Journal articles on the topic 'Coalescence de binaire compacte'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Coalescence de binaire compacte.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Spera, Mario, Alessandro Alberto Trani, and Mattia Mencagli. "Compact Binary Coalescences: Astrophysical Processes and Lessons Learned." Galaxies 10, no. 4 (2022): 76. http://dx.doi.org/10.3390/galaxies10040076.
Full textGraziani, Luca. "Hunting for Dwarf Galaxies Hosting the Formation and Coalescence of Compact Binaries." Physics 1, no. 3 (2019): 412–29. http://dx.doi.org/10.3390/physics1030030.
Full textKalogera, V. "Close Binaries with Two Compact Objects." International Astronomical Union Colloquium 177 (2000): 579–84. http://dx.doi.org/10.1017/s0252921100060668.
Full textAbac, A. G., R. Abbott, I. Abouelfettouh, et al. "Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M ⊙ Compact Object and a Neutron Star." Astrophysical Journal Letters 970, no. 2 (2024): L34. http://dx.doi.org/10.3847/2041-8213/ad5beb.
Full textRasio, Frederic A., and Stuart L. Shapiro. "Hydrodynamic Evolution of Coalescing Compact Binaries." Symposium - International Astronomical Union 165 (1996): 17–28. http://dx.doi.org/10.1017/s0074180900055522.
Full textWEN, LINQING, and QI CHU. "EARLY DETECTION AND LOCALIZATION OF GRAVITATIONAL WAVES FROM COMPACT BINARY COALESCENCES." International Journal of Modern Physics D 22, no. 11 (2013): 1360011. http://dx.doi.org/10.1142/s0218271813600110.
Full textShapiro, Stuart L. "Gravitomagnetic Induction during the Coalescence of Compact Binaries." Physical Review Letters 77, no. 22 (1996): 4487–90. http://dx.doi.org/10.1103/physrevlett.77.4487.
Full textChen, Bing-Guang, Tong Liu, Yan-Qing Qi, et al. "Effects of Vertical Advection on Multimessenger Signatures of Black Hole Neutrino-dominated Accretion Flows in Compact Binary Coalescences." Astrophysical Journal 941, no. 2 (2022): 156. http://dx.doi.org/10.3847/1538-4357/aca406.
Full textYu, Shenghua, Youjun Lu, and C. Simon Jeffery. "Orbital evolution of neutron-star–white-dwarf binaries by Roche lobe overflow and gravitational wave radiation." Monthly Notices of the Royal Astronomical Society 503, no. 2 (2021): 2776–90. http://dx.doi.org/10.1093/mnras/stab626.
Full textMacLeod, Morgan, Kishalay De, and Abraham Loeb. "Dusty, Self-obscured Transients from Stellar Coalescence." Astrophysical Journal 937, no. 2 (2022): 96. http://dx.doi.org/10.3847/1538-4357/ac8c31.
Full textSpurzem, R., P. Berczik, I. Berentzen, D. Merritt, M. Preto, and P. Amaro-Seoane. "Formation and Evolution of Black Holes in Galactic Nuclei and Star Clusters." Proceedings of the International Astronomical Union 3, S246 (2007): 346–50. http://dx.doi.org/10.1017/s1743921308015901.
Full textChatterjee, Chayan, Manoj Kovalam, Linqing Wen, Damon Beveridge, Foivos Diakogiannis, and Kevin Vinsen. "Rapid Localization of Gravitational Wave Sources from Compact Binary Coalescences Using Deep Learning." Astrophysical Journal 959, no. 1 (2023): 42. http://dx.doi.org/10.3847/1538-4357/ad08b7.
Full textPiccinni, Ornella Juliana. "Status and Perspectives of Continuous Gravitational Wave Searches." Galaxies 10, no. 3 (2022): 72. http://dx.doi.org/10.3390/galaxies10030072.
Full textRomero-Shaw, I. M., C. Talbot, S. Biscoveanu, et al. "Bayesian inference for compact binary coalescences with bilby: validation and application to the first LIGO–Virgo gravitational-wave transient catalogue." Monthly Notices of the Royal Astronomical Society 499, no. 3 (2020): 3295–319. http://dx.doi.org/10.1093/mnras/staa2850.
Full textKomossa, S., and J. A. Zensus. "Compact object mergers: observations of supermassive binary black holes and stellar tidal disruption events." Proceedings of the International Astronomical Union 10, S312 (2014): 13–25. http://dx.doi.org/10.1017/s1743921315007395.
Full textTalbot, Colm, and Eric Thrane. "Flexible and Accurate Evaluation of Gravitational-wave Malmquist Bias with Machine Learning." Astrophysical Journal 927, no. 1 (2022): 76. http://dx.doi.org/10.3847/1538-4357/ac4bc0.
Full textO'Shaughnessy, R., V. Kalogera, and Krzysztof Belczynski. "BINARY COMPACT OBJECT COALESCENCE RATES: THE ROLE OF ELLIPTICAL GALAXIES." Astrophysical Journal 716, no. 1 (2010): 615–33. http://dx.doi.org/10.1088/0004-637x/716/1/615.
Full textUsman, Samantha A., Alexander H. Nitz, Ian W. Harry, et al. "The PyCBC search for gravitational waves from compact binary coalescence." Classical and Quantum Gravity 33, no. 21 (2016): 215004. http://dx.doi.org/10.1088/0264-9381/33/21/215004.
Full textTsutsui, T., A. Nishizawa, and S. Morisaki. "Early warning of precessing neutron-star black hole binary mergers with the near-future gravitational-wave detectors." Monthly Notices of the Royal Astronomical Society 512, no. 3 (2022): 3878–84. http://dx.doi.org/10.1093/mnras/stac715.
Full textRay, Anarya, Ignacio Magaña Hernandez, Siddharth Mohite, Jolien Creighton, and Shasvath Kapadia. "Nonparametric Inference of the Population of Compact Binaries from Gravitational-wave Observations Using Binned Gaussian Processes." Astrophysical Journal 957, no. 1 (2023): 37. http://dx.doi.org/10.3847/1538-4357/acf452.
Full textNi, Wei-Tou, Gang Wang, and An-Ming Wu. "Astrodynamical middle-frequency interferometric gravitational wave observatory AMIGO: Mission concept and orbit design." International Journal of Modern Physics D 29, no. 04 (2020): 1940007. http://dx.doi.org/10.1142/s0218271819400078.
Full textMozzon, S., L. K. Nuttall, A. Lundgren, T. Dent, S. Kumar, and A. H. Nitz. "Dynamic normalization for compact binary coalescence searches in non-stationary noise." Classical and Quantum Gravity 37, no. 21 (2020): 215014. http://dx.doi.org/10.1088/1361-6382/abac6c.
Full textCannon, Kipp, Romain Cariou, Adrian Chapman, et al. "TOWARD EARLY-WARNING DETECTION OF GRAVITATIONAL WAVES FROM COMPACT BINARY COALESCENCE." Astrophysical Journal 748, no. 2 (2012): 136. http://dx.doi.org/10.1088/0004-637x/748/2/136.
Full textSamanta, Debasri, and Rajib Kumar Dolai. "Stochastic Modeling of Compact Binary Coalescences for Gravitational Wave Analysis." International Astronomy and Astrophysics Research Journal 7, no. 1 (2025): 57–67. https://doi.org/10.9734/iaarj/2025/v7i1116.
Full textMencagli, Mattia, Natalia Nazarova, and Mario Spera. "ISTEDDAS: a new direct N-Body code to study merging compact-object binaries." Journal of Physics: Conference Series 2207, no. 1 (2022): 012051. http://dx.doi.org/10.1088/1742-6596/2207/1/012051.
Full textRastello, Sara, Michela Mapelli, Ugo N. Di Carlo, et al. "Dynamics of black hole–neutron star binaries in young star clusters." Monthly Notices of the Royal Astronomical Society 497, no. 2 (2020): 1563–70. http://dx.doi.org/10.1093/mnras/staa2018.
Full textHamilton, Chris, and Roman R. Rafikov. "Relativistic Phase Space Diffusion of Compact Object Binaries in Stellar Clusters and Hierarchical Triples." Astrophysical Journal 961, no. 2 (2024): 237. http://dx.doi.org/10.3847/1538-4357/ad0be2.
Full textAbbott, B. P., R. Abbott, T. D. Abbott, et al. "GW190425: Observation of a Compact Binary Coalescence with Total Mass ∼ 3.4 M ⊙." Astrophysical Journal 892, no. 1 (2020): L3. http://dx.doi.org/10.3847/2041-8213/ab75f5.
Full textKopparapu, Ravi Kumar, Chad Hanna, Vicky Kalogera, et al. "Host Galaxies Catalog Used in LIGO Searches for Compact Binary Coalescence Events." Astrophysical Journal 675, no. 2 (2008): 1459–67. http://dx.doi.org/10.1086/527348.
Full textNielsen, Alex B. "Compact binary coalescence parameter estimations for 2.5 post-Newtonian aligned spinning waveforms." Classical and Quantum Gravity 30, no. 7 (2013): 075023. http://dx.doi.org/10.1088/0264-9381/30/7/075023.
Full textDobie, Dougal, Tara Murphy, David L. Kaplan, et al. "Radio afterglows from compact binary coalescences: prospects for next-generation telescopes." Monthly Notices of the Royal Astronomical Society 505, no. 2 (2021): 2647–61. http://dx.doi.org/10.1093/mnras/stab1468.
Full textMandel, Ilya, Christopher P. L. Berry, Frank Ohme, Stephen Fairhurst, and Will M. Farr. "Parameter estimation on compact binary coalescences with abruptly terminating gravitational waveforms." Classical and Quantum Gravity 31, no. 15 (2014): 155005. http://dx.doi.org/10.1088/0264-9381/31/15/155005.
Full textSingh, Mukesh Kumar, Shasvath J. Kapadia, Md Arif Shaikh, Deep Chatterjee, and Parameswaran Ajith. "Improved early warning of compact binary mergers using higher modes of gravitational radiation: a population study." Monthly Notices of the Royal Astronomical Society 502, no. 2 (2021): 1612–22. http://dx.doi.org/10.1093/mnras/stab125.
Full textStachie, Cosmin, Tito Dal Canton, Nelson Christensen та ін. "Searches for Modulated γ-Ray Precursors to Compact Binary Mergers in Fermi-GBM Data". Astrophysical Journal 930, № 1 (2022): 45. http://dx.doi.org/10.3847/1538-4357/ac5f53.
Full textDupree, William, and Sukanta Bose. "Multi-detector null-stream-based $\chi^2$ statistic for compact binary coalescence searches." Classical and Quantum Gravity 36, no. 19 (2019): 195012. http://dx.doi.org/10.1088/1361-6382/ab30cf.
Full textVan Den Broeck, C. "Astrophysics, cosmology, and fundamental physics with compact binary coalescence and the Einstein Telescope." Journal of Physics: Conference Series 484 (March 5, 2014): 012008. http://dx.doi.org/10.1088/1742-6596/484/1/012008.
Full textBiwer, C. M., Collin D. Capano, Soumi De, et al. "PyCBC Inference: A Python-based Parameter Estimation Toolkit for Compact Binary Coalescence Signals." Publications of the Astronomical Society of the Pacific 131, no. 996 (2019): 024503. http://dx.doi.org/10.1088/1538-3873/aaef0b.
Full textRegimbau, Tania. "The Quest for the Astrophysical Gravitational-Wave Background with Terrestrial Detectors." Symmetry 14, no. 2 (2022): 270. http://dx.doi.org/10.3390/sym14020270.
Full textMandel, Ilya, and Richard O'Shaughnessy. "Compact binary coalescences in the band of ground-based gravitational-wave detectors." Classical and Quantum Gravity 27, no. 11 (2010): 114007. http://dx.doi.org/10.1088/0264-9381/27/11/114007.
Full textNitz, Alexander H., and Yi-Fan Wang. "Search for Gravitational Waves from the Coalescence of Subsolar Mass and Eccentric Compact Binaries." Astrophysical Journal 915, no. 1 (2021): 54. http://dx.doi.org/10.3847/1538-4357/ac01d9.
Full textNitz, Alexander H., Collin D. Capano, Sumit Kumar, et al. "3-OGC: Catalog of Gravitational Waves from Compact-binary Mergers." Astrophysical Journal 922, no. 1 (2021): 76. http://dx.doi.org/10.3847/1538-4357/ac1c03.
Full textMaurya, S. K., G. Mustafa, M. Govender та Ksh Newton Singh. "Exploring physical properties of minimally deformed strange star model and constraints on maximum mass limit in f(𝒬) gravity". Journal of Cosmology and Astroparticle Physics 2022, № 10 (2022): 003. http://dx.doi.org/10.1088/1475-7516/2022/10/003.
Full textLiu, Yuan, Zhihui Du, Shin Kee Chung, Shaun Hooper, David Blair, and Linqing Wen. "GPU-accelerated low-latency real-time searches for gravitational waves from compact binary coalescence." Classical and Quantum Gravity 29, no. 23 (2012): 235018. http://dx.doi.org/10.1088/0264-9381/29/23/235018.
Full textHu, Chin-Ping, Lupin Chun-Che Lin, Kuo-Chuan Pan, et al. "A Comprehensive Analysis of the Gravitational Wave Events with the Stacked Hilbert–Huang Transform: From Compact Binary Coalescence to Supernova." Astrophysical Journal 935, no. 2 (2022): 127. http://dx.doi.org/10.3847/1538-4357/ac8165.
Full textVedovato, G., E. Milotti, G. A. Prodi, et al. "Minimally-modeled search of higher multipole gravitational-wave radiation in compact binary coalescences." Classical and Quantum Gravity 39, no. 4 (2022): 045001. http://dx.doi.org/10.1088/1361-6382/ac45da.
Full textDietz, A. "Estimation of compact binary coalescense rates from short gamma-ray burst redshift measurements." Astronomy & Astrophysics 529 (April 11, 2011): A97. http://dx.doi.org/10.1051/0004-6361/201016166.
Full textKapadia, Shasvath J., Dimple, Dhruv Jain, Kuntal Misra, K. G. Arun, and Resmi Lekshmi. "Rates and Beaming Angles of Gamma-Ray Bursts Associated with Compact Binary Coalescences." Astrophysical Journal Letters 976, no. 1 (2024): L10. http://dx.doi.org/10.3847/2041-8213/ad8dc7.
Full textWin, Aung Naing, Yu-Ming Chu, Hasrat Hussain Shah, Syed Zaheer Abbas, and Munawar Shah. "Electromagnetic counterpart to gravitational waves from coalescence of binary black hole with magnetic monopole charge." International Journal of Modern Physics A 35, no. 31 (2020): 2050205. http://dx.doi.org/10.1142/s0217751x2050205x.
Full textMandel, Ilya, and Floor S. Broekgaarden. "Rates of compact object coalescences." Living Reviews in Relativity 25, no. 1 (2022). http://dx.doi.org/10.1007/s41114-021-00034-3.
Full textBonetti, Matteo, Albino Perego, Pedro R. Capelo, Massimo Dotti, and M. Coleman Miller. "r-Process Nucleosynthesis in the Early Universe Through Fast Mergers of Compact Binaries in Triple Systems." Publications of the Astronomical Society of Australia 35 (2018). http://dx.doi.org/10.1017/pasa.2018.11.
Full text