Journal articles on the topic 'CMOS technology scaling'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'CMOS technology scaling.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Kocanda, Piotr, and Andrzej Kos. "Energy losses and DVFS effectiveness vs technology scaling." Microelectronics International 32, no. 3 (August 3, 2015): 158–63. http://dx.doi.org/10.1108/mi-01-2015-0008.
Full textNowak, E. J. "(Invited) Advanced CMOS Scaling and FinFET Technology." ECS Transactions 50, no. 9 (March 15, 2013): 3–16. http://dx.doi.org/10.1149/05009.0003ecst.
Full textJacob, Ajey P., Ruilong Xie, Min Gyu Sung, Lars Liebmann, Rinus T. P. Lee, and Bill Taylor. "Scaling Challenges for Advanced CMOS Devices." International Journal of High Speed Electronics and Systems 26, no. 01n02 (February 17, 2017): 1740001. http://dx.doi.org/10.1142/s0129156417400018.
Full textShahidi, Ghavam G. "Chip Power Scaling in Recent CMOS Technology Nodes." IEEE Access 7 (2019): 851–56. http://dx.doi.org/10.1109/access.2018.2885895.
Full textIoannou, D. E. "Scaling limits and reliability of SOI CMOS technology." Journal of Physics: Conference Series 10 (January 1, 2005): 1–6. http://dx.doi.org/10.1088/1742-6596/10/1/001.
Full textDettmer, R. "Softly, softly [CMOS scaling advances by subthreshold technology]." IEE Review 51, no. 9 (September 1, 2005): 26–30. http://dx.doi.org/10.1049/ir:20050902.
Full textAnis, M., M. Allam, and M. Elmasry. "Impact of technology scaling on CMOS logic styles." IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing 49, no. 8 (August 2002): 577–88. http://dx.doi.org/10.1109/tcsii.2002.805631.
Full textHon-Sum Wong. "Technology and device scaling considerations for CMOS imagers." IEEE Transactions on Electron Devices 43, no. 12 (1996): 2131–42. http://dx.doi.org/10.1109/16.544384.
Full textNowak, Matt, and Brian Henderson. "Can High Density 3D Through Silicon Stacking Replace Lithography-Driven CMOS Scaling as the Engine for the Semiconductor Industry?" Additional Conferences (Device Packaging, HiTEC, HiTEN, and CICMT) 2011, DPC (January 1, 2011): 000458–75. http://dx.doi.org/10.4071/2011dpc-ta12.
Full textMaimon, J., and N. Haddad. "Overcoming scaling concerns in a radiation-hardened CMOS technology." IEEE Transactions on Nuclear Science 46, no. 6 (1999): 1686–89. http://dx.doi.org/10.1109/23.819139.
Full textAwang Salleh, Dayang Nur Salmi Dharmiza, and Rohana Sapawi. "A Study on Scalability and Variation of CMOS Low Noise Amplifier in Advance CMOS Technology Processes." Applied Mechanics and Materials 833 (April 2016): 135–39. http://dx.doi.org/10.4028/www.scientific.net/amm.833.135.
Full textBirla, Shilpi, Sudip Mahanti, and Neha Singh. "Leakage reduction technique for nano-scaled devices." Circuit World 47, no. 1 (May 29, 2020): 97–104. http://dx.doi.org/10.1108/cw-12-2019-0195.
Full textSHAHIDI, GHAVAM G. "ARE WE AT THE END OF CMOS SCALING?" International Journal of High Speed Electronics and Systems 16, no. 01 (March 2006): 3–8. http://dx.doi.org/10.1142/s0129156406003503.
Full textZheng, Peng, Daniel Connelly, Fei Ding, and Tsu-Jae King Liu. "FinFET Evolution Toward Stacked-Nanowire FET for CMOS Technology Scaling." IEEE Transactions on Electron Devices 62, no. 12 (December 2015): 3945–50. http://dx.doi.org/10.1109/ted.2015.2487367.
Full textBadaroglu, M., P. Wambacq, G. Van der Plas, S. Donnay, G. G. E. Gielen, and H. J. De Man. "Evolution of substrate noise generation mechanisms with CMOS technology scaling." IEEE Transactions on Circuits and Systems I: Regular Papers 53, no. 2 (February 2006): 296–305. http://dx.doi.org/10.1109/tcsi.2005.856049.
Full textVassighi, A., O. Semenov, M. Sachdev, A. Keshavarzi, and C. Hawkins. "CMOS IC Technology Scaling and Its Impact on Burn-In." IEEE Transactions on Device and Materials Reliability 4, no. 2 (June 2004): 208–21. http://dx.doi.org/10.1109/tdmr.2004.826591.
Full textKenkare, P. U., C. Mazure, J. D. Hayden, J. R. Pfiester, J. Ko, H. C. Kirsch, S. A. Ajuria, P. Crabtree, and T. Vuong. "Scaling of poly-encapsulated LOCOS for 0.35 μm CMOS technology." IEEE Transactions on Electron Devices 41, no. 1 (1994): 56–62. http://dx.doi.org/10.1109/16.259620.
Full textMeyer, Joseph, Reza Moghimi, and Noah Sturcken. "Package Voltage Regulators: The Answer for Power Management Challenges." International Symposium on Microelectronics 2019, no. 1 (October 1, 2019): 000438–43. http://dx.doi.org/10.4071/2380-4505-2019.1.000438.
Full textKhater, Marwan H., Thomas N. Adam, Rajendran Krishnasamy, Mattias E. Dahlstrom, Jae-Sung Rieh, Kathryn T. Schonenberg, Bradly A. Orner, Francois Pagette, Kenneth Stein, and David C. Ahlgren. "PRESENT STATUS AND FUTURE DIRECTIONS OF SiGe HBT TECHNOLOGY." International Journal of High Speed Electronics and Systems 17, no. 01 (March 2007): 61–80. http://dx.doi.org/10.1142/s0129156407004254.
Full textReid, Dave, Campbell Millar, Scott Roy, Gareth Roy, Richard Sinnott, Gordon Stewart, Graeme Stewart, and Asen Asenov. "Enabling cutting-edge semiconductor simulation through grid technology." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 367, no. 1897 (June 28, 2009): 2573–84. http://dx.doi.org/10.1098/rsta.2009.0031.
Full textHeyns, M., and W. Tsai. "Ultimate Scaling of CMOS Logic Devices with Ge and III–V Materials." MRS Bulletin 34, no. 7 (July 2009): 485–92. http://dx.doi.org/10.1557/mrs2009.136.
Full textKerber, Andreas. "Reliability of Metal Gate / High-k devices and its impact on CMOS technology scaling." MRS Advances 2, no. 52 (2017): 2973–82. http://dx.doi.org/10.1557/adv.2017.504.
Full textGarrou, Philip. "3D IC Technology: the Perfect Storm." International Symposium on Microelectronics 2010, no. 1 (January 1, 2010): 000001–6. http://dx.doi.org/10.4071/isom-2010-ta1-paper1.
Full textDhar, Subhra, Manisha Pattanaik, and Poolla Rajaram. "Advancement in Nanoscale CMOS Device Design En Route to Ultra-Low-Power Applications." VLSI Design 2011 (May 26, 2011): 1–19. http://dx.doi.org/10.1155/2011/178516.
Full textHu, Jian Ping, and Jia Guo Zhu. "Voltage Scaling for SRAM in 45nm CMOS Process." Applied Mechanics and Materials 39 (November 2010): 253–59. http://dx.doi.org/10.4028/www.scientific.net/amm.39.253.
Full textWalko, J. "Scaling is dead, long live innovation! [90 nm CMOS process technology]." IEE Review 50, no. 6 (June 1, 2004): 23. http://dx.doi.org/10.1049/ir:20040601.
Full textHassan, Hassan, Mohab Anis, and Mohamed Elmasry. "Impact of technology scaling and process variations on RF CMOS devices." Microelectronics Journal 37, no. 4 (April 2006): 275–82. http://dx.doi.org/10.1016/j.mejo.2005.07.013.
Full textSemenov, O., A. Vassighi, M. Sachdev, A. Keshavarzi, and C. F. Hawkins. "Effect of cmos technology scaling on thermal management during burn-in." IEEE Transactions on Semiconductor Manufacturing 16, no. 4 (November 2003): 686–95. http://dx.doi.org/10.1109/tsm.2003.818985.
Full textHokazono, A., S. Balasubramanian, K. Ishimaru, H. Ishiuchi, C. Hu, and T. J. K. Liu. "Forward Body Biasing as a Bulk-Si CMOS Technology Scaling Strategy." IEEE Transactions on Electron Devices 55, no. 10 (October 2008): 2657–64. http://dx.doi.org/10.1109/ted.2008.2003029.
Full textSong, Yi, Huajie Zhou, Qiuxia Xu, Jun Luo, Haizhou Yin, Jiang Yan, and Huicai Zhong. "Mobility Enhancement Technology for Scaling of CMOS Devices: Overview and Status." Journal of Electronic Materials 40, no. 7 (May 15, 2011): 1584–612. http://dx.doi.org/10.1007/s11664-011-1623-z.
Full textFLYNN, MICHAEL P., SUNGHYUN PARK, and CHUN C. LEE. "ACHIEVING ANALOG ACCURACY IN NANOMETER CMOS." International Journal of High Speed Electronics and Systems 15, no. 02 (June 2005): 255–75. http://dx.doi.org/10.1142/s0129156405003193.
Full textViswadha, Singathala Guru. "Next Generation Computing Using Quantum Dot Cellular Automata Nano Technology, New Promising Alternative to CMOS." Asian Journal of Computer Science and Technology 8, S3 (June 5, 2019): 19–24. http://dx.doi.org/10.51983/ajcst-2019.8.s3.2111.
Full textPankiewicz, B. "Multiple output CMOS current amplifier." Bulletin of the Polish Academy of Sciences Technical Sciences 64, no. 2 (June 1, 2016): 301–6. http://dx.doi.org/10.1515/bpasts-2016-0034.
Full textWang, Lei, CiHui Yang, Jing Wen, and Shan Gai. "Emerging Nonvolatile Memories to Go Beyond Scaling Limits of Conventional CMOS Nanodevices." Journal of Nanomaterials 2014 (2014): 1–10. http://dx.doi.org/10.1155/2014/927696.
Full textMohamed, Khaled Salah. "Work around Moore’s Law: Current and next Generation Technologies." Applied Mechanics and Materials 110-116 (October 2011): 3278–83. http://dx.doi.org/10.4028/www.scientific.net/amm.110-116.3278.
Full textLu, Bin Bin, and Jian Ping Hu. "Complementary Pass-Transistor Adiabatic Logic Using Dual Threshold CMOS Techniques." Applied Mechanics and Materials 39 (November 2010): 55–60. http://dx.doi.org/10.4028/www.scientific.net/amm.39.55.
Full textBoselli, G., V. Reddy, and C. Duvvury. "Impact of Scaling on the High Current Behavior of RF CMOS Technology." IEEE Transactions on Device and Materials Reliability 4, no. 3 (September 2004): 542–48. http://dx.doi.org/10.1109/tdmr.2004.836163.
Full textJan, Chia-Hong. "CMOS Technology Scaling for System-On-Chip Integration - Past, Present and Future." ECS Transactions 44, no. 1 (December 15, 2019): 451–70. http://dx.doi.org/10.1149/1.3694354.
Full textHazucha, P., and C. Svensson. "Impact of CMOS technology scaling on the atmospheric neutron soft error rate." IEEE Transactions on Nuclear Science 47, no. 6 (2000): 2586–94. http://dx.doi.org/10.1109/23.903813.
Full textDeng, Jie, Keunwoo Kim, Ching-Te Chuang, and H. S. Philip Wong. "The Impact of Device Footprint Scaling on High-Performance CMOS Logic Technology." IEEE Transactions on Electron Devices 54, no. 5 (May 2007): 1148–55. http://dx.doi.org/10.1109/ted.2007.894596.
Full textCarusone, Anthony Chan, Hemesh Yasotharan, and Tony Kao. "CMOS Technology Scaling Considerations for Multi-Gbps Optical Receivers With Integrated Photodetectors." IEEE Journal of Solid-State Circuits 46, no. 8 (August 2011): 1832–42. http://dx.doi.org/10.1109/jssc.2011.2157254.
Full textDhaou, Imed Ben, Keshab K. Parhi, and Hannu Tenhunen. "Energy Efficient Signaling in Deep-submicron Technology." VLSI Design 15, no. 3 (January 1, 2002): 563–86. http://dx.doi.org/10.1080/1065514021000012192.
Full textAngelov, George V., Dimitar N. Nikolov, and Marin H. Hristov. "Technology and Modeling of Nonclassical Transistor Devices." Journal of Electrical and Computer Engineering 2019 (November 3, 2019): 1–18. http://dx.doi.org/10.1155/2019/4792461.
Full textLi, Hong, Jia Guo Zhu, and Jian Ping Hu. "A Single-Phase Energy-Recovery Register Using Drowsy Cache and MTCMOS Techniques for Leakage Reductions." Applied Mechanics and Materials 29-32 (August 2010): 1937–42. http://dx.doi.org/10.4028/www.scientific.net/amm.29-32.1937.
Full textHussain, Inamul, and Saurabh Chaudhury. "CNFET Based Low Power Full Adder Circuit for VLSI Applications." Nanoscience & Nanotechnology-Asia 10, no. 3 (June 17, 2020): 286–91. http://dx.doi.org/10.2174/2210681209666190220122553.
Full textBae, Woorham. "CMOS Inverter as Analog Circuit: An Overview." Journal of Low Power Electronics and Applications 9, no. 3 (August 20, 2019): 26. http://dx.doi.org/10.3390/jlpea9030026.
Full textSPEDO, SERGIO, and CLAUDIO FIEGNA. "SIMULATION OF THERMAL NOISE IN SCALED MOSFETS." Fluctuation and Noise Letters 02, no. 02 (June 2002): L109—L116. http://dx.doi.org/10.1142/s0219477502000683.
Full textSharma, Suruchi, Santosh Kumar, Alok Kumar Mishra, D. Vaithiyanathan, and Baljit Kaur. "Process, Voltage, and Temperature Aware Analysis of ISCAS C17 Benchmark Circuit." Advanced Science, Engineering and Medicine 12, no. 10 (October 1, 2020): 1289–95. http://dx.doi.org/10.1166/asem.2020.2707.
Full textWong, Hei, and Hiroshi Iwai. "On the scaling of subnanometer EOT gate dielectrics for ultimate nano CMOS technology." Microelectronic Engineering 138 (April 2015): 57–76. http://dx.doi.org/10.1016/j.mee.2015.02.023.
Full textLiu, Qing, Atsushi Yagishita, Arvind Kumar, Nicolas Loubet, Toyoji Yamamoto, Pranita Kulkarni, Frederic Monsieur, et al. "Ultra-Thin Body and BOX (UTBB) Device for Aggressive Scaling of CMOS Technology." ECS Transactions 34, no. 1 (December 16, 2019): 37–42. http://dx.doi.org/10.1149/1.3567556.
Full text