Academic literature on the topic 'Coagulation – Modèles mathématiques'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Coagulation – Modèles mathématiques.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Coagulation – Modèles mathématiques"

1

Bazer-Bachi, A., E. Puech-Coste, R. Ben Aim, and J. L. Probst. "Modélisation mathématique du taux de coagulant dans une station de traitement d'eau." Revue des sciences de l'eau 3, no. 4 (2005): 377–97. http://dx.doi.org/10.7202/705081ar.

Full text
Abstract:
Les auteurs, après une synthèse bibliographique sur la coagulation, présentent deux modèles mathématiques reliant la dose optimale d'un coagulant, le sulfate d'aluminium, à la qualité de l'eau brute. Un premier modèle applicable aux eaux dont la turbidité est inférieure à 20 NTU tient compte de quatre variables caractéristiques de l'eau brute qui sont : la turbidité, la résistivité, la température, la teneur en matières organiques. Le second modèle, utilisable pendant les périodes de crue, intègre un cinquième descripteur : la nature de la suspension minérale. Des essais effectués sur l'usine de Clairfont, qui alimente la rive gauche de Toulouse, montrent que ces modèles sont parfaitement adaptés pour automatiser l'injection du coagulant.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Coagulation – Modèles mathématiques"

1

Tine, Léon Matar. "Analyse mathématique et numérique de modèles de coagulation-fragmentation." Thesis, Lille 1, 2011. http://www.theses.fr/2011LIL10147/document.

Full text
Abstract:
Ce mémoire de thèse concerne l’analyse mathématique et numérique du comportement asymptotique de certains modèles de type coagulation-fragmentation intervenant en physique ou en biologie.Dans la première partie, on considère le système d’équations de Lifshitz-Slyozov qui modélise l’immersion d’une population de macro-particules en interaction avec un bain de monomères. Ce modèle développe en temps long un comportement dépendant d’une manière très particulière de l’état initial et ses spécificités techniques en font un véritable challenge pour la simulation numérique.On introduit un nouveau schéma numérique de type volumes finis basé sur une stratégie anti-dissipative ; ce schéma parvient à capturer les profils asymptotiques attendus par la théorie et dépasse en performances les méthodes utilisées jusqu’alors. L’investigation numérique est poursuivie en prenant en compte dans le modèle des phénomènes de coalescence entremacro-particules à travers l’opérateur de Smoluchowski. La question est de déterminer par l’expérimentation numérique comment ces phénomènes influencent le comportement asymptotique. On envisage aussi une extension du modèle classique de Lifshitz-Slyozov qui prend en compte des effets spatiaux via la diffusion des monomères. On établit l’existence et l’unicité des solutions du système couplé hyperbolique-parabolique correspondant. La seconde partie de ce mémoire aborde des modèles d’agrégation fragmentation issus de la biologie. On s’intéresse en effet à des équations décrivant les phénomènes de croissance et de division pour une population de cellules caractérisée par sa densité de répartition en taille. Le comportement asymptotique de cette densité de répartition est accessible à l’expérience et peut être établi théoriquement. L’enjeu biologique consiste, à partir de données mesurées de la densité cellulaire, à estimer le taux de division cellulaire qui, lui, n’est pas expérimentalement mesurable. Ainsi, retrouver ce taux de division cellulaire fait appel à l’étude d’un problème inverse que nous abordons théoriquement et numériquement par des techniques de régularisations par quasi-reversibilité et par filtrage.La troisième partie de ce travail de thèse est consacrée à des systèmes couplés décrivant des interactions fluide-particules, avec des termes de coagulation–fragmentation, de type Becker–Döring. On étudie les propriétés de stabilité du modèle et on présente des résultats d’asymptotiques correspondant à des régimes de forte friction<br>This thesis concerns the mathematical and numerical analysis of the asymptotic behavior of some coagulation-fragmentation type models arising in physics or in biology.In the first part we consider the Lifshitz-Slyozov system that models the dumping of a population of macro-particles in interaction with a bath of monomers. This model develops in long time a behavior depending in a very particular way on the initial data abd its technical specificities make a real challenge for the numerical simulation. We introduce a new numerical finite volume type scheme based on an anti-dissipative strategy; this scheme succeeds in capturing the asymptotic profiles waited by the theory and exceeds in performances the methods used before. The numerical investigation ispursued by taking into account in the model the phenomena of coalescence between macro-particles through the Smoluchowski operator. The question is to find by numerical experiment how these phenomena influence the asymptotic behavior. We also consider an extension of the classical Lifshitz-Slyozov model which takes into account the spatial effects via the diffusion of monomers. We establish the existence and the uniqueness of the solutions of the corresponding hyperbolic-parabolic coupled system.The second part of this thesis deals with approaches coagulation-fragmentation models stemming from biology. Indeed, we are interest in equations describing the phenomena of growth and division for a celles population caracterised by its size density repartition. The asymptotic behavior of this size density repartition is accessible to the experiment and can be established in theory. The biological stake consists, from measured data of the cellular density, to estimate the cellular division rate which is not experimentally measurable. So, to find this cellular division rate requires the study of an inverse problem which we approach numerically and theoretically by techniques of regularizations by quasi-reversibility and by filtering.This third part of this thesis work is devoted to coupled systems describing fluid-particles interactions with coagulation-fragmentation terms of Becker-Döring type. We study the stability properties of the model and we present some asymptotic results corresponding to the regime with strong friction force
APA, Harvard, Vancouver, ISO, and other styles
2

Martin, Emmanuel. "Etude et modélisation de la formation et de la croissance des aérosols organiques secondaires d'origine biogène." Université Louis Pasteur (Strasbourg) (1971-2008), 2001. http://www.theses.fr/2001STR13195.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Normand, Raoul. "Modèles déterministes et aléatoires d'agrégation limitée et phénomène de gélification." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2011. http://tel.archives-ouvertes.fr/tel-00631419.

Full text
Abstract:
Dans cette thèse, nous étudions des modèles d'agrégation limitée, qui modélisent la coalescence de particules ayant des "bras", c'est-à-dire un nombre fixé de liens potentiels. Une particule ne peut donc créer plus de liens que son nombre de bras. On s'intéresse en particulier à une variante de l'équation de Smoluchowski introduite par Jean Bertoin. Ce document comprend, outre l'introduction, trois chapitres. Le premier est dévolu à l'étude d'un modèle sexué de coagulation, où les particules ont des bras mâles et femelles et seuls des bras de sexes opposés peuvent se joindre. Ce modèle généralise et unifie ceux de Bertoin, dont on peut en particulier retrouver les résultats. Le second chapitre comprend un travail en collaboration avec Lorenzo Zambotti. On s'y intéresse à l'unicité des solutions d'équations de coagulation après gélification, en particulier l'équation de Smoluchowski avec noyau multiplicatif et l'équation d'agrégation limitée. En particulier, on donne des preuves rigoureuses de certaines heuristiques de la littérature physique, par exemple en calculant précisément le temps de gélification. Dans le cas d'agrégation limitée, on obtient aussi des formules particulièrement simples pour les concentrations limites. Pour expliquer celles-ci, on étudie dans le dernier chapitre un modèle microscopique pour l'équation de Smoluchowski d'agrégation limitée. Ceci est un travail commun avec Mathieu Merle. On parvient à décrire précisément l'état microscopique du système à tout temps et ainsi à retrouver les formules du second chapitre. Une caractéristique frappante de ce modèle est qu'il possède une propriété de criticalité auto-organisée.
APA, Harvard, Vancouver, ISO, and other styles
4

Tarhini, Ali. "Analyse numérique des méthodes quasi-Monte Carlo appliquées aux modèles d'agglomération." Chambéry, 2008. http://www.theses.fr/2008CHAMS015.

Full text
Abstract:
Les méthodes de Monte Carlo (MC) sont des méthodes statistiques basées sur l'utilisation répétée de nombres aléatoires. Les méthodes quasi-Monte Carlo (QMC) sont des versions déterministes des méthodes de Monte Carlo. Les suites aléatoires sont remplacées par des suites à discrépance faible, qui ont une meilleure répartition uniforme dans le cube unite s- dimensionnel. Nous utilisons une classe particulière de suites à discrépance faible : les suites-(t,s). Dans ce travail, nous developpons et analysons des méthodes particulaires Monte Carlo et quasi-Monte Carlo pour les phénomènes d'agglomeration. Nous nous intéressons en particulier à la simulation numérique de l'équation de coagulation discrète (équation de Smoluchowski), de l'équation de coagulation continue, de l'équation de coagulation- fragmentation continue et de l'équation générale de la dynamique (EGD) des aérosols. Pour toutes ces méthodes particulaires, on écrit l'équation vérifiée par la distribution de masse et on approche celle-ci par une somme de n mesures de Dirac ; les mesures sont pondérées dans le cas de la simulation de l'EGD. Le schema en temps est un schema d'Euler explicite. Pour la simulation de la coagulation et de la fragmentation, l'évolution des masses des particules est déterminée par des tirages de nombres aléatoires (méthode MC) ou par des quadratures quasi-Monte Carlo (méthode QMC). Pour assurer la convergence de la méthode QMC, on ordonne les particules par taille croissante à chaque pas de temps. Dans le cas de la résolution de l'EGD, on utilise une méthode à pas fractionnaire : la simulation de la coagulation se fait comme précédemment, les autres phénomènes (condensation. évaporation, déposition) sont pris en compte par une méthode particulaire déterministe de résolution d'une équation aux dérivées partielles hyperbolique. Nous démontrons la convergence du schema particulaire QMC de résolution numérique de l'équation de coagulation et de coagulation-fragmentation, quand le nombre n des particules tend vers l'infini. Tous les essais numériques montrent que les solutions calculées par les nouveaux algorithmes QMC convergent vers les solutions exactes et fournissent de meilleurs résultats que ceux obtenus par les méthodes de Monte Carlo correspondantes<br>Monte Carlo (MC) methods are probabilistic methods based on the use of random numbers in repeated experiments. Quasi-Monte Carlo (QMC) methods are deterministic versions of Monte Carlo methods. Random sequences are replaced by low discrepancy sequences. These sequences ha ve a better uniform repartition in the s-dimensional unit cube. We use a special class of low discrepany sequences called (t,s)-sequences. In this work, we develop and analyze Monte Carlo and quasi-Monte Carlo particle methods for agglomeration phenomena. We are interested, in particular, in the numerical simulation of the discrete coagulation equations (the Smoluchowski equation), the continuous coagulation equation, the continuous coagulation-fragmentation equation and the general dynamics equation (GDE) for aerosols. In all these particle methods, we write the equation verified by the mass distribution density and we approach this density by a sum of n Dirac measures ; these measures are weighted when simulating the GDE equation. We use an explicit Euler disretiza tion scheme in time. For the simulation of coagulation and coagulation-fragmentation, the numerical particles evolves by using random numbers (for MC simulations) or by quasi-Monte Carlo quadratures. To insure the convergence of the numerical scheme, we reorder the numerical particles by their increasing mass at each time step. In the case of the GDE equation, we use a fractional step iteration scheme : coagulation is simulated as previously, other phenomena (like condensation, evaporation and deposition) are integrated by using a deterministic particle method for solving hyperbolic partial differential equation. We prove the convergence of the QMC numerical scheme in the case of the coagulation equation and the coagulation-fragmentation equation, when the number n of numerical particles goes to infinity. All our numerical tests show that the numerical solutions calculated by QMC algorithms converges to the exact solutions and gives better results than those obtained by the corresponding Monte Carlo strategies
APA, Harvard, Vancouver, ISO, and other styles
5

Bouchnita, Anass. "Mathematical modelling of blood coagulation and thrombus formation under flow in normal and pathological conditions." Thesis, Lyon, 2017. http://www.theses.fr/2017LYSE1300/document.

Full text
Abstract:
Cette thèse est consacrée à la modélisation mathématique de la coagulation sanguine et de la formation de thrombus dans des conditions normales et pathologiques. La coagulation sanguine est un mécanisme défensif qui empêche la perte de sang suite à la rupture des tissus endothéliaux. C'est un processus complexe qui est règlementé par différents mécanismes mécaniques et biochimiques. La formation du caillot sanguin a lieu dans l'écoulement sanguin. Dans ce contexte, l'écoulement à faible taux de cisaillement stimule la croissance du caillot tandis que la circulation sanguine à fort taux de cisaillement la limite. Les désordres qui affectent le système de coagulation du sang peuvent provoquer différentes anomalies telles que la thrombose (coagulation exagérée) ou les saignements (insuffisance de coagulation). Dans la première partie de la thèse, nous présentons un modèle mathématique de coagulation sanguine. Le modèle capture la dynamique essentielle de la croissance du caillot dans le plasma et le flux sanguin quiescent. Ce modèle peut être réduit à un modèle qui consiste en une équation de génération de thrombine et qui donne approximativement les mêmes résultats. Nous avons utilisé des simulations numériques en plus de l'analyse mathématique pour montrer l'existence de différents régimes de coagulation sanguine. Nous spécifions les conditions pour ces régimes sur différents paramètres pathophysiologiques du modèle. Ensuite, nous quantifions les effets de divers mécanismes sur la croissance du caillot comme le flux sanguin et l'agrégation plaquettaire. La partie suivante de la thèse étudie certaines des anomalies du système de coagulation sanguine. Nous commençons par étudier le développement de la thrombose chez les patients présentant une carence en antihrombine ou l'une des maladies inflammatoires. Nous déterminons le seuil de l'antithrombine qui provoque la thrombose et nous quantifions l'effet des cytokines inflammatoires sur le processus de coagulation. Puis, nous étudions la compensation de la perte du sang après un saignement en utilisant un modèle multi-échelles qui décrit en particulier l'érythropoïèse et la production de l'hémoglobine. Ensuite, nous évaluons le risque de thrombose chez les patients atteints de cancer (le myélome multiple en particulier) et le VIH en combinant les résultats du modèle de coagulation sanguine avec les produits des modèles hybrides (discret-continues) multi-échelles des systèmes physiologiques correspondants. Finalement, quelques applications cliniques possibles de la modélisation de la coagulation sanguine sont présentées. En combinant le modèle de formation du caillot avec les modèles pharmacocinétiques pharmacodynamiques (PK-PD) des médicaments anticoagulants, nous quantifions l'action de ces traitements et nous prédisons leur effet sur des patients individuels<br>This thesis is devoted to the mathematical modelling of blood coagulation and clot formation under flow in normal and pathological conditions. Blood coagulation is a defensive mechanism that prevents the loss of blood upon the rupture of endothelial tissues. It is a complex process that is regulated by different mechanical and biochemical mechanisms. The formation of the blood clot takes place in blood flow. In this context, low-shear flow stimulates clot growth while high-shear blood circulation limits it. The disorders that affect the blood clotting system can provoke different abnormalities such thrombosis (exaggerated clotting) or bleeding (insufficient clotting). In the first part of the thesis, we introduce a mathematical model of blood coagulation. The model captures the essential dynamics of clot growth in quiescent plasma and blood flow. The model can be reduced to a one equation model of thrombin generation that gives approximately the same results. We used both numerical simulations and mathematical investigation to show the existence of different regimes of blood coagulation. We specify the conditions of these regimes on various pathophysiological parameters of the model. Then, we quantify the effects of various mechanisms on clot growth such as blood flow and platelet aggregation. The next part of the thesis studies some of the abnormalities of the blood clotting system. We begin by investigating the development of thrombosis in patients with antihrombin deficiency and inflammatory diseases. We determine the thrombosis threshold on antithrombin and quantify the effect of inflammatory cytokines on the coagulation process. Next, we study the recovery from blood loss following bleeding using a multiscale model which focuses on erythropoiesis and hemoglobin production. Then, we evaluate the risk of thrombosis in patients with cancer (multiple myeloma in particular) and HIV by combining the blood coagulation model results with the output of hybrid multiscale models of the corresponding physiological system. Finally, possible clinical applications of the blood coagulation modelling are provided. By combining clot formation model with pharmacokinetics-pharmacodynamics (PK-PD) models of anticoagulant drugs, we quantify the action of these treatments and predict their effect on individual patients
APA, Harvard, Vancouver, ISO, and other styles
6

Tosenberger, Alen. "La modélisation des écoulements sanguins et les applications à la coagulation du sang et l'athérosclérose." Thesis, Lyon 1, 2014. http://www.theses.fr/2014LYO10021.

Full text
Abstract:
La thèse est consacrée à la modélisation discrète et continue des écoulements sanguins et des phénomènes connexes tels que la coagulation du sang et l'athérosclérose. Ce travail comprend l'élaboration des modèles mathématiques et numériques de la coagulation du sang, des simulations numériques et l'analyse mathématique d'un modèle d'inflammation chronique au cours d'athérosclérose. Une partie importante de la thèse est liée à la programmation, la mise en œuvre et l'optimisation des codes numériques. La partie principale de la thèse concerne la modélisation de la coagulation du sang in vivo tenant compte des écoulements sanguins, les réactions biochimiques dans le plasma et l'agrégation de plaquettes. La nouveauté principale de ce travail est l'élaboration d'un modèle hybride (discret-continu) de la coagulation du sang et de la formation de caillot sanguin dans le flux. La partie théorique de la thèse est consacrée à l'analyse mathématique d'un modèle d'inflammation chronique liée à l'athérosclérose. Les simulations numériques réalisées dans le cadre de cette thèse impliquent l'élaboration des algorithmes numériques pour les modèles mathématiques et le d´développement des logiciels. Vu le fait que les simulations numériques ont été coûteuse en temps de calcul, des efforts considérables ont été consacrés à la parallélisation des logiciels et à leur optimisation<br>The thesis is devoted to discrete and continuous modelling of blood flows and related phenomena such as blood coagulation and atherosclerosis. It includes the development of mathematical and numerical models of blood coagulation, numerical simulations and the mathematical analysis of a model problem of chronic inflammation during atherosclerosis. The main part of the thesis concerns modelling of blood coagulation in vivo which takes into account blood flows, biochemical reactions in plasma and platelet aggregation. The main novelty of this work is the development of a hybrid (discrete-continuous) model of blood coagulation and clot formation in flow. The model is used to study several aspects of blood coagulation in flow : platelet aggregation and its interaction with coagulation pathways, influence of the flow speed on the clot development, a possible mechanism by which clot stops growing. The theoretical part of the thesis is devoted to the mathematical analysis of a model of chronic inflammation related to atherosclerosis. In this thesis we study a model problem which describes the propagation of a reaction-diffusion wave in the 2D case with non-linear boundary conditions. For that we use the Leray-Schauder method and a priori estimates of solutions in order to prove the existence of waves in the bistable case. Numerical simulations carried out in the framework of this thesis were based on the numerical implementation of the corresponding models and on the software development. Since the numerical simulations were computationally expensive, a substantial effort was directed to software parallelization and optimization
APA, Harvard, Vancouver, ISO, and other styles
7

Bagland, Véronique. "Etude mathématique de quelques modèles issus de la théorie cinétique." Phd thesis, Université Paul Sabatier - Toulouse III, 2005. http://tel.archives-ouvertes.fr/tel-00012082.

Full text
Abstract:
Dans cette thèse, on s'intéresse à différentes équations issues de la théorie cinétique. Tout d'abord, on considère une équation de Landau pour les particules de Fermi-Dirac. On montre l'existence d'une solution au problème de Cauchy associé et on détermine les états d'équilibre. Ensuite, dans une deuxième partie, on s'intéresse aux systèmes de moments pour l'équation de Boltzmann en relativité restreinte et on détermine les espaces de moments relativistes adéquats. Dans une troisième partie, on étudie les états stationnaires d'une équation de Kac avec thermostat dans le cas où la section efficace est supposée non-intégrable. Finalement, la quatrième partie est consacrée à l'étude d'une équation issue de la théorie de la coagulation, l'équation de Oort-Hulst-Safronov, qui est approchée par une suite d'équations discrètes.
APA, Harvard, Vancouver, ISO, and other styles
8

Broizat, Damien. "Existence, unicité, approximations de solutions d'équations cinétiques et hyperboliques." Phd thesis, Université Nice Sophia Antipolis, 2013. http://tel.archives-ouvertes.fr/tel-00916993.

Full text
Abstract:
Les travaux de cette thèse s'inscrivent dans le contexte des systèmes de particules. Nous considérons différents systèmes physiques, décrits de manière continue, et dont la dynamique est modélisée par des équations aux dérivées partielles décrivant l'évolution temporelle de certaines quantités macroscopiques ou microscopiques, selon l'échelle de description envisagée. Dans une première partie, nous nous intéressons à une équation de type coagulation-fragmentation cinétique. Nous obtenons un résultat d'existence globale en temps, dans le cadre des solutions renormalisées de DiPerna-Lions, pour toute donnée initiale vérifiant les estimations naturelles et possédant une norme L1 et une norme Lp (p > 1) finies. La deuxième partie traite de méthodes de moments. L'objectif de ces méthodes est d'approcher un modèle cinétique par un nombre fini d'équations portant sur des quantités dépendant uniquement de la variable d'espace, et la question est de savoir comment fermer le système obtenu pour obtenir une bonne approximation de la solution du modèle cinétique. Dans un cadre linéaire, nous obtenons une méthode de fermeture explicite conduisant à un résultat de convergence rapide. Enfin, dans une troisième partie, nous travaillons sur la modélisation du trafic routier avec prise en compte de la congestion à l'aide d'un système hyperbolique avec contraintes, issu de la dynamique des gaz sans pression. En modifiant convenablement ce système, nous parvenons à modéliser des phénomènes de trafic routier "multi-voies", comme l'accélération, et la création de zones de vide. Un résultat d'existence et de stabilité des solutions de ce modèle modifié est démontré.
APA, Harvard, Vancouver, ISO, and other styles
9

Chelle, Pierre. "Vers une définition patient-spécifique du taux cible de facteur anti-hémophilique à partir de la génération de thrombine : Apports des approches expérimentales et des modèles dynamiques de la cascade de la coagulation." Thesis, Lyon, 2017. http://www.theses.fr/2017LYSEM014/document.

Full text
Abstract:
L’hémophilie est une maladie génétique se traduisant par la déficience des facteurs VIII et IX de la coagulation et conduisant à une tendance hémorragique. L’intensité des traitements substitutifs en facteur VIII et IX est définie essentiellement sur le taux basal du facteur déficitaire et non pas sur la capacité propre à chaque patient à générer de la thrombine qui est l’enzyme clé dans la formation du caillot de fibrine. Le test de génération de thrombine pourrait être utilisé pour permettre une individualisation du traitement anti-hémophilique. En effet, le taux de facteur VIII ou IX nécessaire à la normalisation de la génération de thrombine est potentiellement variable d’un patient à l’autre pour une même sévérité d’hémophilie. On peut donc se demander quelle approche expérimentale permettrait de mettre en exergue le lien entre taux de facteur anti-hémophilique et la génération de thrombine. Est-il possible de modéliser mathématiquement la coagulation pour obtenir une relation, soit explicite, soit implicite, entre taux de facteurs et génération de thrombine ? Les modèles existants permettent-ils d'obtenir une telle relation ? Une vaste campagne expérimentale a donc été menée pour mettre en place une base de données qui a permis d’identifier les facteurs déterminants de la génération de thrombine et la relation entre génération de thrombine et taux de facteur anti-hémophilique, de définir leurs valeurs de références, ainsi que d’évaluer et de paramétrer de manière sujet-spécifique des modèles mathématiques de la coagulation<br>Haemophilia is a genetic disease corresponding to the deficiency of coagulation factor VIII or IX and leading to a bleeding tendency. The current substitutive treatment is defined essentially by the basal level of deficient factor and not the individual capacity to generate thrombin, a key enzyme of the clot formation. The thrombin generation assay could help in the individualisation of the anti-haemophilia treatment. Indeed, the factor VIII or IX level needed to normalise the thrombin generation vary potentially from one patient to another for a same degree of severity. We can wonder which experimental approach could emphasise the relation between level of anti-haemophilic factor and thrombin generation. Is it possible to mathematically model coagulation to obtain a relation, either explicit, or implicit, between factor level and thrombin generation? Could existing models provide this relation? An extensive experimental campaign was carried out to build a database that has been used to identify the determinant coagulation factors of thrombin generation and the individual relation between thrombin generation and anti-haemophilic factor level, to define their reference values, and also to evaluate and parametrise subject-specifically mathematical models of the coagulation cascade
APA, Harvard, Vancouver, ISO, and other styles
10

Janssens, Bart. "Numerical modeling and experimental investigation of fine particle coagulation and dispersion in dilute flows." Thesis, La Rochelle, 2014. http://www.theses.fr/2014LAROS014/document.

Full text
Abstract:
Le travail présenté concerne le développement d’un cadre d’applications pour le traitement d’écoulements dispersés, tenant compte de l’effet de la coagulation sur la distribution des tailles des particules. Nous explorons également quelques techniques de validation expérimentale. Les modèles sont valables pour un écoulement incompressible et isotherme, avec des particules qui ont un temps de relaxation faible en comparaison à celui du fluide. Pour la phase dispersée, une méthode eulérienne est utilisée, ce qui permet d’extrapoler la vitesse des particules de celle du fluide. La distribution des tailles est modélisée à l’aide du « Direct Quadrature Method of Moments ». Cette approche permet de résoudre des équations de transport pour les poids et les abscisses d’une approximation de la distribution à l’aide des fonctions Dirac delta. L’effet de la coagulation est pris en compte à l’aide d’un noyau de collisions qui utilise la vitesse instantanée du fluide. Toutes les équations de transport sont résolues à l’aide de la méthode des éléments finis. Pour le fluide, les stabilisations « Streamline Upwind » et « Pressure Stabilized Petrov-Galerkin » sont utilisées ensemble avec une stabilisation grad-div. Afin de limiter le temps de calcul pour une simulation directe, une formulation utilisant un traitement explicite des termes d’advection est proposée. Avec l’apparition de gradients élevés, les équations de transport pour les particules nécessitent une stabilisation supplémentaire. Tout le travail est disponible dans le projet de logiciel libre Coolfluid 3, en utilisant un langage spécifique permettant une implémentation directe pour des modèles en éléments finis. Le code qui en résulte ressemble à la forme variationnelle des équations utilisées. Le programme est générique en termes de dimensions spatiales et de type d’éléments. Une première validation utilise des résultats trouvés dans la littérature comme référence. La précision des méthodes est vérifiée à l’aide des vortices Taylor-Green. Pour l’écoulement et les concentrations des particules, une simulation directe d’un canal turbulent est effectuée. Le noyau de coagulation est vérifié à l’aide de particules de différentes tailles qui tombent à travers un vortex Burgers. Finalement, quelques techniques de validation expérimentale sont utilisées dans une cellule d’essai. La technique « Particle Image Velocimetry » est utilisée pour les vitesses du fluide, tandis que la distribution des tailles est mesurée à l’aide du « Phase Doppler Anemometry » et « Multiple Wavelength Light Extinction ». La technique d’extinction de lumière est capable de produire des distributions des tailles qui peuvent être comparées facilement avec les résultats numériques<br>The present work deals with the development of a framework for the modeling of dispersed flows, including the effect of coagulation on the particle size distribution. We also explore some techniques for experimental validation. Models are developed for incompressible, isothermal flow containing particles that have a small relaxation time compared to the fluid time scale. For the dispersed phase, an equilibrium Eulerian approach is used, extrapolating the particle velocity from the fluid velocity. The size distribution is modeled using the Direct Quadrature Method of Moments. In practice, this results in solving transport equations for the weights and abscissa of a Dirac delta approximation of the size distribution. To model the effect of coagulation, a collision kernel that makes use of the resolved instantaneous velocity is developed. All transport equations are solved using the Finite Element Method. For the fluid, the Streamline Upwind and Pressure Stabilized Petrov-Galerkin method are used, with additional grad-div stabilization. To decrease the solution time for DNS, a segregated formulation with an explicit advection term is proposed. The particle transport equations require cross-wind diffusion in addition to the streamline upwind stabilization when large gradients occur. All work is available in the open source Coolfluid 3 framework, using an Embedded Domain Specific Language we developed for the implementation of finite element models. The resulting code closely resembles the variational form of the equations and is generic in terms of element type and the number of spatial dimensions. A first validation uses literature results as reference. Correctness and accuracy of the methods are verified using the Taylor-Green vortex flow. For the fluid and particle concentration, direct numerical simulation of a turbulent channel flow is performed. The particle coagulation kernel is tested using particles of different sizes falling through a Burgers vortex. Finally, some experimental validation techniques are used on a small test chamber. Particle image velocimetry is used for the fluid motion, while the size distributions are measured using Phase Doppler Anemometry and Multiple Wavelength Light Extinction. The light extinction technique was found to produce size distributions that could provide valuable reference data for our particle model
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography