Academic literature on the topic 'Coalgebras, bialgebras, Hopf algebras'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Coalgebras, bialgebras, Hopf algebras.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Coalgebras, bialgebras, Hopf algebras"
Benson, David B. "Bialgebras: Some Foundations for Distributed and Concurrent Computation1." Fundamenta Informaticae 12, no. 4 (October 1, 1989): 427–86. http://dx.doi.org/10.3233/fi-1989-12402.
Full textAgore, A. L. "Limits of coalgebras, bialgebras and Hopf algebras." Proceedings of the American Mathematical Society 139, no. 03 (March 1, 2011): 855. http://dx.doi.org/10.1090/s0002-9939-2010-10542-7.
Full textKRÄHMER, ULRICH, and LUCIA ROTHERAY. "(WEAK) INCIDENCE BIALGEBRAS OF MONOIDAL CATEGORIES." Glasgow Mathematical Journal 63, no. 1 (March 16, 2020): 139–57. http://dx.doi.org/10.1017/s0017089520000075.
Full textMAKHLOUF, ABDENACER, and SERGEI SILVESTROV. "HOM-ALGEBRAS AND HOM-COALGEBRAS." Journal of Algebra and Its Applications 09, no. 04 (August 2010): 553–89. http://dx.doi.org/10.1142/s0219498810004117.
Full textJANSSEN, K., and J. VERCRUYSSE. "MULTIPLIER BI- AND HOPF ALGEBRAS." Journal of Algebra and Its Applications 09, no. 02 (April 2010): 275–303. http://dx.doi.org/10.1142/s0219498810003926.
Full textGálvez-Carrillo, Imma, Joachim Kock, and Andrew Tonks. "Decomposition Spaces and Restriction Species." International Mathematics Research Notices 2020, no. 21 (September 12, 2018): 7558–616. http://dx.doi.org/10.1093/imrn/rny089.
Full textFIGUEROA, HÉCTOR, and JOSÉ M. GRACIA-BONDÍA. "COMBINATORIAL HOPF ALGEBRAS IN QUANTUM FIELD THEORY I." Reviews in Mathematical Physics 17, no. 08 (September 2005): 881–976. http://dx.doi.org/10.1142/s0129055x05002467.
Full textCaenepeel, S., S. Dăscălescu, G. Militaru, and F. Panaite. "Coalgebra deformations of bialgebras by Harrison cocycles, copairings of Hopf algebras and double crosscoproducts." Bulletin of the Belgian Mathematical Society - Simon Stevin 4, no. 5 (1997): 647–71. http://dx.doi.org/10.36045/bbms/1105737769.
Full textMa, Tianshui, Linlin Liu, and Shaoxian Xu. "Twisted tensor biproduct monoidal Hom–Hopf algebras." Asian-European Journal of Mathematics 10, no. 01 (March 2017): 1750011. http://dx.doi.org/10.1142/s1793557117500115.
Full textLi, Jinqi. "Dual Quasi-Hopf Algebras and Antipodes." Algebra Colloquium 13, no. 01 (March 2006): 111–18. http://dx.doi.org/10.1142/s1005386706000137.
Full textDissertations / Theses on the topic "Coalgebras, bialgebras, Hopf algebras"
Ragozzine, Charles B. "On Hopf Algebras generated by coalgebras /." The Ohio State University, 2000. http://rave.ohiolink.edu/etdc/view?acc_num=osu1488192119262242.
Full textGrabowski, Jan E. "Inductive constructions for Lie bialgebras and Hopf algebras." Thesis, Queen Mary, University of London, 2006. http://qmro.qmul.ac.uk/xmlui/handle/123456789/1744.
Full textRivezzi, Andrea. "Lie bialgebras and Etingof-Kazhdan quantization." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/21784/.
Full textAbdou, Damdji Ahmed Zahari. "Etude et Classification des algèbres Hom-associatives." Thesis, Mulhouse, 2017. http://www.theses.fr/2017MULH0158/document.
Full textThe purpose of this thesis is to study the structure of Hom-associative algebras and provide classifications. Among the results obtained in this thesis, we provide 2-dimensional and 3-dimensional Hom-associative algebras and give a characterization of multiplicative simple Hom-associative algebras. Moreover we compute some invariants and discuss irreducible components of the corresponding algebraic varieties. The thesis is organized as follows. In the first chapter we give the basics about Hom-associative algebras and provide some new properties. Moreover, we discuss unital Hom-associative algebras. Chapter 2 deals with simple multiplicative Hom-associative algebras. We present one of the main results of this paper, that is a characterization of simple multiplicative Hom-associative algebras. Indeed, we show that they are all obtained by twistings of simple associative algebras. Chapter 3 is dedicated to describe algebraic varieties of Hom-associative algebras and provide classifications, up to isomorphism, of 2-dimensional and 3-dimensional Hom-associative algebras. In chapter 4, we compute their derivations and twisted derivations, whereas in chapter 5, we compute their Hom-Type Hochschild cohomology. In the last section of this chapter, we consider the geometric classification problem using one-parameter formel deformations, and describe the irreducible components. In chapter 6, we compute Rota-Baxter structures of weight k of Hom-associative algebras appearing in our classification. In chapter 7, We work out Hom-bialgebras structures as well as their invariants. Properties and classifications, as well as the calculation of certain invariants such as the first and second cohomology groups, were studied
Vieira, Larissa Hagedorn. "PARES ADMISSÍVEIS, SISTEMAS ADMISSÍVEIS E BIÁLGEBRAS NA CATEGORIA DOS MÓDULOS DE YETTER-DRINFELD." Universidade Federal de Santa Maria, 2014. http://repositorio.ufsm.br/handle/1/9989.
Full textThe purpose of this work is to study the relationships between admissible pairs, systems admissible and bialgebras in the category of Yetter-Drinfeld modules, as well as some properties of the Hopf algebra associated (via bosonization) to an admissible pair. We end this dissertation with a family of examples of admissible pairs.
O objetivo deste trabalho é estudar as relações entre pares admissíveis, sistemas admissíveis e biálgebras na categoria dos módulos de Yetter-Drinfeld, bem como algumas propriedades da álgebra de Hopf associada (via bosonização) a um par admissível. Finalizamos esta dissertação com uma família de exemplos de pares admissíveis.
Fantino, Fernando Amado. "Algebras de Hopf punteadas sobre grupos no abelianos /." Doctoral thesis, 2008. http://hdl.handle.net/11086/117.
Full textSea G un grupo finito no abeliano. Esta tesis trata acerca del problema de clasificación de las álgebras de Hopf punteadas complejas de dimensión finita H con grupo de elementos de tipo grupo G(H) isomorfo a G. Se analizan criterios que permiten dar condiciones suficientes para que el álgebra de Nichols B(O,f) tenga dimensión infinita estudiando subracks de O, donde O es una clase de conjugación de G y f es una representación irreducible de G^s, el centralizador de un elemento fijo s en O.
Fernando Amado Fantino ; director Nicolás Andruskiewitsch.
Rossi, Bertone Fiorela. "Álgebras cuánticas de potencias divididas." Doctoral thesis, 2016. http://hdl.handle.net/11086/3943.
Full textSe definen las álgebras de Lusztig y sus dobles de Drinfeld, las cuánticas de potencias divididas, asociadas a álgebras de Nichols de tipo diagonal de dimensión finita. En ambos casos se prueba una presentación por generadores y relaciones y algunas propiedades básicas. Además, para trenzas de rango 2 y trenzas (súper) de tipo A, se asocia un álgebra de Lie semisimple tal que un cociente del álgebra de Lusztig es isomorfo al álgebra universal de la parte positiva de dicho álgebra de Lie. Por otro lado, se prueban resultados conocidos sobre álgebras de Hopf co-Frobenius en el contexto trenzado.
We define the so called Lusztig algebras and their Drinfeld doubles, the quantum divided powers algebras, associated to finite dimensional Nichols algebras of diagonal type. We present them by generators and relations and prove some basic properties. Also, for braidings of rank 2 and braidings of super type A, we associate a semisimple Lie algebra such that there is a quotient of the Lusztig algebra which is isomorphic to the universal algebra of the positive part of this Lie algebra. On the other hand, we prove versions of known results about co-Frobenius Hopf algebras for braided Hopf algebras.
Ochoa, Arango Jesús Alonso. "Grupoides y algebroides dobles de Lie /." Doctoral thesis, 2010. http://hdl.handle.net/11086/144.
Full textEn este trabajo demostramos que todo grupoide doble de Lie con acción medular propia esta completamente determinado por una factorización de un cierto grupoide de Lie diagonal canónicamente definido. Tambien, estudiamos la versión infinitesimal de este concepto, la de algebroide doble de Lie y como resultado introducimos una nueva clase de ejemplos construidos a partir de ciertos diagramas de álgebras de Lie. En la parte final, proponemos los conceptos de biálgebra infinitesimál de multiplicadores y de bialgebra de Lie de derivadores. Presentamos algunos ejemplos y como resultado principal demostramos, bajo ciertas condiciones, como obtener a partir de una biálgebra infinitesimál de multiplicadores una biálgebra de Lie de derivadores.
Jesús Alonso Ochoa Arango.
Parker, Darren B. "Hopf Galois Extensions and forms of coalgebras and Hopf algebras." 1998. http://catalog.hathitrust.org/api/volumes/oclc/40734586.html.
Full textTypescript. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves 105-107).
Rotheray, Lucia Alessandra. "Incidence Bialgebras of Monoidal Categories." 2020. https://tud.qucosa.de/id/qucosa%3A74695.
Full textBooks on the topic "Coalgebras, bialgebras, Hopf algebras"
Loday, Jean-Louis. Generalized bialgebras and triples of operads. Paris, France: Société mathématique de France, 2008.
Find full textGeneralized bialgebras and triples of operads. Paris, France: Société mathématique de France, 2008.
Find full textLoday, Jean-Louis. Generalized bialgebras and triples of operads. Paris, France: Société mathématique de France, 2008.
Find full textConference on Hopf Algebras and Tensor Categories (2011 University of Almeria). Hopf algebras and tensor categories: International conference, July 4-8, 2011, University of Almería, Almería, Spain. Edited by Andruskiewitsch Nicolás 1958-, Cuadra Juan 1975-, and Torrecillas B. (Blas) 1958-. Providence, Rhode Island: American Mathematical Society, 2013.
Find full textBook chapters on the topic "Coalgebras, bialgebras, Hopf algebras"
Manin, Yuri I. "Bialgebras and Hopf Algebras." In Quantum Groups and Noncommutative Geometry, 11–17. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-97987-8_3.
Full textBrown, Ken A., and Ken R. Goodearl. "Bialgebras and Hopf Algebras." In Lectures on Algebraic Quantum Groups, 81–91. Basel: Birkhäuser Basel, 2002. http://dx.doi.org/10.1007/978-3-0348-8205-7_9.
Full textLambe, Larry A., and David E. Radford. "Quasitriangular Algebras, Bialgebras, Hopf Algebras and The Quantum Double." In Introduction to the Quantum Yang-Baxter Equation and Quantum Groups: An Algebraic Approach, 161–95. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4615-4109-7_6.
Full textHazewinkel, Michiel, Nadiya Gubareni, and V. Kirichenko. "Bialgebras and Hopf algebras. Motivation, definitions, and examples." In Mathematical Surveys and Monographs, 131–73. Providence, Rhode Island: American Mathematical Society, 2010. http://dx.doi.org/10.1090/surv/168/03.
Full text"Coalgebras, bialgebras, and Hopf algebras." In A Tour of Representation Theory, 427–63. Providence, Rhode Island: American Mathematical Society, 2018. http://dx.doi.org/10.1090/gsm/193/09.
Full text"Bialgebras." In Hopf Algebras, 165–202. WORLD SCIENTIFIC, 2011. http://dx.doi.org/10.1142/9789814338660_0005.
Full text"Coalgebras." In Hopf Algebras, 19–75. WORLD SCIENTIFIC, 2011. http://dx.doi.org/10.1142/9789814338660_0002.
Full text"Representations of coalgebras." In Hopf Algebras, 77–122. WORLD SCIENTIFIC, 2011. http://dx.doi.org/10.1142/9789814338660_0003.
Full text"Algebras and coalgebras." In Hopf Algebra, 19–82. CRC Press, 2000. http://dx.doi.org/10.1201/9781482270747-6.
Full text"Quasitriangular bialgebras and Hopf algebras." In Hopf Algebras, 387–411. WORLD SCIENTIFIC, 2011. http://dx.doi.org/10.1142/9789814338660_0012.
Full textConference papers on the topic "Coalgebras, bialgebras, Hopf algebras"
Wakui, Michihisa. "The coribbon structures of some finite dimensional braided Hopf algebras generated by 2×2-matrix coalgebras." In Noncommutative Geometry and Quantum Groups. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2003. http://dx.doi.org/10.4064/bc61-0-20.
Full text