Academic literature on the topic 'CO2 reduction catalysis'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'CO2 reduction catalysis.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "CO2 reduction catalysis"

1

Dagorne, Samuel. "Recent Developments on N-Heterocyclic Carbene Supported Zinc Complexes: Synthesis and Use in Catalysis." Synthesis 50, no. 18 (2018): 3662–70. http://dx.doi.org/10.1055/s-0037-1610088.

Full text
Abstract:
The present contribution reviews the synthesis, reactivity, and use in catalysis of NHC–Zn complexes reported since 2013. NHC-stabilized Zn(II) species typically display enhanced stability relative to common organozinc species (such as Zn dialkyls), a feature of interest for the mediation of various chemical processes and the stabilization of reactive Zn-based species. Their use in catalysis is essentially dominated by reduction reactions of various unsaturated small molecules (including CO2), thus primarily involving Zn–H and Zn–alkyl derivatives as catalysts. Simple NHC adducts of Zn(II) dih
APA, Harvard, Vancouver, ISO, and other styles
2

Tian, Jindan, Ru Han, Qiangsheng Guo, Zhe Zhao, and Na Sha. "Direct Conversion of CO2 into Hydrocarbon Solar Fuels by a Synergistic Photothermal Catalysis." Catalysts 12, no. 6 (2022): 612. http://dx.doi.org/10.3390/catal12060612.

Full text
Abstract:
Photothermal coupling catalysis technology has been widely studied in recent years and may be a promising method for CO2 reduction. Photothermal coupling catalysis can improve chemical reaction rates and realize the controllability of reaction pathways and products, even in a relatively moderate reaction condition. It has inestimable value in the current energy and global environmental crisis. This review describes the application of photothermal catalysis in CO2 reduction from different aspects. Firstly, the definition and advantages of photothermal catalysis are briefly described. Then, diff
APA, Harvard, Vancouver, ISO, and other styles
3

Srivastava, Sumit, Manvender S. Dagur, Afsar Ali, and Rajeev Gupta. "Trinuclear {Co2+–M3+–Co2+} complexes catalyze reduction of nitro compounds." Dalton Transactions 44, no. 40 (2015): 17453–61. http://dx.doi.org/10.1039/c5dt03442f.

Full text
Abstract:
Trinuclear {Co<sup>2+</sup>–Co<sup>3+</sup>–Co<sup>2+</sup>} and {Co<sup>2+</sup>–Fe<sup>3+</sup>–Co<sup>2+</sup>} complexes function as reusable heterogeneous catalysts for the selective reduction of assorted nitro compounds to their corresponding amines. The mechanistic investigations suggest the involvement of a Co(ii)–Co(i) cycle in the catalysis.
APA, Harvard, Vancouver, ISO, and other styles
4

Lisovski, Oleg, Sergei Piskunov, Dmitry Bocharov, et al. "CO2 and CH2 Adsorption on Copper-Decorated Graphene: Predictions from First Principle Calculations." Crystals 12, no. 2 (2022): 194. http://dx.doi.org/10.3390/cryst12020194.

Full text
Abstract:
Single-layer graphene decorated with monodisperse copper nanoparticles can support the size and mass-dependent catalysis of the selective electrochemical reduction of CO2 to ethylene (C2H4). In this study, various active adsorption sites of nanostructured Cu-decorated graphene have been calculated by using density functional theory to provide insight into its catalytic activity toward carbon dioxide electroreduction. Based on the results of our calculations, an enhanced adsorption of the CO2 molecule and CH2 counterpart placed atop of Cu-decorated graphene compared to adsorption at pristine Cu
APA, Harvard, Vancouver, ISO, and other styles
5

Petersen, Haley A., Tessa H. T. Myren, and Oana R. Luca. "Redox-Active Manganese Pincers for Electrocatalytic CO2 Reduction." Inorganics 8, no. 11 (2020): 62. http://dx.doi.org/10.3390/inorganics8110062.

Full text
Abstract:
The decrease of total amount of atmospheric CO2 is an important societal challenge in which CO2 reduction has an important role to play. Electrocatalytic CO2 reduction with homogeneous catalysts is based on highly tunable catalyst design and exploits an abundant C1 source to make valuable products such as fuels and fuel precursors. These methods can also take advantage of renewable electricity as a green reductant. Mn-based catalysts offer these benefits while incorporating a relatively cheap and abundant first-row transition metal. Historically, interest in this field started with Mn(bpy-R)(C
APA, Harvard, Vancouver, ISO, and other styles
6

Hahn, Christopher. "(Invited) Steering Electrocatalytic CO2 Reduction Reactivity Using Microenvironments." ECS Meeting Abstracts MA2022-02, no. 49 (2022): 1879. http://dx.doi.org/10.1149/ma2022-02491879mtgabs.

Full text
Abstract:
A key challenge in electrocatalysis is co-designing the catalyst and its microenvironment to work in concert to efficiently steer complex reaction networks. First, I will describe the development of a tandem catalysis strategy on Au/Cu electrocatalysts to control the potential energy landscape of the CO2 and CO reduction at length scales beyond the active site and achieve synergistic catalytic activity for alcohols superior to that of either Cu or Au. Next, I will provide examples of CO2 reduction on catalysts supported on gas diffusion electrodes to discuss how the intrinsic catalysis and mas
APA, Harvard, Vancouver, ISO, and other styles
7

Cao, Yanwei, Qiongyao Chen, Chaoren Shen, and Lin He. "Polyoxometalate-Based Catalysts for CO2 Conversion." Molecules 24, no. 11 (2019): 2069. http://dx.doi.org/10.3390/molecules24112069.

Full text
Abstract:
Polyoxometalates (POMs) are a diverse class of anionic metal-oxo clusters with intriguing chemical and physical properties. Owing to unrivaled versatility and structural variation, POMs have been extensively utilized for catalysis for a plethora of reactions. In this focused review, the applications of POMs as promising catalysts or co-catalysts for CO2 conversion, including CO2 photo/electro reduction and CO2 as a carbonyl source for the carbonylation process are summarized. A brief perspective on the potentiality in this field is proposed.
APA, Harvard, Vancouver, ISO, and other styles
8

Zhou, Yiying, Junxi Cai, Yuming Sun, et al. "Research on Cu-Site Modification of g-C3N4/CeO2-like Z-Scheme Heterojunction for Enhancing CO2 Reduction and Mechanism Insight." Catalysts 14, no. 8 (2024): 546. http://dx.doi.org/10.3390/catal14080546.

Full text
Abstract:
In this work, the successful synthesis of a Cu@g-C3N4/CeO2-like Z-scheme heterojunction through hydrothermal and photo-deposition methods represents high CO2 reduction activity with remarkable CO selectivity, as evidenced by the impressive CO yield of 33.8 μmol/g for Cu@g-C3N4/CeO2, which is over 10 times higher than that of g-C3N4 and CeO2 individually. The characterization and control experimental results indicate that the formation of heterojunctions and the introduction of Cu sites promote charge separation and the transfer of hot electrons, as well as the photothermal effect, which are th
APA, Harvard, Vancouver, ISO, and other styles
9

Xue, Sensen, Xingyou Liang, Qing Zhang, et al. "Density Functional Theory Study of CuAg Bimetal Electrocatalyst for CO2RR to Produce CH3OH." Catalysts 14, no. 1 (2023): 7. http://dx.doi.org/10.3390/catal14010007.

Full text
Abstract:
Converting superfluous CO2 into value-added chemicals is regarded as a practical approach for alleviating the global warming problem. Powered by renewable electricity, CO2 reduction reactions (CO2RR) have attracted intense interest owing to their favorable efficiency. Metal catalysts exhibit high catalytic efficiency for CO2 reduction. However, the reaction mechanisms have yet to be investigated. In this study, CO2RR to CH3OH catalyzed by CuAg bimetal is theoretically investigated. The configurations and stability of the catalysts and the reaction pathway are studied. The results unveil the me
APA, Harvard, Vancouver, ISO, and other styles
10

Hall, Anthony Shoji, Youngmin Yoon, Anna Wuttig, and Yogesh Surendranath. "Mesostructure-Induced Selectivity in CO2 Reduction Catalysis." Journal of the American Chemical Society 137, no. 47 (2015): 14834–37. http://dx.doi.org/10.1021/jacs.5b08259.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!