Academic literature on the topic 'CNC machine tool'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'CNC machine tool.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Dissertations / Theses on the topic "CNC machine tool"

1

Quesada, Robert E. "Alternative assessment of computer numerical control (CNC) machine tool students." Online version, 1999. http://www.uwstout.edu/lib/thesis/1999/1999quesada.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lau, Pak Fai. "CNC machining accuracy enhancement by tool path compensation method /." View abstract or full-text, 2005. http://library.ust.hk/cgi/db/thesis.pl?IEEM%202005%20LAU.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Allen, James. "A general approach to CNC machine tool thermal error reduction." Thesis, University of Huddersfield, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.285842.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ajilo, Deborah (Deborah M. ). "eyeDNA : Tool Condition Monitoring for a desktop CNC milling machine." Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/115670.

Full text
Abstract:
Thesis: S.M., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2018.<br>Cataloged from PDF version of thesis.<br>Includes bibliographical references (pages 81-84).<br>Tool wear is a major obstacle to realizing full automation in metal cutting operations. In this thesis, we designed and implemented a low cost Tool Condition Monitoring (TCM) system using off-the-shelf sensors and data acquisition methods . Peripheral end milling tests were done on a low carbon steel workpiece and the spindle vibration, cutting zone temperature and spindle motor current were recorded. Features from these data sources were used to train decision tree models in MATLAB with the aim of classifying the stages of tool wear. Results showed that the feature sets fusing information from all data sources performed the best, classifying the tool wear stage with up to 93% average accuracy.<br>by Deborah Ajilo.<br>S.M.
APA, Harvard, Vancouver, ISO, and other styles
5

Harris, C. G. "Fault diagnosis and condition monitoring for NC/CNC machine tools." Thesis, Cardiff University, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.381227.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Liang, Jiangang. "Development of logical models for CNC machine tool motion control system with application to virtual machine tool design /." For electronic version search Digital dissertations database. Restricted to UC campuses. Access is free to UC campus dissertations, 2005. http://uclibs.org/PID/11984.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Edem, Isuamfon. "Energy modelling for machine tool axis and toolpaths." Thesis, University of Manchester, 2017. https://www.research.manchester.ac.uk/portal/en/theses/energy-modelling-for-machine-tool-axis-and-toolpaths(2ab542b7-5e6e-4385-9acf-1b7a8e14be2b).html.

Full text
Abstract:
The manufacturing sector is one of the significant consumers of electricity, with about 42.3% (8249 TWh) of the global electricity consumption attributable to this sector. This electricity is generated from fossil fuels at the power stations, resulting in increased CO2 emission and subsequently global warming. Thus, energy efficiency could play a vital role in reducing electrical energy demand and environmental impacts in the manufacturing sector. Mechanical machining is one of the widely used techniques in manufacturing. Machine tools consist of auxiliary units, spindle, feed axes including the x-axis, y-axis, z-axis, and the tool change system which are the main electrical energy consumers. The feed axes control the relative motion between the workpiece and cutter, and also determine the workpiece geometry. In literature, a number of studies focused on the machining process as a whole, while the energy demand for axis and toolpaths was relatively unexplored. This PhD research was aimed at assessing the electrical energy demand in mechanical machining, focusing on feed motions and toolpaths in order to identify energy saving strategies of the machine tool. To achieve this, a current measurement device was used to acquire the current and voltage, from which the power and electrical energy requirements were evaluated. This study included (i) energy consumption analyses of the machine tool in different feed axes directions, (ii) cutting of components in different axes orientations (iii) and electrical energy demand studies of different toolpath strategies. From the study, a new method and model for predicting the electrical energy demand of feed axes was developed. This model encompasses the weights of feed axes, machine tool vice, and workpiece placed on the machine table. Moreover, the newly developed feed axes energy demand model was integrated into other energy consumption models to predict the energy demand for toolpaths. CNC toolpaths are generated manually or by computer aided manufacturing (CAM). Enabling an energy rating of CNC toolpaths is vital to be able to quantify energy demand, compare toolpaths, and develop energy demand reduction strategies. The results show that machining along the x-axis which carries minimal weights significantly reduced the energy demand of the feed drive, which in turn reduces the non-cutting energy demand of the machine tool. Thus, this Thesis contributes to the improvement of energy efficiency in machining through the development of a new and novel model and method for predicting the feed axes energy demand; determining the most efficient axes and component orientation; as well as the most efficient toolpath strategy for minimal energy demand in machining. This PhD Thesis has laid the foundation model and information source for a post processor to estimate energy demand from CNC toolpaths. Such a capability was not available in CAM software or on CNC machines.
APA, Harvard, Vancouver, ISO, and other styles
8

Hoseini, Saba. "Experimental simulation of gear hobbing through a face milling concept in CNC-machine." Thesis, KTH, Materialvetenskap, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-126804.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Strnad, Jiří. "Návrh malé multifunkční modelářské CNC frézky." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-444277.

Full text
Abstract:
This diploma thesis deals with the construction proposal of a small multifunctional modeller CNC milling machine that enables milling of aluminium alloys and 3D printing using the FDM method. Based on the research, analyzes and defined entry requirements the construction proposal is created and verified by calculations. The thesis contains a description of all the construction parts including the printhead, the tool tray and the safety cover. The other part of the thesis describes the machine geometry adjustment and specifies the choice of control system. The thesis includes a 3D model and the drawing documentation of selected structural nodes.
APA, Harvard, Vancouver, ISO, and other styles
10

Castro, Marcelo Hirai. "Processo para obtenção de furos quadrados utilizando máquinas ferramentas CNC com ferramenta em rotação." [s.n.], 2012. http://repositorio.unicamp.br/jspui/handle/REPOSIP/264536.

Full text
Abstract:
Orientador: Amauri Hassui<br>Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica<br>Made available in DSpace on 2018-08-21T02:13:50Z (GMT). No. of bitstreams: 1 Castro_MarceloHirai_M.pdf: 4008200 bytes, checksum: a0c71450e4b5c3ac934e22f6e3cc9f4b (MD5) Previous issue date: 2012<br>Resumo: A inovação é a chave para o diferencial da indústria no mercado competitivo atual. Fazer diferente, melhor e mais barato sempre agrega valor ao produto. Por outro lado, a resistência às mudanças faz parte do comportamento humano, seja na sociedade, ou na indústria. O objetivo principal deste trabalho é estudar a viabilidade de se fazer furos não cilíndricos com uma ferramenta em rotação utilizando máquinas-ferramenta CNC. Estes sempre foram obstáculos na indústria de fabricação pela dificuldade de obtenção. Sendo assim, o processo apresentado nesse trabalho busca usinar um furo quadrado com a mesma configuração de ferramentas e fixação de peças utilizadas para um furo cilíndrico, tão comum à indústria. Isso visa reduzir custos de fabricação e facilitar a obtenção de furos não cilíndricos com os recursos de equipamentos programáveis existentes no chão de fábrica. A partir de um modelo matemático, a máquina é programada para executar movimentos sincronizados entre a rotação e os deslocamentos do eixo da ferramenta. Diversas programações foram testadas em diferentes máquinas ferramenta CNC, com diferentes comandos, com e sem recursos de alta velocidade, com diferentes quantidades de pontos programados, interpolações lineares e circulares. A partir dos experimentos, foram analisadas as configurações das máquinas, a capacidade de execução do controlador numérico instalado, a velocidade desenvolvida pela máquina na operação e a geometria obtida dos furos quadrados. Os experimentos apontam que para executar o furo quadrado, os comandos devem ser capazes de controlar um eixo rotativo como eixo propriamente dito, além de sincronizarem mais três eixos lineares. O crítico para este tipo de operação é a velocidade desempenhada pela máquina, sendo o fator mais significativo, o tempo que o comando precisa para o processamento do bloco de programação, independentemente da ativação de recursos de alta velocidade, interpolações lineares ou circulares. Verificou-se também que quanto maior a quantidade de pontos para compor a trajetória do centro da ferramenta, melhor será a geometria obtida do furo. Sendo assim, as máquinas ferramenta CNC que estão em operação na indústria são capazes de realizar a furação não cilíndrica de forma muito próxima à furação cilíndrica quanto ao tempo de usinagem e ao sistema de fixação da ferramenta e da peça, sendo necessária uma programação sincronizada do eixo spindle presente em toda e qualquer máquina ferramenta<br>Abstract: The innovation is the key for the differential of the industry on the competitive market nowadays. To make different, better and cheaper always it is worth a lot to the product. By the other side, the resistance to changes makes part of the human behavior, in society, or in the industry. The main goal of this work is to study the feasibility to machining of non-cylindrical holes by a tool in rotation using CNC machine tools. That always has been offering obstacles to manufacturing industry by the difficulty of fabrication. Thus, the process presented on this work will machining a square hole with the same configuration of tools and systems for fixation of the parts, used for a cylindrical drilling, so common to industry. This intends to reduce the costs of fabrication and make easier to get non-cylindrical drilling using resources of the programmable equipment which are working at the shops. From a math model on, the machine is programmed to execute synchronized movements between the rotation and the displacements of the axis of the tool. Different programs were tested in different CNC machine tools, with different controllers, with and no resources for high speed, with different quantity of programmed points, with linear and circular interpolations. From the experiments, it was analyzed the configuration of the machines, the capacity for execution of the controller installed, the speed developed by machine at the operation and the geometry of the square holes. The experiments show that to machine a square hole, the controllers must be able to control a rotating axis itself, beyond to synchronize three axis. The critical to this kind of operation is the speed developed by the machine, being the most significant factor, the time the controller needs to process the block of programming, independently the activation of resources for high speed, linear or circular interpolations. It was verified than as larger the amount of points to compose the trajectory of the center of tool, better will be the geometry of the hole. Thus, the CNC machine tools in operation in the industry are able to machine the non-cylindrical drilling in a way very closely the cylindrical drilling as the time of machining and the fixing system of the tool and parts, requiring a programming that synchronizes the main spindle installed in any machine tool<br>Mestrado<br>Materiais e Processos de Fabricação<br>Mestre em Engenharia Mecânica
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!