Academic literature on the topic 'CO2 capture and conversion'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'CO2 capture and conversion.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "CO2 capture and conversion"

1

Sullivan, Ian, Andrey Goryachev, Ibadillah A. Digdaya, et al. "Coupling electrochemical CO2 conversion with CO2 capture." Nature Catalysis 4, no. 11 (2021): 952–58. http://dx.doi.org/10.1038/s41929-021-00699-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Tian, Sicong, Feng Yan, Zuotai Zhang, and Jianguo Jiang. "Calcium-looping reforming of methane realizes in situ CO2 utilization with improved energy efficiency." Science Advances 5, no. 4 (2019): eaav5077. http://dx.doi.org/10.1126/sciadv.aav5077.

Full text
Abstract:
Closing the anthropogenic carbon cycle is one important strategy to combat climate change, and requires the chemistry to effectively combine CO2 capture with its conversion. Here, we propose a novel in situ CO2 utilization concept, calcium-looping reforming of methane, to realize the capture and conversion of CO2 in one integrated chemical process. This process couples the calcium-looping CO2 capture and the CH4 dry reforming reactions in the CaO-Ni bifunctional sorbent-catalyst, where the CO2 captured by CaO is reduced in situ by CH4 to CO, a reaction catalyzed by catalyzed by the adjacent me
APA, Harvard, Vancouver, ISO, and other styles
3

ALEXE, Iolanda, Mihai CHIRAN, Constantin Ștefan SAVA, et al. "Utilization of captured CO2 for implementing CCUS in Romania." Geo-Eco-Marina No 24/2018 (December 31, 2018): 133–38. https://doi.org/10.5281/zenodo.2549968.

Full text
Abstract:
The promotion of the Carbon Capture and Utilisation (CCU) technology relies on the priorities of the European Commission that includes the Circular Economy as a major challenge (European Commission, 2018).To this end, under the EU Research and Innovation Programme (Horizon 2020), the Commission will demonstrate the opportunities for moving towards a circular economy at European level with large-scale innovation projects. Romania is part of this program, and is trying to implement CCU technologies in near future. While Carbon Capture and Storage (CCS) technologies are well known,
APA, Harvard, Vancouver, ISO, and other styles
4

Sullivan, Ian, Andrey Goryachev, Ibadillah A. Digdaya, et al. "Author Correction: Coupling electrochemical CO2 conversion with CO2 capture." Nature Catalysis 5, no. 1 (2022): 75–76. http://dx.doi.org/10.1038/s41929-022-00734-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Zhang, Kexin, Dongfang Guo, Xiaolong Wang, et al. "Sustainable CO2 management through integrated CO2 capture and conversion." Journal of CO2 Utilization 72 (June 2023): 102493. http://dx.doi.org/10.1016/j.jcou.2023.102493.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Maniam, Kranthi Kumar, Madhuri Maniam, Luis A. Diaz, et al. "Progress in Electrodeposited Copper Catalysts for CO2 Conversion to Valuable Products." Processes 11, no. 4 (2023): 1148. http://dx.doi.org/10.3390/pr11041148.

Full text
Abstract:
Carbon capture, utilisation and storage (CCUS) is a key area of research for CO2 abatement. To that end, CO2 capture, transport and storage has accrued several decades of development. However, for successful implementation of CCUS, utilisation or conversion of CO2 to valuable products is important. Electrochemical conversion of the captured CO2 to desired products provides one such route. This technique requires a cathode “electrocatalyst” that could favour the desired product selectivity. Copper (Cu) is unique, the only metal “electrocatalyst” demonstrated to produce C2 products including eth
APA, Harvard, Vancouver, ISO, and other styles
7

L. de Miranda, Jussara, Luiza C. de Moura, Heitor Breno P. Ferreira, and Tatiana Pereira de Abreu. "The Anthropocene and CO2: Processes of Capture and Conversion." Revista Virtual de Química 10, no. 6 (2018): 1915–46. http://dx.doi.org/10.21577/1984-6835.20180123.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ning, Huanghao, Yongdan Li, and Cuijuan Zhang. "Recent Progress in the Integration of CO2 Capture and Utilization." Molecules 28, no. 11 (2023): 4500. http://dx.doi.org/10.3390/molecules28114500.

Full text
Abstract:
CO2 emission is deemed to be mainly responsible for global warming. To reduce CO2 emissions into the atmosphere and to use it as a carbon source, CO2 capture and its conversion into valuable chemicals is greatly desirable. To reduce the transportation cost, the integration of the capture and utilization processes is a feasible option. Here, the recent progress in the integration of CO2 capture and conversion is reviewed. The absorption, adsorption, and electrochemical separation capture processes integrated with several utilization processes, such as CO2 hydrogenation, reverse water–gas shift
APA, Harvard, Vancouver, ISO, and other styles
9

Hu, Yong, Qian Xu, Yao Sheng, et al. "The Effect of Alkali Metals (Li, Na, and K) on Ni/CaO Dual-Functional Materials for Integrated CO2 Capture and Hydrogenation." Materials 16, no. 15 (2023): 5430. http://dx.doi.org/10.3390/ma16155430.

Full text
Abstract:
Ni/CaO, a low-cost dual-functional material (DFM), has been widely studied for integrated CO2 capture and hydrogenation. The core of this dual-functional material should possess both good CO2 capture–conversion performance and structural stability. Here, we synthesized Ni/CaO DFMs modified with alkali metals (Na, K, and Li) through a combination of precipitation and combustion methods. It was found that Na-modified Ni/CaO (Na-Ni/CaO) DFM offered stable CO2 capture–conversion activity over 20 cycles, with a high CO2 capture capacity of 10.8 mmol/g and a high CO2 conversion rate of 60.5% at the
APA, Harvard, Vancouver, ISO, and other styles
10

Li, Huaping. "Continuous Direct Air Capture and Electrochemical Conversion of CO2 and H2O into Ethylene and Oxygen in Solid Electrolyte Reactor." ECS Meeting Abstracts MA2024-01, no. 7 (2024): 776. http://dx.doi.org/10.1149/ma2024-017776mtgabs.

Full text
Abstract:
Chemelectronics LLC has developed economical approach to use solar energy to convert CO2 directly captured from air using carbon dioxide capture conductive sorbent materials coated on carbon foam electrodes into chemical products (ethylene) and oxygen from nick foam electrodes separated with solid polyelectrolytes. We take advantage of commercial off-the-shelf solar panels as electricity to supply the electrochemical reduction of CO2 directly captured from air into chemical products with zero carbon emission. Based on the life cycle analysis, there is no CO2 emission from CO2 capture and conve
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "CO2 capture and conversion"

1

Brandvoll, Øyvind. "Chemical looping combustion : fuel conversion with inherent CO2 capture." Doctoral thesis, Norwegian University of Science and Technology, Department of Energy and Process Engineering, 2005. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-1203.

Full text
Abstract:
<p>Chemical looping combustion (CLC) is a new concept for fuel energy conversion with CO<sub>2</sub> capture. In CLC, fuel combustion is split into seperate reduction and oxidation processes, in which a solid carrier is reduced and oxidized, respectively. The carrier is continuously recirculated between the two vessels, and hence direct contact between air and suel is avoided. As a result, a stoichiometric amount of oxygen is transferred to the fuel by a regenerable solid intermediate, and CLC is thus a varient of oxy-fuel combustion. In principle, pure CO<sub>2</sub> can be obtained from the
APA, Harvard, Vancouver, ISO, and other styles
2

Kim, Hyung Rae. "Chemical Looping Process for Direct Conversion of Solid Fuels In-Situ CO2 Capture." The Ohio State University, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=osu1250605561.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

MARCHESE, MARCO. "Conversion of industrial CO2 to value-added fuels and chemicals via Fischer-Tropsch upgrade." Doctoral thesis, Politecnico di Torino, 2021. http://hdl.handle.net/11583/2914540.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ramkumar, Shwetha. "CALCIUM LOOPING PROCESSES FOR CARBON CAPTURE." The Ohio State University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=osu1274882053.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Shokouhfar, Nasrin. "Synthèse et caractérisation de nouvelles armatures métal-organique à base de zirconium à partir de ligands carboxylates et étude de leur application dans l'adsorption et la détection des pollutions de l'eau et la capture et la conversion du CO2 et N2." Electronic Thesis or Diss., Université de Lille (2022-....), 2023. http://www.theses.fr/2023ULILN058.

Full text
Abstract:
Cette thèse porte sur la synthèse et la caractérisation de cadres métallo-organiques (MOF) à base de Zr et leurs applications dans le traitement de l'eau et la production de carburant solaire. Les MOF sont des matériaux poreux composés d'ions métalliques et d'éléments de liaison organiques qui présentent des structures et des fonctionnalités ajustables. Ces propriétés les rendent aptes pour diverses applications, telles que le stockage de gaz, la catalyse, la détection, l'administration de médicaments, etc.Le traitement de l'eau consiste à éliminer les contaminants de l'eau afin de la rendre p
APA, Harvard, Vancouver, ISO, and other styles
6

Daza, Yolanda Andreina. "Closing a Synthetic Carbon Cycle: Carbon Dioxide Conversion to Carbon Monoxide for Liquid Fuels Synthesis." Scholar Commons, 2016. http://scholarcommons.usf.edu/etd/6079.

Full text
Abstract:
CO2 global emissions exceed 30 Giga tonnes (Gt) per year, and the high atmospheric concentrations are detrimental to the environment. In spite of efforts to decrease emissions by sequestration (carbon capture and storage) and repurposing (use in fine chemicals synthesis and oil extraction), more than 98% of CO2 generated is released to the atmosphere. With emissions expected to increase, transforming CO2 to chemicals of high demand could be an alternative to decrease its atmospheric concentration. Transportation fuels represent 26% of the global energy consumption, making it an ideal end produ
APA, Harvard, Vancouver, ISO, and other styles
7

Trompelt, Michael. "Untersuchung von Möglichkeiten zur Wirkungsgradsteigerung von braunkohlegefeuerten IGCC-Kraftwerken mit CO2-Abtrennung." Doctoral thesis, Technische Universitaet Bergakademie Freiberg Universitaetsbibliothek "Georgius Agricola", 2015. http://nbn-resolving.de/urn:nbn:de:bsz:105-qucosa-158214.

Full text
Abstract:
Mit der Arbeit werden braunkohlegefeuerte IGCC-CCS-Kraftwerke gesamtheitlich beschrieben, deren Potenziale erarbeitet und mit ASPEN Plus™ sowie EBSILON® Professional simulativ abgebildet. Es kann gezeigt werden, dass ausgehend von Basiskonzepten braunkohlegefeuerter IGCC-CCS-Kraftwerke mit verschiedenen Potenzialen zum gegenwärtigen Stand der Technik sowie dem im Jahr 2025 Wirkungsgradsteigerungen sowie prozesstechnische Vereinfachungen möglich sind. Als Potenziale werden dabei verringerte Braunkohletrocknung, konservativere Annahmen der technologischen Auslegung als auch Modifizierungen der C
APA, Harvard, Vancouver, ISO, and other styles
8

Danaci, Simge. "Optimisation et intégration de catalyseurs structurés en réacteurs structurés pour la conversion de CO₂ en méthane." Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAI041/document.

Full text
Abstract:
Dans cette étude de doctorat, la technique de dépôt tridimensionnel de fibres (3DFD) a été appliquée pour développer et fabriquer des structures de support catalytique multi-canaux avancées. En utilisant cette technique, le matériau, la porosité, la forme et la taille des canaux et l'épaisseur des fibres peuvent être contrôlées. L'objectif de cette recherche est d'étudier les performances des supports structurés 3D conçus pour la méthanation du CO2 en termes d'activité, de sélectivité de stabilité et d’étudier l'impact des propriétés spécifiques introduites dans la conception structurale des s
APA, Harvard, Vancouver, ISO, and other styles
9

Beliaeva, Kristina. "Captage et conversion électrochimique du CO2 dans des liquides ioniques et des solvants eutectiques profonds avec des catalyseurs à base de Pd." Electronic Thesis or Diss., Université Grenoble Alpes, 2023. http://www.theses.fr/2023GRALI094.

Full text
Abstract:
Le captage et la réduction électrochimique du CO2 (CCU) est une solution pour décarboniser le secteur industriel. Cette technologie valorise la source de carbone peu chère en molécules carbonées à forte valeur ajoutée. Des nombreuses méthodes de valorisation du CO2 existent pour limiter la libération de ce gaz à effet de serre dans l’atmosphère. Pendant cette thèse, nous proposons le captage du CO2 complété par la conversion électrochimique en différentes molécules carbonées dans une cellule électrochimique. L’électroconversion de dioxyde de carbone est une méthode prometteuse grâce à des cond
APA, Harvard, Vancouver, ISO, and other styles
10

Zeng, Liang. "Multiscale Study of Chemical Looping Technology and Its Applications for Low Carbon Energy Conversions." The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1354722135.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "CO2 capture and conversion"

1

Li, Lan, Winnie Wong-Ng, Kevin Huang, and Lawrence P. Cook, eds. Materials and Processes for CO2 Capture, Conversion, and Sequestration. John Wiley & Sons, Inc., 2018. http://dx.doi.org/10.1002/9781119231059.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Nakao, Shin-ichi, Katsunori Yogo, Kazuya Goto, Teruhiko Kai, and Hidetaka Yamada. Advanced CO2 Capture Technologies. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-18858-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Liu, Helei, Raphael Idem, and Paitoon Tontiwachwuthikul. Post-combustion CO2 Capture Technology. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-00922-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Commission, European, ed. CO2 capture and storage projects. Office for Official Publications of the European Communites, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Treviño, Martha Alejandra Arellano. A study of catalytic metals and alkaline metal oxides leading to the development of a stable Ru-doped Ni Dual Function Material for CO2 capture from flue gas and in-situ catalytic conversion to methane. [publisher not identified], 2020.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Madeddu, Claudio, Massimiliano Errico, and Roberto Baratti. CO2 Capture by Reactive Absorption-Stripping. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-04579-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Li, Zhaohao, Jinjin Yang, Hongming Fu, and Haiping Chen. Hydrophobic Ceramic Membranes for CO2 Capture. Springer Nature Switzerland, 2024. https://doi.org/10.1007/978-3-031-77678-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Papadopoulos, Athanasios I., and Panos Seferlis, eds. Process Systems and Materials for CO2 Capture. John Wiley & Sons, Ltd, 2017. http://dx.doi.org/10.1002/9781119106418.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Samadi, Jaleh, and Emmanuel Garbolino. Future of CO2 Capture, Transport and Storage Projects. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-74850-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Zhang, Liwei, ed. Corrosion in CO2 Capture, Transportation, Geological Utilization and Storage. Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-2392-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "CO2 capture and conversion"

1

Bredesen, Rune, and Thijs A. Peters. "Membranes in Energy Systems with CO2 Capture." In Membranes for Energy Conversion. Wiley-VCH Verlag GmbH & Co. KGaA, 2008. http://dx.doi.org/10.1002/9783527622146.ch7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Shah, Yatish T. "Plasma-Activated Catalysis for CO2 Conversion." In CO2 Capture, Utilization, and Sequestration Strategies. CRC Press, 2021. http://dx.doi.org/10.1201/9781003229575-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Shah, Yatish T. "Biological Conversion of Carbon Dioxide." In CO2 Capture, Utilization, and Sequestration Strategies. CRC Press, 2021. http://dx.doi.org/10.1201/9781003229575-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Duan, Lunbo, and Lin Li. "OCAC for Fuel Conversion Without CO2 Capture." In Oxygen-Carrier-Aided Combustion Technology for Solid-Fuel Conversion in Fluidized Bed. Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-9127-1_3.

Full text
Abstract:
AbstractAs a new concept, oxygen carrier aided combustion (OCAC) technology proposed in 2013 by Chalmers University of Technology’s group, can alleviate the problem of uneven distribution of oxygen in the reactors. In the past 10 years,various research institutions, including Chalmers University of Technology, University of Cambridge, Tsinghua University, Friedrich-Alexander University and University of Nottingham, have conducted a series of studies on OCAC technology. It is worth mentioning that Chalmers University of Technology has complied with most of these studies from laboratory to indus
APA, Harvard, Vancouver, ISO, and other styles
5

Sharma, Tanvi, Abhishek Sharma, Swati Sharma, Anand Giri, Ashok Kumar, and Deepak Pant. "Recent Developments in CO2-Capture and Conversion Technologies." In Chemo-Biological Systems for CO2 Utilization. CRC Press, 2020. http://dx.doi.org/10.1201/9780429317187-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Shah, Yatish T. "Carbon Dioxide Conversion Using Solar Thermal and Photo Catalytic Processes." In CO2 Capture, Utilization, and Sequestration Strategies. CRC Press, 2021. http://dx.doi.org/10.1201/9781003229575-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zhang, Peng, Jingjing Tong, and Kevin Huang. "Electrochemical CO2Capture and Conversion." In Materials and Processes for CO2 Capture, Conversion, and Sequestration. John Wiley & Sons, Inc., 2018. http://dx.doi.org/10.1002/9781119231059.ch5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Yang, Zhen-Zhen, Qing-Wen Song, and Liang-Nian He. "CO2 Capture, Activation, and Subsequent Conversion with PEG." In SpringerBriefs in Molecular Science. Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-31268-7_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Shah, Yatish T. "CO2 Conversion to Fuels and Chemicals by Thermal and Electro-Catalysis." In CO2 Capture, Utilization, and Sequestration Strategies. CRC Press, 2021. http://dx.doi.org/10.1201/9781003229575-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Asgari, Mehrdad, and Wendy L. Queen. "Carbon Capture in Metal-Organic Frameworks." In Materials and Processes for CO2 Capture, Conversion, and Sequestration. John Wiley & Sons, Inc., 2018. http://dx.doi.org/10.1002/9781119231059.ch1.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "CO2 capture and conversion"

1

Kim, Donghoi, Zhongxuan Liu, Rahul Anantharaman, Thijs A. Peters, and Truls Gundersen. "Optimized integration strategies for the PMR-based H2 production with CO2 capture process." In The 35th European Symposium on Computer Aided Process Engineering. PSE Press, 2025. https://doi.org/10.69997/sct.104059.

Full text
Abstract:
This work develops process options using a novel protonic membrane reformer (PMR) and liquefaction-based CO2 capture process for low-carbon hydrogen production from natural gas. Several hybrid concepts of the PMR and liquefaction process are suggested based on the strategies to handle the residual gas from the reformer. The process intensification and optimization results indicate that the hybrid system with a water-gas-shift reactor and off-gas recycling guarantees high H2 and CO2 recovery rates for the PMR operating at relatively low H2 recovery. The hybrid concept also has 74% energy conver
APA, Harvard, Vancouver, ISO, and other styles
2

Dolat, Meshkat, Andrew D. Wright, Mohammadamin Zarei, Melis S. Duyar, and Michael Short. "Kinetic Modelling and Optimisation of Co2 Capture and Utilisation to Methane on Dual Function Material." In The 35th European Symposium on Computer Aided Process Engineering. PSE Press, 2025. https://doi.org/10.69997/sct.187825.

Full text
Abstract:
Dual function materials (DFMs) integrate CO2 capture and conversion, offering a streamlined approach to Power-to-Gas (PtG) processes. This study develops a cyclic steady-state model for the DFM-based methanation of CO2 using the finite difference method. The model captures the adsorption, purge, and methanation stages and incorporates a semi-implicit numerical scheme for stability and accuracy. Bayesian optimisation is used to explore operational and design parameters to maximise methane productivity, CO2 conversion, and product purity. Multi-objective optimisation reveals key trade-offs among
APA, Harvard, Vancouver, ISO, and other styles
3

Soto-Ca��n, Andr�s F., Rodinson R. Arrieta-Per�z, Camilo Rengifo, Martha Cobo, and Manuel Figueredo. "Numerical Modelling of Carbon Dioxide Adsorption in Dual Function Materials: An CFD approach." In The 35th European Symposium on Computer Aided Process Engineering. PSE Press, 2025. https://doi.org/10.69997/sct.110312.

Full text
Abstract:
Integrated Carbon Capture and Conversion (ICCC) technologies offer an efficient alternative to conventional Carbon Capture, Utilization, and Storage (CCUS) methods by simultaneously capturing and converting CO2 into value-added chemicals. Dual-function materials (DFMs) are particularly promising due to their capability to integrate adsorption and catalysis in a single step, thereby reducing both energy consumption and associated costs. This study models the dynamic behavior of CO2 adsorption within a laboratory-scale packed-bed reactor employing DFMs. The mathematical model incorporates moment
APA, Harvard, Vancouver, ISO, and other styles
4

Saeed, Haris, Aidong Yang, and Wei Huang. "A Stochastic Techno-Economic Assessment of Emerging Artificial Photosynthetic Bio-Electrochemical Systems for CO2 Conversion." In The 35th European Symposium on Computer Aided Process Engineering. PSE Press, 2025. https://doi.org/10.69997/sct.186579.

Full text
Abstract:
Artificial Photosynthetic Bio-Electrochemical Systems (AP-BES) offer a promising approach for converting CO2 to valuable bioproducts, addressing carbon mitigation and sustainable production. This study employs a stochastic techno-economic assessment (TEA) to estimate the viability of rhodopsin driven AP-BES, from carbon capture to product purification. Unlike traditional deterministic TEAs, this approach uses Monte Carlo simulations to model uncertainties in key technoeconomic parameters, including energy consumption, CO2 conversion efficiency, and bioproduct market prices. The analysis genera
APA, Harvard, Vancouver, ISO, and other styles
5

Fl�rez-Orrego, Daniel, Dareen Dardor, Meire Ellen Ribeiro Domingos, Reginald Germanier, and Fran�ois Mar�chal. "Integration of renewable energy and reversible solid oxide cells to decarbonize secondary aluminium production and urban systems." In The 35th European Symposium on Computer Aided Process Engineering. PSE Press, 2025. https://doi.org/10.69997/sct.188682.

Full text
Abstract:
This study explores an energy transition strategy that leverages reversible solid oxide cells (rSOC), power-to-gas (PtG) conversion, and CO2 management to enhance the efficiency and sustainability of secondary aluminum production. A comparative analysis between conventional and integrated energy scenarios highlights the benefits of multi-technology integration. The results indicate that the integrated system increases total energy demand by 27% due to additional energy conversion steps, but eliminates natural gas consumption, reducing dependency on fossil fuels. Additionally, net CO2 emissions
APA, Harvard, Vancouver, ISO, and other styles
6

Spatolisano, Elvira, Giorgia De Guido, Laura A. Pellegrini, et al. "Sodium bicarbonate production from CO2 captured in Waste-to-Energy plants: an Italian case-study." In The 35th European Symposium on Computer Aided Process Engineering. PSE Press, 2025. https://doi.org/10.69997/sct.153274.

Full text
Abstract:
As anthropogenic CO2 emissions continue to drive global warming, innovative approaches to repurpose CO2 into valuable products emerge as pivotal solutions to mitigate its environmental impact. CO2 utilization encompasses a range of technologies, including its conversion into fuels, chemicals, and materials, leveraging CO2 as a resource rather than treating it solely as a waste. This shift not only reduces greenhouse gas emissions but also supports the circular economy by integrating industrial processes with carbon capture and storage technologies. Specifically, in the Waste-to-Energy (WtE) co
APA, Harvard, Vancouver, ISO, and other styles
7

Geissler, Caleb H., and Christos T. Maravelias. "Biofuels with Carbon Capture and Storage in the United States Transportation Sector." In Foundations of Computer-Aided Process Design. PSE Press, 2024. http://dx.doi.org/10.69997/sct.167890.

Full text
Abstract:
There is a need to drastically reduce greenhouse gas emissions. While significant progress has been made in electrifying transport, heavy duty transportation and aviation are not likely to be capable of electrification in the near term, spurring significant research into biofuels. When coupled with carbon capture and storage, biofuels can achieve net-negative greenhouse gas emissions via many different conversion technologies such as fermentation, pyrolysis, or gasification to produce ethanol, gasoline, diesel, or jet fuel. However, each pathway has a different efficiency, capital and operatin
APA, Harvard, Vancouver, ISO, and other styles
8

Dasgupta, Nabankur, and Tuan HO. "CO2 capture and conversion in clay nanoconfinements." In Proposed for presentation at the AIChE conference held November 13-17, 2022 in Phoenix, AZ. US DOE, 2022. http://dx.doi.org/10.2172/2006052.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gutierrez-Sanchez, Oriol, Bert De Mot, Deepak Pant, Tom Breugelmans, and Metin Bulut. "Direct Air Capture and Electrochemical Conversion of CO2." In Materials for Sustainable Development Conference (MAT-SUS). FUNDACIO DE LA COMUNITAT VALENCIANA SCITO, 2022. http://dx.doi.org/10.29363/nanoge.nfm.2022.115.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Wang, Wei-Ning. "Facile Development of Nanostructured Photocatalysts for CO2 Capture and Conversion." In Nano-Micro Conference 2017. Nature Research Society, 2017. http://dx.doi.org/10.11605/cp.nmc2017.01047.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "CO2 capture and conversion"

1

Tsouris, Costas, and Radu Custelcean. Integrated Process for Direct Air Capture of CO2 and Electrochemical Conversion to Ethanol. Office of Scientific and Technical Information (OSTI), 2024. http://dx.doi.org/10.2172/2333761.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dagle, Robert, Jotheeswari Kothandaraman, and David Heldebrant. Integrated Capture and Conversion of CO2 to Methanol (ICCCM) Process Technology - CRADA 449 (Final Report). Office of Scientific and Technical Information (OSTI), 2022. http://dx.doi.org/10.2172/1916459.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Dagle, Robert. Simultaneous Capture and Conversion of CO2 to Methanol via a Switchable Ionic Liquid and Low-Temperature Metal Catalyst - CRADA 449. Office of Scientific and Technical Information (OSTI), 2021. http://dx.doi.org/10.2172/1827784.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ho, M. CO2 capture from boiler exhaust gas. Cooperative Research Centre for Greenhouse Gas Technologies, 2008. http://dx.doi.org/10.5341/rpt08-1024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gattiker, James. Direct Air Capture of CO2 (DAC). Office of Scientific and Technical Information (OSTI), 2021. http://dx.doi.org/10.2172/1782623.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hackett, Gregory, and Norma Kuehn. Pulverized Coal CO2 Capture Retrofit Database. Office of Scientific and Technical Information (OSTI), 2023. http://dx.doi.org/10.2172/1968297.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Helen Kerr. CO2 Capture Project: An Integrated, Collaborative Technology Development Project For CO2 Separation, Capture And Geologic Sequestration. Office of Scientific and Technical Information (OSTI), 2002. http://dx.doi.org/10.2172/890976.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Helen Kerr. CO2 Capture Project: An Integrated, Collaborative Technology Development Project For CO2 Separation, Capture And Geologic Sequestration. Office of Scientific and Technical Information (OSTI), 2002. http://dx.doi.org/10.2172/890979.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ho, W. S. Winston, and Yang Han. FE0026919: Novel CO2-Selective Membranes for CO2 Capture from <1% CO2 Sources. Office of Scientific and Technical Information (OSTI), 2019. http://dx.doi.org/10.2172/1574273.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gary T. Rochelle, Andrew Sexton, Jason Davis, et al. CO2 Capture by Absorption with Potassium Carbonate. Office of Scientific and Technical Information (OSTI), 2007. http://dx.doi.org/10.2172/907880.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!