sample-and-hold circuit." IEEE Journal of Solid-State Circuits 35, no. 1 (2000): 109–13. http://dx.doi.org/10.1109/4.818927.
Full textBruun, Erik. "A dual current feedback op amp in CMOS technology." Analog Integrated Circuits and Signal Processing 5, no. 3 (1994): 213–17. http://dx.doi.org/10.1007/bf01261413.
Full textSafari, Ali, Massoud Dousti, and Mohammad Bagher Tavakoli. "Monolayer Graphene Field Effect Transistor-Based Operational Amplifier." Journal of Circuits, Systems and Computers 28, no. 03 (2019): 1950052. http://dx.doi.org/10.1142/s021812661950052x.
Full textShi, Jian Ying, Hui Ya Li, and Yan Bin Xu. "A New No Op Amp Full CMOS Voltage Reference Circuit." Applied Mechanics and Materials 519-520 (February 2014): 1067–70. http://dx.doi.org/10.4028/www.scientific.net/amm.519-520.1067.
Full textHershenson, M. delM, S. P. Boyd, and T. H. Lee. "Optimal design of a CMOS op-amp via geometric programming." IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 20, no. 1 (2001): 1–21. http://dx.doi.org/10.1109/43.905671.
Full textChachuli, Siti Amaniah Mohd, Puteri Nor Aznie Fasyar, Norhayati Soin, Nissar Mohammad Karim, and Norbayah Yusop. "Pareto ANOVA analysis for CMOS 0.18µm two-stage Op-amp." Materials Science in Semiconductor Processing 24 (August 2014): 9–14. http://dx.doi.org/10.1016/j.mssp.2014.02.035.
Full textLu, C. W., and C. M. Hsiao. "1 V rail-to-rail constant-gm CMOS op amp." Electronics Letters 45, no. 11 (2009): 529. http://dx.doi.org/10.1049/el.2009.0763.
Full textMasunaga, Masahiro, Shintaroh Sato, Ryoh Kuwana, Isao Hara, and Akio Shima. "Improved Offset Voltage Stability of 4H-SiC CMOS Operational Amplifier by Increasing Gamma Irradiation Resistance." Materials Science Forum 963 (July 2019): 845–48. http://dx.doi.org/10.4028/www.scientific.net/msf.963.845.
Full textCHA, Hyeong-Woo. "A resistance-difference to voltage converter using CMOS linear OTA and op amp." Journal of the Institute of Electronics and Information Engineers 54, no. 12 (2017): 74–80. http://dx.doi.org/10.5573/ieie.2017.54.12.74.
Full textZHANG, C., A. SRIVASTAVA, and P. K. AJMERA. "NOISE ANALYSIS IN A 0.8 V FORWARD BODY-BIAS CMOS OP-AMP DESIGN." Fluctuation and Noise Letters 04, no. 02 (2004): L403—L412. http://dx.doi.org/10.1142/s0219477504001975.
Full textAssi, A., M. Sawan, and Jieyan Zhu. "An offset compensated and high-gain CMOS current-feedback op-amp." IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 45, no. 1 (1998): 85–90. http://dx.doi.org/10.1109/81.660763.
Full textGiustolisi, G., G. Palmisano, and T. Segreto. "1.2-V CMOS op-amp with a dynamically biased output stage." IEEE Journal of Solid-State Circuits 35, no. 4 (2000): 632–36. http://dx.doi.org/10.1109/4.839923.
Full textSINGH, A. K., R. SENANI, D. R. BHASKAR, and R. K. SHARMA. "A NEW ELECTRONICALLY-TUNABLE ACTIVE-ONLY UNIVERSAL BIQUAD." Journal of Circuits, Systems and Computers 20, no. 03 (2011): 549–55. http://dx.doi.org/10.1142/s021812661100744x.
Full textGheorghe, Alexandru Gabriel, and Mihai Eugen Marin. "A Two Stage Op-Amp Phase Margin Symbolic Expression." MATEC Web of Conferences 210 (2018): 02040. http://dx.doi.org/10.1051/matecconf/201821002040.
Full textDendouga, Abdelghani, and Slimane Oussalah. "Telescopic Op-Amp Optimization for MDAC Circuit Design." Electronics ETF 20, no. 2 (2017): 55. http://dx.doi.org/10.7251/els1620055d.
Full textJee, Dong-Woo, Yunjae Suh, Hong-June Park, and Jae-Yoon Sim. "A Digitally Controlled Op-Amp with Level-Crossing-Based Approximation and its Application to a 10-bit Pipeline ADC." Journal of Circuits, Systems and Computers 25, no. 12 (2016): 1650155. http://dx.doi.org/10.1142/s0218126616501553.
Full textIsmail, A. M., and A. M. Soliman. "Novel CMOS current feedback op-amp realization suitable for high frequency applications." IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 47, no. 6 (2000): 918–21. http://dx.doi.org/10.1109/81.852946.
Full textSteyaert, M., and W. Sansen. "A high-dynamic-range CMOS op amp with low-distortion output structure." IEEE Journal of Solid-State Circuits 22, no. 6 (1987): 1204–7. http://dx.doi.org/10.1109/jssc.1987.1052876.
Full textBruun, Erik. "Bandwidth optimization of a low power, high speed CMOS current op amp." Analog Integrated Circuits and Signal Processing 7, no. 1 (1995): 11–19. http://dx.doi.org/10.1007/bf01256443.
Full textChanapromma, Chaiyan, and Jirayuth Mahattanakul. "New method to design feedback amplifier employing two-stage CMOS op amp." AEU - International Journal of Electronics and Communications 132 (April 2021): 153616. http://dx.doi.org/10.1016/j.aeue.2021.153616.
Full textSahu, Rashmi, Maitraiyee Konar, and Sudip Kundu. "Improvement of Gain Accuracy and CMRR of Low Power Instrumentation Amplifier Using High Gain Operational Amplifiers." Micro and Nanosystems 12, no. 3 (2020): 168–74. http://dx.doi.org/10.2174/1876402912666200123153318.
Full textSama, Nihar Jouti, and Manash Pratim Sarma. "A High Gain, High BW OP AMP with Frequency Compensation Techniques at 65 nm Technology." WSEAS TRANSACTIONS ON ELECTRONICS 12 (August 10, 2021): 89–92. http://dx.doi.org/10.37394/232017.2021.12.12.
Full textDu, Yiheng, Changde He, Guowei Hao, Wendong Zhang, and Chenyang Xue. "Full-Differential Folded-Cascode Front-End Receiver Amplifier Integrated Circuit for Capacitive Micromachined Ultrasonic Transducers." Micromachines 10, no. 2 (2019): 88. http://dx.doi.org/10.3390/mi10020088.
Full textIdros, Norhamizah, Zulfiqar Ali Abdul Aziz, and Jagadheswaran Rajendran. "A 1-mm2 CMOS-pipelined ADC with integrated folded cascode operational amplifier." Microelectronics International 37, no. 4 (2020): 205–13. http://dx.doi.org/10.1108/mi-05-2020-0030.
Full textMAHMOUD, SOLIMAN A. "LOW POWER LOW-PASS FILTER WITH PROGRAMMABLE CUTOFF FREQUENCY BASED ON A TUNABLE UNITY GAIN FREQUENCY OPERATIONAL AMPLIFIER." Journal of Circuits, Systems and Computers 19, no. 08 (2010): 1651–63. http://dx.doi.org/10.1142/s0218126610006979.
Full textYu, Sang Dae. "Small-Signal Analysis of a Differential Two-Stage Folded-Cascode CMOS Op Amp." JSTS:Journal of Semiconductor Technology and Science 14, no. 6 (2014): 768–76. http://dx.doi.org/10.5573/jsts.2014.14.6.768.
Full textBalaji, M., and N. Padmaja. "Design and analysis of CMOS based Op-Amp for low power biomedical applications." TARU Journal of Sustainable Technologies and Computing 1, no. 1 (2019): 9–23. http://dx.doi.org/10.47974/tjstc.008.2019.v01i01.
Full textCarrillo, Juan M., J. Francisco Duque-Carrillo, Guido Torelli, and José L. Ausı́n. "1-V quasi constant-g input/output rail-to-rail CMOS op-amp." Integration 36, no. 4 (2003): 161–74. http://dx.doi.org/10.1016/j.vlsi.2003.08.002.
Full textMonticelli, D. M. "A quad CMOS single-supply op amp with rail-to-rail output swing." IEEE Journal of Solid-State Circuits 21, no. 6 (1986): 1026–34. http://dx.doi.org/10.1109/jssc.1986.1052645.
Full textChakraborty, Subhra, Abhishek Pandey, and Vijay Nath. "Ultra high gain CMOS Op-Amp design using self-cascoding and positive feedback." Microsystem Technologies 23, no. 3 (2016): 541–52. http://dx.doi.org/10.1007/s00542-016-2971-7.
Full textOpalski, Leszek. "Remarks on Statistical Design Centering." International Journal of Electronics and Telecommunications 57, no. 2 (2011): 159–67. http://dx.doi.org/10.2478/v10177-011-0023-x.
Full textKhatak, Anil, Manoj Kumar, and Sanjeev Dhull. "An Improved CMOS Design of Op-Amp Comparator with Gain Boosting Technique for Data Converter Circuits." Journal of Low Power Electronics and Applications 8, no. 4 (2018): 33. http://dx.doi.org/10.3390/jlpea8040033.
Full textKumar, Kandi Praveen, and D. Vaithiyanathan. "Design and analysis of a three stage CMOS op-amp using indirect feedback compensation." Journal of Physics: Conference Series 1706 (December 2020): 012055. http://dx.doi.org/10.1088/1742-6596/1706/1/012055.
Full textLiu, Maliang, Dengquan Li, and Zhangming Zhu. "A Dual-Supply Two-Stage CMOS Op-amp for High-Speed Pipeline ADCs Application." IEEE Transactions on Circuits and Systems II: Express Briefs 67, no. 4 (2020): 650–54. http://dx.doi.org/10.1109/tcsii.2019.2926133.
Full textBult, K., and G. J. G. M. Geelen. "A fast-settling CMOS op amp for SC circuits with 90-dB DC gain." IEEE Journal of Solid-State Circuits 25, no. 6 (1990): 1379–84. http://dx.doi.org/10.1109/4.62165.
Full textNagulapalli, Rajasekhar, Khaled Hayatleh, and Steve Barker. "A Positive Feedback-Based Op-Amp Gain Enhancement Technique for High-Precision Applications." Journal of Circuits, Systems and Computers 29, no. 14 (2020): 2050220. http://dx.doi.org/10.1142/s0218126620502205.
Full textCui, Lin Hai, Rui Xu, Zhan Peng Jiang, and Chang Chun Dong. "Design of a Low-Voltage Low-Power CMOS Operational Amplifier." Applied Mechanics and Materials 380-384 (August 2013): 3283–86. http://dx.doi.org/10.4028/www.scientific.net/amm.380-384.3283.
Full text