To see the other types of publications on this topic, follow the link: Coccolithophore.

Journal articles on the topic 'Coccolithophore'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Coccolithophore.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

de Vries, Joost, Fanny Monteiro, Glen Wheeler, Alex Poulton, Jelena Godrijan, Federica Cerino, Elisa Malinverno, Gerald Langer, and Colin Brownlee. "Haplo-diplontic life cycle expands coccolithophore niche." Biogeosciences 18, no. 3 (February 16, 2021): 1161–84. http://dx.doi.org/10.5194/bg-18-1161-2021.

Full text
Abstract:
Abstract. Coccolithophores are globally important marine calcifying phytoplankton that utilize a haplo-diplontic life cycle. The haplo-diplontic life cycle allows coccolithophores to divide in both life cycle phases and potentially expands coccolithophore niche volume. Research has, however, to date largely overlooked the life cycle of coccolithophores and has instead focused on the diploid life cycle phase of coccolithophores. Through the synthesis and analysis of global scanning electron microscopy (SEM) coccolithophore abundance data (n=2534), we find that calcified haploid coccolithophores generally constitute a minor component of the total coccolithophore abundance (≈ 2 %–15 % depending on season). However, using case studies in the Atlantic Ocean and Mediterranean Sea, we show that, depending on environmental conditions, calcifying haploid coccolithophores can be significant contributors to the coccolithophore standing stock (up to ≈30 %). Furthermore, using hypervolumes to quantify the niche of coccolithophores, we illustrate that the haploid and diploid life cycle phases inhabit contrasting niches and that on average this allows coccolithophores to expand their niche by ≈18.8 %, with a range of 3 %–76 % for individual species. Our results highlight that future coccolithophore research should consider both life cycle stages, as omission of the haploid life cycle phase in current research limits our understanding of coccolithophore ecology. Our results furthermore suggest a different response to nutrient limitation and stratification, which may be of relevance for further climate scenarios. Our compilation highlights the spatial and temporal sparsity of SEM measurements and the need for new molecular techniques to identify uncalcified haploid coccolithophores. Our work also emphasizes the need for further work on the carbonate chemistry niche of the coccolithophore life cycle.
APA, Harvard, Vancouver, ISO, and other styles
2

Hays, G. C., A. J. Warner, A. W. G. John, D. S. Harbour, and P. M. Holligan. "Coccolithophores and the Continuous Plankton Recorder Survey." Journal of the Marine Biological Association of the United Kingdom 75, no. 2 (May 1995): 503–6. http://dx.doi.org/10.1017/s0025315400018361.

Full text
Abstract:
Samples historically collected and analysed by the Continuous Plankton Recorder (CPR) survey were used to describe the distribution of coccolithophores (class Prymnesiophyceae) in the north-east Atlantic and the North Sea. In the routine CPR analysis, members of this group are simply identified as ‘coccolithophores’ and not to any further taxonomic level. From this analysis, the 200-m depth contour marked a point of distinct transition between high coccolithophore occurrence (off the shelf) and low coccolithophore occurrence (on the shelf). Thirty-three CPR samples that had been collected between 1979–1992, were re-examined and the coccolithophores identified to a more detailed taxonomic level. Among the species identified was the bloom-forming coccolithophore, Emiliania huxleyi. Thus archived CPR samples could potentially be re-analysed to assess regional, seasonal and decadal changes in the occurrence of this species.
APA, Harvard, Vancouver, ISO, and other styles
3

Cavaleiro, Catarina, Antje H. L. Voelker, Heather Stoll, Karl-Heinz Baumann, and Michal Kucera. "Coccolithophore productivity at the western Iberian Margin during the Middle Pleistocene (310–455 ka) – evidence from coccolith Sr∕Ca data." Climate of the Past 16, no. 6 (November 3, 2020): 2017–37. http://dx.doi.org/10.5194/cp-16-2017-2020.

Full text
Abstract:
Abstract. Coccolithophores contribute significantly to marine primary productivity and play a unique role in ocean biogeochemistry by using carbon for photosynthesis (soft-tissue pump) and for calcification (carbonate counter pump). Despite the importance of including coccolithophores in Earth system models to allow better predictions of the climate system's responses to planetary change, the reconstruction of coccolithophore productivity mostly relied on proxies dependent on accumulation and sedimentation rates and preservation conditions. In this study we used an independent proxy, based on the coccolith fraction (CF) Sr∕Ca ratio, to reconstruct coccolithophore productivity. We studied the marine sediment core MD03-2699 from the western Iberian margin (IbM), concentrating on glacial–interglacial cycles of Marine Isotopic Stage (MIS) 12 to MIS 9. We found that IbM coccolithophore productivity was controlled by changes in the oceanographic conditions, such as in sea surface temperature (SST) and nutrient availability, and by competition with other phytoplankton groups. Long-term coccolithophore productivity was primarily affected by variations in the dominant surface water mass. Polar and subpolar surface waters during glacial substages were associated with decreased coccolithophore productivity, with the strongest productivity minima concomitant with Heinrich-type events (HtEs). Subtropical, nutrient-poorer waters, increased terrigenous input, and moderate to strong upwelling during the deglaciation and early MIS11 are hypothesized to have attributed a competitive advantage to diatoms to the detriment of coccolithophores, resulting in intermediate coccolithophore productivity levels. During the progression towards full glacial conditions an increasing presence of nutrient-richer waters, related to the growing influence of transitional surface waters and/or intensified upwelling, probably stimulated coccolithophore productivity to maxima following the rapid depletion of silica by diatoms. We present conceptual models of the carbon and carbonate cycle components for the IbM in different time slices that might serve as a basis for further investigation and modelling experiments.
APA, Harvard, Vancouver, ISO, and other styles
4

Nissen, Cara, Meike Vogt, Matthias Münnich, Nicolas Gruber, and F. Alexander Haumann. "Factors controlling coccolithophore biogeography in the Southern Ocean." Biogeosciences 15, no. 22 (November 22, 2018): 6997–7024. http://dx.doi.org/10.5194/bg-15-6997-2018.

Full text
Abstract:
Abstract. The biogeography of Southern Ocean phytoplankton controls the local biogeochemistry and the export of macronutrients to lower latitudes and depth. Of particular relevance is the competitive interaction between coccolithophores and diatoms, with the former being prevalent along the “Great Calcite Belt” (40–60∘ S), while diatoms tend to dominate the regions south of 60∘ S. To address the factors controlling coccolithophore distribution and the competition between them and diatoms, we use a regional high-resolution model (ROMS–BEC) for the Southern Ocean (24–78∘ S) that has been extended to include an explicit representation of coccolithophores. We assess the relative importance of bottom-up (temperature, nutrients, light) and top-down (grazing by zooplankton) factors in controlling Southern Ocean coccolithophore biogeography over the course of the growing season. In our simulations, coccolithophores are an important member of the Southern Ocean phytoplankton community, contributing 17 % to annually integrated net primary productivity south of 30∘ S. Coccolithophore biomass is highest north of 50∘ S in late austral summer, when light levels are high and diatoms become limited by silicic acid. Furthermore, we find top-down factors to be a major control on the relative abundance of diatoms and coccolithophores in the Southern Ocean. Consequently, when assessing potential future changes in Southern Ocean coccolithophore abundance, both abiotic (temperature, light, and nutrients) and biotic factors (interaction with diatoms and zooplankton) need to be considered.
APA, Harvard, Vancouver, ISO, and other styles
5

Rigual Hernández, Andrés S., Thomas W. Trull, Scott D. Nodder, José A. Flores, Helen Bostock, Fátima Abrantes, Ruth S. Eriksen, et al. "Coccolithophore biodiversity controls carbonate export in the Southern Ocean." Biogeosciences 17, no. 1 (January 17, 2020): 245–63. http://dx.doi.org/10.5194/bg-17-245-2020.

Full text
Abstract:
Abstract. Southern Ocean waters are projected to undergo profound changes in their physical and chemical properties in the coming decades. Coccolithophore blooms in the Southern Ocean are thought to account for a major fraction of the global marine calcium carbonate (CaCO3) production and export to the deep sea. Therefore, changes in the composition and abundance of Southern Ocean coccolithophore populations are likely to alter the marine carbon cycle, with feedbacks to the rate of global climate change. However, the contribution of coccolithophores to CaCO3 export in the Southern Ocean is uncertain, particularly in the circumpolar subantarctic zone that represents about half of the areal extent of the Southern Ocean and where coccolithophores are most abundant. Here, we present measurements of annual CaCO3 flux and quantitatively partition them amongst coccolithophore species and heterotrophic calcifiers at two sites representative of a large portion of the subantarctic zone. We find that coccolithophores account for a major fraction of the annual CaCO3 export, with the highest contributions in waters with low algal biomass accumulations. Notably, our analysis reveals that although Emiliania huxleyi is an important vector for CaCO3 export to the deep sea, less abundant but larger species account for most of the annual coccolithophore CaCO3 flux. This observation contrasts with the generally accepted notion that high particulate inorganic carbon accumulations during the austral summer in the subantarctic Southern Ocean are mainly caused by E. huxleyi blooms. It appears likely that the climate-induced migration of oceanic fronts will initially result in the poleward expansion of large coccolithophore species increasing CaCO3 production. However, subantarctic coccolithophore populations will eventually diminish as acidification overwhelms those changes. Overall, our analysis emphasizes the need for species-centred studies to improve our ability to project future changes in phytoplankton communities and their influence on marine biogeochemical cycles.
APA, Harvard, Vancouver, ISO, and other styles
6

Krumhardt, K. M., N. S. Lovenduski, N. M. Freeman, and N. R. Bates. "Increasing coccolithophore abundance in the subtropical North Atlantic from 1990 to 2014." Biogeosciences Discussions 12, no. 22 (November 18, 2015): 18625–60. http://dx.doi.org/10.5194/bgd-12-18625-2015.

Full text
Abstract:
Abstract. As environmental conditions evolve with rapidly increasing atmospheric CO2, biological communities will change as species reorient their distributions, adapt, or alter their abundance. In the surface ocean, dissolved inorganic carbon (DIC) has been increasing over the past several decades as anthropogenic CO2 dissolves into seawater, causing acidification (decreases in pH and carbonate ion concentration). Calcifying phytoplankton, such as coccolithophores, are thought to be especially vulnerable to ocean acidification. How coccolithophores will respond to increasing carbon input has been a subject of much speculation and inspired numerous laboratory and mesocosm experiments, but how they are currently responding in situ is less well documented. In this study, we use coccolithophore pigment data collected at the Bermuda Atlantic Time-series Study (BATS) site together with satellite estimates (1998–2014) of surface chlorophyll and particulate inorganic carbon (PIC) to show that coccolithophore populations in the North Atlantic Subtropical Gyre have been increasing significantly over the past two decades. Over 1991–2012, we observe a 37 % increase in euphotic zone-integrated coccolithophore abundance at BATS. We further demonstrate that variability in coccolithophore abundance here is positively correlated with variability in DIC (and especially the bicarbonate ion) in the upper 30 m of the water column. Previous studies have suggested that coccolithophore photosynthesis may benefit from increasing CO2, but calcification may eventually be hindered by low pHT (< 7.7). Given that DIC has been increasing at BATS by ∼ 1.4 μmol kg−1 yr−1 over 1991 to 2012, we speculate that coccolithophore photosynthesis and perhaps calcification may have increased in response to anthropogenic CO2 input.
APA, Harvard, Vancouver, ISO, and other styles
7

Krumhardt, Kristen M., Nicole S. Lovenduski, Natalie M. Freeman, and Nicholas R. Bates. "Apparent increase in coccolithophore abundance in the subtropical North Atlantic from 1990 to 2014." Biogeosciences 13, no. 4 (February 25, 2016): 1163–77. http://dx.doi.org/10.5194/bg-13-1163-2016.

Full text
Abstract:
Abstract. As environmental conditions evolve with rapidly increasing atmospheric CO2, biological communities will change as species reorient their distributions, adapt, or alter their abundance. In the surface ocean, dissolved inorganic carbon (DIC) has been increasing over the past several decades as anthropogenic CO2 dissolves into seawater, causing acidification (decreases in pH and carbonate ion concentration). Calcifying phytoplankton, such as coccolithophores, are thought to be especially vulnerable to ocean acidification. How coccolithophores will respond to increasing carbon input has been a subject of much speculation and inspired numerous laboratory and mesocosm experiments, but how they are currently responding in situ is less well documented. In this study, we use coccolithophore (haptophyte) pigment data collected at the Bermuda Atlantic Time-series Study (BATS) site together with satellite estimates (1998–2014) of surface chlorophyll and particulate inorganic carbon (PIC) as a proxy for coccolithophore abundance to show that coccolithophore populations in the North Atlantic subtropical gyre have been increasing significantly over the past 2 decades. Over 1990–2012, we observe a 37 % increase in euphotic zone-integrated coccolithophore pigment abundance at BATS, though we note that this is sensitive to the period being analyzed. We further demonstrate that variability in coccolithophore chlorophyll a here is positively correlated with variability in nitrate and DIC (and especially the bicarbonate ion) in the upper 30 m of the water column. Previous studies have suggested that coccolithophore photosynthesis may benefit from increasing CO2, but calcification may eventually be hindered by low pHT (< 7.7). Given that DIC has been increasing at BATS by ∼ 1.4 µmol kg−1 yr−1 over the period of 1991–2012, we speculate that coccolithophore photosynthesis and perhaps calcification may have increased in response to anthropogenic CO2 input.
APA, Harvard, Vancouver, ISO, and other styles
8

Poulton, A. J., M. C. Stinchcombe, E. P. Achterberg, D. C. E. Bakker, C. Dumousseaud, H. E. Lawson, G. A. Lee, S. Richier, D. J. Suggett, and J. R. Young. "Coccolithophores on the north-west European shelf: calcification rates and environmental controls." Biogeosciences Discussions 11, no. 2 (February 18, 2014): 2685–733. http://dx.doi.org/10.5194/bgd-11-2685-2014.

Full text
Abstract:
Abstract. Coccolithophores are a key functional group in terms of the pelagic production of calcium carbonate (calcite), although their contribution to shelf-sea biogeochemistry, and how this relates to environmental conditions, is poorly constrained. Measurements of calcite production (CP) and coccolithophore abundance were made on the north-west European shelf to examine trends in coccolithophore calcification along natural gradients of carbonate chemistry, macronutrient availability and plankton composition. Similar measurements were also made in three bioassay experiments where nutrient (nitrate, phosphate) and pCO2 levels were manipulated. Nanoflagellates (< 10 μm) dominated chlorophyll biomass and primary production (PP) at all but one sampling site, with CP ranging from 0.6–9.6 mmol C m−2d−1. Highest CP and coccolithophore cell abundance occurred in a diatom bloom in fully mixed waters off Helgoland, rather than in two distinct coccolithophore blooms in the central North Sea and Western English Channel. Estimates of coccolithophore contributions to total PP and nanoplankton PP were generally < 5%, apart from in a coccolithophore bloom at the Western English Channel Observatory (E1) where coccolithophores contributed up to 11% and at Helgoland where they contributed ~23% to nanoplankton PP. Variability in CP was influenced by cell numbers, species composition and cell-normalised calcification rates under both in situ conditions and in the experimental bioassays. Water column structure and light availability had a strong influence on cellular calcification, whereas nitrate (N) to phosphate (P) ratios influenced bulk CP. Coccolithophore communities in the northern North Sea and over the Norwegian Trench showed responses to N and P addition whereas oceanic communities in the Bay of Biscay showed no response. Sharp decreases in pH and a rough halving of calcite saturation states in the bioassay experiments led to decreased CP in the Bay of Biscay and Northern North Sea, but not over the Norwegian Trench. These variable relationships to nutrient availability and changes in carbonate chemistry highlight the complex response of coccolithophore physiology to growth environment.
APA, Harvard, Vancouver, ISO, and other styles
9

Rigual Hernández, Andrés S., José A. Flores, Francisco J. Sierro, Miguel A. Fuertes, Lluïsa Cros, and Thomas W. Trull. "Coccolithophore populations and their contribution to carbonate export during an annual cycle in the Australian sector of the Antarctic zone." Biogeosciences 15, no. 6 (March 29, 2018): 1843–62. http://dx.doi.org/10.5194/bg-15-1843-2018.

Full text
Abstract:
Abstract. The Southern Ocean is experiencing rapid and relentless change in its physical and biogeochemical properties. The rate of warming of the Antarctic Circumpolar Current exceeds that of the global ocean, and the enhanced uptake of carbon dioxide is causing basin-wide ocean acidification. Observational data suggest that these changes are influencing the distribution and composition of pelagic plankton communities. Long-term and annual field observations on key environmental variables and organisms are a critical basis for predicting changes in Southern Ocean ecosystems. These observations are particularly needed, since high-latitude systems have been projected to experience the most severe impacts of ocean acidification and invasions of allochthonous species. Coccolithophores are the most prolific calcium-carbonate-producing phytoplankton group playing an important role in Southern Ocean biogeochemical cycles. Satellite imagery has revealed elevated particulate inorganic carbon concentrations near the major circumpolar fronts of the Southern Ocean that can be attributed to the coccolithophore Emiliania huxleyi. Recent studies have suggested changes during the last decades in the distribution and abundance of Southern Ocean coccolithophores. However, due to limited field observations, the distribution, diversity and state of coccolithophore populations in the Southern Ocean remain poorly characterised. We report here on seasonal variations in the abundance and composition of coccolithophore assemblages collected by two moored sediment traps deployed at the Antarctic zone south of Australia (2000 and 3700 m of depth) for 1 year in 2001–2002. Additionally, seasonal changes in coccolith weights of E. huxleyi populations were estimated using circularly polarised micrographs analysed with C-Calcita software. Our findings indicate that (1) coccolithophore sinking assemblages were nearly monospecific for E. huxleyi morphotype B/C in the Antarctic zone waters in 2001–2002; (2) coccoliths captured by the traps experienced weight and length reduction during summer (December–February); (3) the estimated annual coccolith weight of E. huxleyi at both sediment traps (2.11 ± 0.96 and 2.13 ± 0.91 pg at 2000 and 3700 m) was consistent with previous studies for morphotype B/C in other Southern Ocean settings (Scotia Sea and Patagonian shelf); and (4) coccolithophores accounted for approximately 2–5 % of the annual deep-ocean CaCO3 flux. Our results are the first annual record of coccolithophore abundance, composition and degree of calcification in the Antarctic zone. They provide a baseline against which to monitor coccolithophore responses to changes in the environmental conditions expected for this region in coming decades.
APA, Harvard, Vancouver, ISO, and other styles
10

Vostokov, Sergey V., Anastasia S. Vostokova, and Svetlana V. Vazyulya. "Seasonal and Long-Term Variability of Coccolithophores in the Black Sea According to Remote Sensing Data and the Results of Field Investigations." Journal of Marine Science and Engineering 10, no. 1 (January 12, 2022): 97. http://dx.doi.org/10.3390/jmse10010097.

Full text
Abstract:
Based on satellite data from the SeaWiFS, MODIS-Aqua, and MODIS-Terra scanners, the long-term dynamics of coccolithophores in the Black Sea and their large-scale heterogeneity have been studied. During the twenty years in May and June, mass development of coccolithophores population of different intensities was recorded annually. Summer blooms of coccolithophores reached peak levels in 2006, 2012, and 2017, after abnormally cold winters. It was noted that in conditions of low summer temperatures, the blooming of coccolithophores could be significantly reduced or acquire a local character (2004). In the anomalous cold summer of 2001, coccolithophore blooms was replaced by the mass growth of diatoms. Over twenty years, numerous signs of coccolithophores mass development in the cold season have been revealed. Winter blooms develop mainly in warm winters with periods of low wind activity. The formation of a thermocline and the surface layer’s stability are essential factors for initiating winter blooms of coccolithophores. It was noted that after the winter blooms of coccolithophores, their summer growth was poorly expressed. It is shown that during periods of rapid growth, the bulk of coccolithophores is concentrated in the upper mixed layer and thermocline. During the blooming period, the share of coccolithophores in phytoplankton biomass constituted 70–85%. The intensity of coccolithophore’s blooms is associated with the previous diatoms’ growth level. The effect of eddies circulation on the distribution and growth of coccolithophores is considered.
APA, Harvard, Vancouver, ISO, and other styles
11

Baumann, Karl-Heinz, and Babette Boeckel. "Spatial distribution of living coccolithophores in the southwestern Gulf of Mexico." Journal of Micropalaeontology 32, no. 2 (July 1, 2013): 123–33. http://dx.doi.org/10.1144/jmpaleo2011-007.

Full text
Abstract:
Abstract. The present study was conducted to provide information about the upper water column distribution of living coccolithophores in the subtropical Gulf of Mexico. In total, 52 plankton samples from 6 stations collected in March 2006 were analysed. Coccolithophore standing crops range from zero in deep-water samples (200 m) to about 23 000 to 46 500 coccospheres per litre at intermediate water depths. From 39 identified taxa, only nine species contribute significant cell numbers of more than 1000 cells 1–1 and comprise more than 5 % of the communities in at least one sample. Emiliania huxleyi was the most abundant species throughout the stations with concentrations of up to 22 700 cells l–1. At all stations, a vertical succession of coccolithophore species was found. Umbellosphaera tenuis (type IV), Discosphaera tubifera, Rhabdosphaera clavigera and, as a minor component, species of the genus Syracosphaera, were mainly restricted to surface waters (≤50 m), all adapted to lower nutrient levels. The assemblage in the deep photic zone (50–150 m water depth) was composed mainly of abundant Florisphaera profunda, Gladiolithus flabellatus and Algirosphaera robusta indicating a tolerance of lower light availability. Thus, the vertical distribution of all coccolithophorid taxa, except the placolith-bearing species, in particular E. huxleyi, was probably controlled by upper photic-zone water temperature and stratification of the water column.
APA, Harvard, Vancouver, ISO, and other styles
12

Sadeghi, A., T. Dinter, M. Vountas, B. Taylor, M. Altenburg-Soppa, and A. Bracher. "Remote sensing of coccolithophore blooms in selected oceanic regions using the PhytoDOAS method applied to hyper-spectral satellite data." Biogeosciences Discussions 8, no. 6 (December 8, 2011): 11725–65. http://dx.doi.org/10.5194/bgd-8-11725-2011.

Full text
Abstract:
Abstract. In this study temporal variations of coccolithophore blooms are investigated using satellite data. Eight years, from 2003 to 2010, of data of SCIAMACHY, a hyper-spectral satellite sensor on-board ENVISAT, were processed by the PhytoDOAS method to monitor the biomass of coccolithophores in three selected regions. These regions are characterized by frequent occurrence of large coccolithophore blooms. The retrieval results, shown as monthly mean time-series, were compared to related satellite products, including the total surface phytoplankton, i.e., total chlorophyll-a (from GlobColour merged data) and the particulate inorganic carbon (from MODIS-Aqua). The inter-annual variations of the phytoplankton bloom cycles and their maximum monthly mean values have been compared in the three selected regions to the variations of the geophysical parameters: sea-surface temperature (SST), mixed-layer depth (MLD) and surface wind speed, which are known to affect phytoplankton dynamics. For each region the anomalies and linear trends of the monitored parameters over the period of this study have been computed. The patterns of total phytoplankton biomass and specific dynamics of coccolithophores chlorophyll-a in the selected regions are discussed in relation to other studies. The PhytoDOAS results are consistent with the two other ocean color products and support the reported dependencies of coccolithophore biomass' dynamics to the compared geophysical variables. This suggests, that PhytoDOAS is a valid method for retrieving coccolithophore biomass and for monitoring its bloom developments in the global oceans. Future applications of time-series studies using the PhytoDOAS data set are proposed, also using the new upcoming generations of hyper-spectral satellite sensors with improved spatial resolution.
APA, Harvard, Vancouver, ISO, and other styles
13

Sadeghi, A., T. Dinter, M. Vountas, B. B. Taylor, M. Altenburg-Soppa, I. Peeken, and A. Bracher. "Improvement to the PhytoDOAS method for identification of coccolithophores using hyper-spectral satellite data." Ocean Science 8, no. 6 (November 30, 2012): 1055–70. http://dx.doi.org/10.5194/os-8-1055-2012.

Full text
Abstract:
Abstract. The goal of this study was to improve PhytoDOAS, which is a new retrieval method for quantitative identification of major phytoplankton functional types (PFTs) using hyper-spectral satellite data. PhytoDOAS is an extension of the Differential Optical Absorption Spectroscopy (DOAS, a method for detection of atmospheric trace gases), developed for remote identification of oceanic phytoplankton groups. Thus far, PhytoDOAS has been successfully exploited to identify cyanobacteria and diatoms over the global ocean from SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY) hyper-spectral data. This study aimed to improve PhytoDOAS for remote identification of coccolithophores, another functional group of phytoplankton. The main challenge for retrieving more PFTs by PhytoDOAS is to overcome the correlation effects between different PFT absorption spectra. Different PFTs are composed of different types and amounts of pigments, but also have pigments in common, e.g. chl a, causing correlation effects in the usual performance of the PhytoDOAS retrieval. Two ideas have been implemented to improve PhytoDOAS for the PFT retrieval of more phytoplankton groups. Firstly, using the fourth-derivative spectroscopy, the peak positions of the main pigment components in each absorption spectrum have been derived. After comparing the corresponding results of major PFTs, the optimized fit-window for the PhytoDOAS retrieval of each PFT was determined. Secondly, based on the results from derivative spectroscopy, a simultaneous fit of PhytoDOAS has been proposed and tested for a selected set of PFTs (coccolithophores, diatoms and dinoflagellates) within an optimized fit-window, proven by spectral orthogonality tests. The method was then applied to the processing of SCIAMACHY data over the year 2005. Comparisons of the PhytoDOAS coccolithophore retrievals in 2005 with other coccolithophore-related data showed similar patterns in their seasonal distributions, especially in the North Atlantic and the Arctic Sea. The seasonal patterns of the PhytoDOAS coccolithophores indicated very good agreement with the coccolithophore modeled data from the NASA Ocean Biochemical Model (NOBM), as well as with the global distributions of particulate inorganic carbon (PIC), provided by MODIS (MODerate resolution Imaging Spectroradiometer)-Aqua level-3 products. Moreover, regarding the fact that coccolithophores belong to the group of haptophytes, the PhytoDOAS seasonal coccolithophores showed good agreement with the global distribution of haptophytes, derived from synoptic pigment relationships applied to SeaWiFS chl a. As a case study, the simultaneous mode of PhytoDOAS has been applied to SCIAMACHY data for detecting a coccolithophore bloom which was consistent with the MODIS RGB image and the MODIS PIC map of the bloom, indicating the functionality of the method also in short-term retrievals.
APA, Harvard, Vancouver, ISO, and other styles
14

Poulton, A. J., M. C. Stinchcombe, E. P. Achterberg, D. C. E. Bakker, C. Dumousseaud, H. E. Lawson, G. A. Lee, S. Richier, D. J. Suggett, and J. R. Young. "Coccolithophores on the north-west European shelf: calcification rates and environmental controls." Biogeosciences 11, no. 14 (July 25, 2014): 3919–40. http://dx.doi.org/10.5194/bg-11-3919-2014.

Full text
Abstract:
Abstract. Coccolithophores are a key functional group in terms of the pelagic production of calcium carbonate (calcite), although their contribution to shelf sea biogeochemistry, and how this relates to environmental conditions, is poorly constrained. Measurements of calcite production (CP) and coccolithophore abundance were made on the north-west European shelf to examine trends in coccolithophore calcification along natural gradients of carbonate chemistry, macronutrient availability and plankton composition. Similar measurements were also made in three bioassay experiments where nutrient (nitrate, phosphate) and pCO2 levels were manipulated. Nanoflagellates (< 10 μm) dominated chlorophyll biomass and primary production (PP) at all but one sampling site, with CP ranging from 0.6 to 9.6 mmol C m−2 d−1. High CP and coccolithophore abundance occurred in a diatom bloom in fully mixed waters off Heligoland, but not in two distinct coccolithophore blooms in the central North Sea and Western English Channel. Coccolithophore abundance and CP showed no correlation with nutrient concentrations or ratios, while significant (p < 0.01) correlations between CP, cell-specific calcification (cell-CF) and irradiance in the water column highlighted how light availability exerts a strong control on pelagic CP. In the experimental bioassays, Emiliania-huxleyi-dominated coccolithophore communities in shelf waters (northern North Sea, Norwegian Trench) showed a strong response in terms of CP to combined nitrate and phosphate addition, mediated by changes in cell-CF and growth rates. In contrast, an offshore diverse coccolithophore community (Bay of Biscay) showed no response to nutrient addition, while light availability or mortality may have been more important in controlling this community. Sharp decreases in pH and a rough halving of calcite saturation states in the bioassay experiments led to decreased CP in the Bay of Biscay and northern North Sea, but not the Norwegian Trench. These decreases in CP were related to slowed growth rates in the bioassays at elevated pCO2 (750 μatm) relative to those in the ambient treatments. The combined results from our study highlight the variable coccolithophore responses to irradiance, nutrients and carbonate chemistry in north-west European shelf waters, which are mediated by changes in growth rates, cell-CF and species composition.
APA, Harvard, Vancouver, ISO, and other styles
15

Giraud, X. "Modelling an alkenone-like proxy record in the NW African upwelling." Biogeosciences Discussions 3, no. 1 (January 27, 2006): 71–121. http://dx.doi.org/10.5194/bgd-3-71-2006.

Full text
Abstract:
Abstract. A regional biogeochemical model is applied to the NW African coastal upwelling between 19° N and 27° N to investigate how a water temperature proxy is produced at the sea surface and recorded in the slope sediments. The biological model has two phytoplankton groups, to distinguish an alkenone producer group (considered as coccolithophores) from other phytoplankton. The Regional Ocean Modelling System (ROMS) is used to simulate the ocean circulation, and takes advantage of the Adaptive Grid Refinement in Fortran (AGRIF) package to set up an embedded griding system. The results show that the alkenone-like temperature records in the sediments are between 1.1 and 2.1°C colder compared to the annual mean SSTs. Despite the seasonality of the coccolithophorid production, this temperature difference is not mainly due to a seasonal bias, nor to the lateral advection of phytoplankton and phytodetritus from the cold water domain to most offshore locations, but to the production depth of the coccolithophores. If core-top sediment alkenone-derived temperatures are effectively recording the annual mean SSTs, the quantitative alkenone production in the water column must be inhomogeneous among the coccolithophore population and depend on physiological factors (growth rate, nutrient stress).
APA, Harvard, Vancouver, ISO, and other styles
16

Faucher, Giulia, Ulf Riebesell, and Lennart Thomas Bach. "Can morphological features of coccolithophores serve as a reliable proxy to reconstruct environmental conditions of the past?" Climate of the Past 16, no. 3 (June 9, 2020): 1007–25. http://dx.doi.org/10.5194/cp-16-1007-2020.

Full text
Abstract:
Abstract. Morphological changes in coccoliths, tiny calcite platelets covering the outer surface of coccolithophores, can be induced by physiological responses to environmental changes. Coccoliths recovered from sedimentary successions may therefore provide information on paleo-environmental conditions prevailing at the time when the coccolithophores were alive. To calibrate the biomineralization responses of ancient coccolithophore to environmental changes, studies often compared the biological responses of living coccolithophore species with paleo-data from calcareous nannofossils. However, there is uncertainty whether the morphological responses of living coccolithophores are representative of those of the fossilized ancestors. To investigate this, we exposed four living coccolithophore species (Emiliania huxleyi, Gephyrocapsa oceanica, Coccolithus pelagicus subsp. braarudii, and Pleurochrysis carterae) that have been evolutionarily distinct for hundreds of thousands to millions of years, to a range of environmental conditions (i.e., changing light intensity, Mg∕Ca ratio, nutrient availability, temperature, and carbonate chemistry) and evaluated their responses in coccolith morphology (i.e., size, length, width, malformation). The motivation for this study was to test if there is a consistent morphological response of the four species to changes in any of the tested abiotic environmental factors. If this was the case, then this could suggest that coccolith morphology can serve as a paleo-proxy for that specific factor because this response is conserved across species that have been evolutionary distinct over geological timescales. However, we found that the four species responded differently to changing light intensity, Mg∕Ca ratio, nutrient availability, and temperature in terms of coccolith morphology. The lack of a common response reveals the difficulties in using coccolith morphology as a paleo-proxy for these environmental drivers. However, a common response was observed under changing seawater carbonate chemistry (i.e., rising CO2), which consistently induced malformations. This commonality provides some confidence that malformations found in the sedimentary record could be indicative of adverse carbonate chemistry conditions.
APA, Harvard, Vancouver, ISO, and other styles
17

Sadeghi, A., T. Dinter, M. Vountas, B. Taylor, M. Altenburg-Soppa, and A. Bracher. "Remote sensing of coccolithophore blooms in selected oceanic regions using the PhytoDOAS method applied to hyper-spectral satellite data." Biogeosciences 9, no. 6 (June 14, 2012): 2127–43. http://dx.doi.org/10.5194/bg-9-2127-2012.

Full text
Abstract:
Abstract. In this study temporal variations of coccolithophore blooms are investigated using satellite data. Eight years (from 2003 to 2010) of data of SCIAMACHY, a hyper-spectral satellite sensor on-board ENVISAT, were processed by the PhytoDOAS method to monitor the biomass of coccolithophores in three selected regions. These regions are characterized by frequent occurrence of large coccolithophore blooms. The retrieval results, shown as monthly mean time series, were compared to related satellite products, including the total surface phytoplankton, i.e. total chlorophyll a (from GlobColour merged data) and the particulate inorganic carbon (from MODIS-Aqua). The inter-annual variations of the phytoplankton bloom cycles and their maximum monthly mean values have been compared in the three selected regions to the variations of the geophysical parameters: sea-surface temperature (SST), mixed-layer depth (MLD) and surface wind-speed, which are known to affect phytoplankton dynamics. For each region, the anomalies and linear trends of the monitored parameters over the period of this study have been computed. The patterns of total phytoplankton biomass and specific dynamics of coccolithophore chlorophyll a in the selected regions are discussed in relation to other studies. The PhytoDOAS results are consistent with the two other ocean color products and support the reported dependencies of coccolithophore biomass dynamics on the compared geophysical variables. This suggests that PhytoDOAS is a valid method for retrieving coccolithophore biomass and for monitoring its bloom developments in the global oceans. Future applications of time series studies using the PhytoDOAS data set are proposed, also using the new upcoming generations of hyper-spectral satellite sensors with improved spatial resolution.
APA, Harvard, Vancouver, ISO, and other styles
18

Meyer, J., and U. Riebesell. "Reviews and Syntheses: Responses of coccolithophores to ocean acidification: a meta-analysis." Biogeosciences 12, no. 6 (March 16, 2015): 1671–82. http://dx.doi.org/10.5194/bg-12-1671-2015.

Full text
Abstract:
Abstract. Concerning their sensitivity to ocean acidification, coccolithophores, a group of calcifying single-celled phytoplankton, are one of the best-studied groups of marine organisms. However, in spite of the large number of studies investigating coccolithophore physiological responses to ocean acidification, uncertainties still remain due to variable and partly contradictory results. In the present study we have used all existing data in a meta-analysis to estimate the effect size of future pCO2 changes on the rates of calcification and photosynthesis and the ratio of particulate inorganic to organic carbon (PIC / POC) in different coccolithophore species. Our results indicate that ocean acidification has a negative effect on calcification and the cellular PIC / POC ratio in the two most abundant coccolithophore species: Emiliania huxleyi and Gephyrocapsa oceanica. In contrast, the more heavily calcified species Coccolithus braarudii did not show a distinct response when exposed to elevated pCO2/reduced pH. Photosynthesis in Gephyrocapsa oceanica was positively affected by high CO2, while no effect was observed for the other coccolithophore species. There was no indication that the method of carbonate chemistry manipulation was responsible for the inconsistent results regarding observed responses in calcification and the PIC / POC ratio. The perturbation method, however, appears to affect photosynthesis, as responses varied significantly between total alkalinity (TA) and dissolved inorganic carbon (DIC) manipulations. These results emphasize that coccolithophore species respond differently to ocean acidification, both in terms of calcification and photosynthesis. Where negative effects occur, they become evident at CO2 levels in the range projected for this century in the case of unabated CO2 emissions. As the data sets used in this meta-analysis do not account for adaptive responses, ecological fitness and ecosystem interactions, the question remains as to how these physiological responses play out in the natural environment.
APA, Harvard, Vancouver, ISO, and other styles
19

Meyer, J., and U. Riebesell. "Responses of coccolithophores to ocean acidification: a meta-analysis." Biogeosciences Discussions 11, no. 10 (October 22, 2014): 14857–87. http://dx.doi.org/10.5194/bgd-11-14857-2014.

Full text
Abstract:
Abstract. Concerning their sensitivity to ocean acidification, coccolithophores, a group of calcifying single-celled phytoplankton, are one of the best-studied groups of marine organisms. However, in spite of the large number of studies investigating coccolithophore physiological responses to ocean acidification, uncertainties still remain due to variable and partly contradictory results. In the present study we have used all existing data in a meta-analysis to estimate the effect size of future pCO2 changes on the rates of calcification and photosynthesis and the ratio of particulate inorganic to organic carbon (PIC/POC) in different coccolithophore species. Our results indicate that ocean acidification has a negative effect on calcification and the cellular PIC/POC ratio in the most abundant coccolithophore species Emiliania huxleyi and Gephyrocapsa oceanica. In contrast the more heavily calcified species Coccolithus braarudii did not show a distinct response when exposed to elevated pCO2/reduced pH. Photosynthesis in Gephyrocapsa oceanica was positively affected by high CO2, while no effect was observed for the other coccolithophore species. There was no indication that the method of carbonate chemistry manipulation was responsible for the inconsistent results regarding observed responses in calcification and the PIC/POC ratio. The perturbation method, however, appears to affect photosynthesis, as responses varied significantly between total alkalinity (TA) and dissolved inorganic carbon (DIC) manipulations. These results emphasize that coccolithophore species respond differently to ocean acidification, both in terms of calcification and photosynthesis. Where negative effects occur, they become evident at CO2 levels in the range projected for this century in case of unabated CO2 emissions. As the data sets used in this meta-analysis do not account for adaptive responses and ecological fitness, the questions remains how these physiological responses play out in the natural environment.
APA, Harvard, Vancouver, ISO, and other styles
20

Oviedo, A. M., P. Ziveri, M. Álvarez, and T. Tanhua. "Is coccolithophore distribution in the Mediterranean Sea related to seawater carbonate chemistry?" Ocean Science Discussions 11, no. 1 (February 20, 2014): 613–53. http://dx.doi.org/10.5194/osd-11-613-2014.

Full text
Abstract:
Abstract. The Mediterranean Sea is considered a "hot-spot" for climate change, being characterized by oligotrophic to ultra-oligotrophic waters and rapidly changing carbonate chemistry. Coccolithophores are considered a dominant phytoplankton group in these waters. As a marine calcifying organism they are expected to respond to the ongoing changes in seawater CO2 systems parameters. However, very few studies have covered the entire Mediterranean physiochemical gradients from the Strait of Gibraltar to the Eastern Mediterranean Levantine Basin. We provide here an updated state of knowledge of the coccolithophore distribution in the Mediterranean Sea and relate this to a broad set of in situ measured environmental variables. Samples were taken during the Meteor (M84/3) oceanographic cruise in April 2011, between 0–100 m water depth from 28 stations. Total diatom, dinoflagellate and silicoflagellate cell concentrations are also presented. Our results highlight the importance of seawater carbonate chemistry, especially CO32−, in unraveling the distribution of heterococcolithophores, the most abundant coccolithophore life phase. Holo- and hetero-coccolithophores respond differently to environmental factors. For instance, changes in heterococcolithophore assemblages were best linked to the combination of [CO32−], pH, and salinity (ρ = 0.57) although salinity might be not functionally related to coccolithophore assemblage distribution. Holococcolithophores, on the other hand, were preferentially distributed and showed higher species diversity in oligotrophic areas (Best fit, ρ = 0.32 for nutrients), thriving in nutrient depleted waters. Clustering of heterococcolithophores revealed three groups of species sharing more than 65% similarities. These clusters could be assigned to the eastern and western basins, and deeper layers (below 50 m), respectively. In addition, the species Gephyrocapsa oceanica, G. muellerae and Emiliania huxleyi morphotype B/C are spatially distributed together and trace the influx of Atlantic waters into the Mediterranean Sea. The results of the present work emphasize the importance of considering holo- and hetero-coccolithophores separately when analyzing changes in species assemblages and diversity. Our findings clearly show that coccolithophores are a dominant phytoplankton group in the entire Mediterranean Sea; they have life stages that are expected to respond differently to the variability in seawater carbonate chemistry and nutrient concentrations.
APA, Harvard, Vancouver, ISO, and other styles
21

Faucher, Giulia, Linn Hoffmann, Lennart T. Bach, Cinzia Bottini, Elisabetta Erba, and Ulf Riebesell. "Impact of trace metal concentrations on coccolithophore growth and morphology: laboratory simulations of Cretaceous stress." Biogeosciences 14, no. 14 (July 31, 2017): 3603–13. http://dx.doi.org/10.5194/bg-14-3603-2017.

Full text
Abstract:
Abstract. The Cretaceous ocean witnessed intervals of profound perturbations such as volcanic input of large amounts of CO2, anoxia, eutrophication and introduction of biologically relevant metals. Some of these extreme events were characterized by size reduction and/or morphological changes of a few calcareous nannofossil species. The correspondence between intervals of high trace metal concentrations and coccolith dwarfism suggests a negative effect of these elements on nannoplankton biocalcification processes in past oceans. In order to test this hypothesis, we explored the potential effect of a mixture of trace metals on growth and morphology of four living coccolithophore species, namely Emiliania huxleyi, Gephyrocapsa oceanica, Pleurochrysis carterae and Coccolithus pelagicus. The phylogenetic history of coccolithophores shows that the selected living species are linked to Mesozoic species showing dwarfism under excess metal concentrations. The trace metals tested were chosen to simulate the environmental stress identified in the geological record and upon known trace metal interactions with living coccolithophore algae.Our laboratory experiments demonstrated that elevated trace metal concentrations, similarly to the fossil record, affect coccolithophore algae size and/or weight. Smaller coccoliths were detected in E. huxleyi and C. pelagicus, while coccoliths of G. oceanica showed a decrease in size only at the highest trace metal concentrations. P. carterae coccolith size was unresponsive to changing trace metal concentrations. These differences among species allow discriminating the most- (P. carterae), intermediate- (E. huxleyi and G. oceanica) and least-tolerant (C. pelagicus) taxa. The fossil record and the experimental results converge on a selective response of coccolithophores to metal availability.These species-specific differences must be considered before morphological features of coccoliths are used to reconstruct paleo-chemical conditions.
APA, Harvard, Vancouver, ISO, and other styles
22

Villiot, Naomi, Alex J. Poulton, Elizabeth T. Butcher, Lucie R. Daniels, and Aimee Coggins. "Allometry of carbon and nitrogen content and growth rate in a diverse range of coccolithophores." Journal of Plankton Research 43, no. 4 (May 20, 2021): 511–26. http://dx.doi.org/10.1093/plankt/fbab038.

Full text
Abstract:
Abstract As both photoautotrophs and calcifiers, coccolithophores play important roles in ecosystems and biogeochemical cycles. Though some species form blooms in high-latitude waters, low-latitude communities exhibit high diversity and niche diversification. Despite such diversity, our understanding of the clade relies on knowledge of Emiliana huxleyi. To address this, we examine carbon (C) and nitrogen (N) content of strains (n = 9) from the main families of the calcifying Haptophyceae, as well as allometry and cell size frequency across extant species. Coccolithophore cell size is constrained, with ~71% of 159 species smaller than 10 μm in diameter. Growth rates scale with cell biovolume (μ = 1.83 × cell volume−0.19), with an exponent close to metabolic theory. Organic carbon (C) per cell is lower than for other phytoplankton, providing a coccolithophore-specific relationship between cell organic C content and biovolume (pg C cell−1 = 0.30 × cell volume0.70). Organic C to N ratios (~8.3 mol:mol) are similar to other phytoplankton, implying little additional N cost for calcification and efficient retention and recycling of cell N. Our results support observations that coccolithophores are efficient competitors in low-nutrient conditions, able to photosynthesize, calcify and run the routine metabolic machinery necessary without any additional need for N relative to noncalcifying algae.
APA, Harvard, Vancouver, ISO, and other styles
23

Moore, David. "Saving the planet with appropriate biotechnology: 4. Coccolithophore cultivation and deployment." Mexican Journal of Biotechnology 6, no. 1 (January 1, 2021): 129–55. http://dx.doi.org/10.29267/mxjb.2021.6.1.129.

Full text
Abstract:
Cultivating coccolithophore algae for carbon sequestration is discussed. Coccolithophores have been major calcium carbonate producers in the world’s oceans for about 250 million years. Today, they account for about a third of the total marine CaCO3 production by coating their single cells externally with plates of microcrystalline CaCO3. The possibility that these algae could be used to trap atmospheric CO2 with existing technology has not been widely considered. There is scope for both high technology cultivation in bioreactors and low technology cultivation in terraced raceway ponds or lagoons on tropical coastal sites. The latter could produce a sludge of pure CaCO3 as a feedstock for cement production in place of the fossilised limestone currently used (cement production accounts for around 8% of industrial fossil CO2 emissions). On the high seas coccolithophores naturally produce extensive blooms, which emit the volatile gas dimethyl sulfide to the atmosphere, where it promotes formation of clouds that block solar radiation. The vision is for aquaculture nurseries onboard factory ships, cultivating both coccolithophores and bivalve molluscs, creating and maintaining blooms of coccolithophores in the oceanic high seas to sequester carbon from the atmosphere and generate cloud cover to cool the immediate environment.
APA, Harvard, Vancouver, ISO, and other styles
24

Stanichny, Sergey V., Elena A. Kubryakova, and Arseny A. Kubryakov. "Quasi-tropical cyclone caused anomalous autumn coccolithophore bloom in the Black Sea." Biogeosciences 18, no. 10 (May 26, 2021): 3173–88. http://dx.doi.org/10.5194/bg-18-3173-2021.

Full text
Abstract:
Abstract. A quasi-tropical cyclone (QTC) observed over the Black Sea on 25–29 September 2005 caused an exceptionally strong anomalous autumn coccolithophore bloom that lasted for more than 1.5 months. The QTC induced intense upwelling, causing a decrease in sea surface temperature of 15 ∘C and an acceleration of the cyclonic Rim Current up to extreme values of 0.75 m s−1. The Rim Current transported nutrient-rich Danube plume waters from the northwestern shelf to the zone of the cyclone action. Baroclinic instabilities of the plume boundary caused intense submesoscale processes, accompanied by mixing of the shelf and upwelling of the waters. These processes triggered the initial growth of remote sensing reflectance (Rrs) on the offshore front of the plume, indicating the beginning of the coccolithophore bloom. Furthermore, the bloom shifted to the zone of the strongest upwelling in the western cyclonic gyre. Intense vertical entrainment of nutrients in this area caused the increase in chlorophyll a concentration (Chl), which was then followed by a strong bloom of coccolithophores. Advection by the Rim Current spread the bloom over the entire southern part of the Black Sea, more than 1000 km from its initial source. A month after the QTC action, Rrs in these areas reached a value of 0.018 sr−1, corresponding to an estimate of a coccolithophore concentration of 107 cells per liter.
APA, Harvard, Vancouver, ISO, and other styles
25

Dimiza, Margarita D., Maria V. Triantaphyllou, Elisa Malinverno, Stella Psarra, Boris-Theofanis Karatsolis, Paraskevi Mara, Anna Lagaria, and Alexandra Gogou. "The composition and distribution of living coccolithophores in the Aegean Sea (NE Mediterranean)." Micropaleontology 61, no. 6 (2016): 521–40. http://dx.doi.org/10.47894/mpal.61.6.09.

Full text
Abstract:
This study presents the species composition of living coccolithophore communities in the Aegean Sea (northeastern Mediterranean), investigating their spatial and temporal variations in various environmental conditions from mesotrophic to ultra- oligotrophic regions. Coccolithophores of the photic zone in the Aegean Sea are relatively diverse (65 heterococcolithophores and 34 holococcolithophores) and dominated mostly by Emiliania huxleyi, Syracosphaera spp., Rhabdosphaeraceae and holococcolithophores. Hierarchical classification using R-mode cluster analysis distinguished five coccolithophore groups: Group Ia (Emiliania huxleyi, Syracosphaera molischii and Syracosphaera ossa) prevails in the high cell density and low diversity assemblages during the winter and early spring, when low temperatures and high nutrient concentrations are prevailing. Particularly in the north Aegean, E. huxleyi is dominating the upper photic zone being affected by the Black Sea Water inflow and the associated control on the water column stratification. Group Ib (Florisphaera profunda, Algirosphaera robusta, Syracosphaera anthos and Syracosphaera lamina) becomes important in the lower photic zone, making up the typical deep assemblages, whereas Group Ic (mainly Helicosphaera carteri and Gephyrocapsa oceanica) implies an opportunistic behavior in distinctly polluted neritic regions. Group IIa (Rhabdosphaera clavigera, Syracosphaera protrudens, Syracosphaera halldalii and numerous holococcolithophores) dominates the late spring-early autumn low cell density and high diversity assemblages, mainly in the thermally-stratified south Aegean and/or shallow, coastal environments with normal/ oligotrophic conditions, while Group IIb (Umbellosphaera tenuis and Syracosphaera pulchra) dominates the coccolithophore assemblages mainly during the early autumn in the north Aegean, thus reflecting the influence of Levantine Intermediate Water masses in the middle-lower photic zone. Our results suggest that abundance and variability in Aegean Sea coccolithophore assemblages are primarily controlled by surface water circulation and the associated water column stratification,with the sea temperature gradient affecting species composition.
APA, Harvard, Vancouver, ISO, and other styles
26

Litchman, E., C. A. Klausmeier, J. R. Miller, O. M. Schofield, and P. G. Falkowski. "Multi-nutrient, multi-group model of present and future oceanic phytoplankton communities." Biogeosciences Discussions 3, no. 3 (June 19, 2006): 607–63. http://dx.doi.org/10.5194/bgd-3-607-2006.

Full text
Abstract:
Abstract. Phytoplankton community composition profoundly influences patterns of nutrient cycling and the structure of marine food webs; therefore predicting present and future phytoplankton community structure is of fundamental importance to understanding how ocean ecosystems are influenced by physical forcing and nutrient limitations. In this paper, we develop a mechanistic model of phytoplankton communities that includes multiple taxonomic groups, test the model at two contrasting sites in the modern ocean, and then use the model to predict community reorganization under different global change scenarios. The model includes three phytoplankton functional groups (diatoms, coccolithophores, and prasinophytes), five nutrients (nitrate, ammonium, phosphate, silicate and iron), light, and a generalist zooplankton grazer. Each taxonomic group was parameterized based on an extensive literature survey. The model successfully predicts the general patterns of community structure and succession in contrasting parts of the world ocean, the North Atlantic (North Atlantic Bloom Experiment, NABE) and subarctic North Pacific (ocean station Papa, OSP). In the North Atlantic, the model predicts a spring diatom bloom, followed by coccolithophore and prasinophyte blooms later in the season. The diatom bloom becomes silica-limited and the coccolithophore and prasinophyte blooms are controlled by nitrogen, grazers and by deep mixing and decreasing light availability later in the season. In the North Pacific, the model reproduces the low chlorophyll community dominated by prasinophytes and coccolithophores, with low total biomass variability and high nutrient concentrations throughout the year. Sensitivity analysis revealed that the identity of the most sensitive parameters and the range of acceptable parameters differed between the two sites. Five global change scenarios are used to drive the model and examine how community dynamics might change in the future. To estimate uncertainty in our predictions, we used a Monte Carlo sampling of the parameter space where future scenarios were run using parameter combinations that produced adequate modern day outcomes. The first scenario is based on a global climate model that indicates that increased greenhouse gas concentrations will cause a later onset and extended duration of stratification and shallower mixed layer depths. Under this scenario, the North Atlantic spring diatom bloom occurs later and is of a smaller magnitude, but the average biomass of diatoms, coccolithophores and prasinophytes will likely increase. In the subarctic North Pacific, diatoms and prasinophytes will likely increase along with total chlorophyll concentration and zooplankton. In contrast, coccolithophore densities do not change at this site. Under the second scenario of decreased deep-water phosphorus concentration, coccolithophores, total chlorophyll and zooplankton decline, as well as the magnitude of the spring diatom bloom, while the average diatom and prasinophyte abundance does not change in the North Atlantic. In contrast, a decrease in phosphorus in the North Pacific is not likely to change community composition. Similarly, doubling of nitrate in deep water does not significantly affect ecosystems at either site. Under decreased iron deposition, coccolithophores are likely to increase and other phytoplankton groups and zooplankton to decrease at both sites. An increase in iron deposition is likely to increase prasinophyte and diatom abundance and decrease coccolithophore abundance at both sites, although more dramatically at the North Pacific site. Total chlorophyll and zooplankton are also likely to increase under this scenario at both sites. Based on these scenarios, our model suggests that global environmental change will inevitably alter phytoplankton community structure and potentially impact global biogeochemical cycles.
APA, Harvard, Vancouver, ISO, and other styles
27

Charalampopoulou, Anastasia, Alex J. Poulton, Dorothee C. E. Bakker, Mike I. Lucas, Mark C. Stinchcombe, and Toby Tyrrell. "Environmental drivers of coccolithophore abundance and calcification across Drake Passage (Southern Ocean)." Biogeosciences 13, no. 21 (November 1, 2016): 5917–35. http://dx.doi.org/10.5194/bg-13-5917-2016.

Full text
Abstract:
Abstract. Although coccolithophores are not as numerically common or as diverse in the Southern Ocean as they are in subpolar waters of the North Atlantic, a few species, such as Emiliania huxleyi, are found during the summer months. Little is actually known about the calcite production (CP) of these communities or how their distribution and physiology relate to environmental variables in this region. In February 2009, we made observations across Drake Passage (between South America and the Antarctic Peninsula) of coccolithophore distribution, CP, primary production, chlorophyll a and macronutrient concentrations, irradiance and carbonate chemistry. Although CP represented less than 1 % of total carbon fixation, coccolithophores were widespread across Drake Passage. The B/C morphotype of E. huxleyi was the dominant coccolithophore, with low estimates of coccolith calcite (∼ 0.01 pmol C coccolith−1) from biometric measurements. Both cell-normalised calcification (0.01–0.16 pmol C cell−1 d−1) and total CP (< 20 µmol C m−3 d−1) were much lower than those observed in the subpolar North Atlantic where E. huxleyi morphotype A is dominant. However, estimates of coccolith production rates were similar (0.1–1.2 coccoliths cell−1 h−1) to previous measurements made in the subpolar North Atlantic. A multivariate statistical approach found that temperature and irradiance together were best able to explain the observed variation in species distribution and abundance (Spearman's rank correlation ρ = 0.4, p < 0.01). Rates of calcification per cell and coccolith production, as well as community CP and E. huxleyi abundance, were all positively correlated (p < 0.05) to the strong latitudinal gradient in temperature, irradiance and calcite saturation states across Drake Passage. Broadly, our results lend support to recent suggestions that coccolithophores, especially E. huxleyi, are advancing polewards. However, our in situ observations indicate that this may owe more to sea-surface warming and increasing irradiance rather than increasing CO2 concentrations.
APA, Harvard, Vancouver, ISO, and other styles
28

Oviedo, A., P. Ziveri, M. Álvarez, and T. Tanhua. "Is coccolithophore distribution in the Mediterranean Sea related to seawater carbonate chemistry?" Ocean Science 11, no. 1 (January 9, 2015): 13–32. http://dx.doi.org/10.5194/os-11-13-2015.

Full text
Abstract:
Abstract. The Mediterranean Sea is considered a "hot spot" for climate change, being characterized by oligotrophic to ultra-oligotrophic waters and rapidly increasing seasurface temperature and changing carbonate chemistry. Coccolithophores are considered a dominant phytoplankton group in these waters. As marine calcifying organisms they are expected to respond to the ongoing changes in seawater carbonate chemistry. We provide here a description of the springtime coccolithophore distribution in the Mediterranean Sea and relate this to a broad set of in situ-measured environmental variables. Samples were taken during the R/V Meteor (M84/3) oceanographic cruise in April 2011, between 0 and 100 m water depth from 28 stations. Total diatom and silicoflagellate cell concentrations are also presented. Our results highlight the importance of seawater carbonate chemistry, especially [CO32−] but also [PO43−] in unraveling the distribution of heterococcolithophores, the most abundant coccolithophore life phase. Holo- and heterococcolithophores respond differently to environmental factors. For instance, changes in heterococcolithophore assemblages were best linked to the combination of [CO32−], pH, and salinity (ρ = 0.57), although salinity might be not functionally related to coccolithophore assemblage distribution. Holococcolithophores, on the other hand, showed higher abundances and species diversity in oligotrophic areas (best fit, ρ = 0.32 for nutrients), thriving in nutrient-depleted waters. Clustering of heterococcolithophores revealed three groups of species sharing more than 65% similarities. These clusters could be assigned to the eastern and western basins and deeper layers (below 50 m), respectively. In addition, the species Gephyrocapsa oceanica, G. muellerae, and Emiliania huxleyi morphotype B/C are spatially distributed together and trace the influx of Atlantic waters into the Mediterranean Sea. The results of the present work emphasize the importance of considering holo- and heterococcolithophores separately when analyzing changes in species assemblages and diversity. Our findings suggest that coccolithophores are a main phytoplankton group in the entire Mediterranean Sea and can dominate over siliceous phytoplankton. They have life stages that are expected to respond differently to the variability in seawater carbonate chemistry and nutrient concentrations.
APA, Harvard, Vancouver, ISO, and other styles
29

Díaz-Rosas, Francisco, Catharina Alves-de-Souza, Emilio Alarcón, Eduardo Menschel, Humberto E. González, Rodrigo Torres, and Peter von Dassow. "Abundances and morphotypes of the coccolithophore &lt;i&gt;Emiliania huxleyi&lt;/i&gt; in southern Patagonia compared to neighbouring oceans and Northern Hemisphere fjords." Biogeosciences 18, no. 19 (October 8, 2021): 5465–89. http://dx.doi.org/10.5194/bg-18-5465-2021.

Full text
Abstract:
Abstract. Coccolithophores are potentially affected by ongoing ocean acidification, where rising CO2 lowers seawater pH and calcite saturation state (Ωcal). Southern Patagonian fjords and channels provide natural laboratories for studying these issues due to high variability in physical and chemical conditions. We surveyed coccolithophore assemblages in Patagonian fjords during late spring 2015 and early spring 2017. Surface Ωcal exhibited large variations driven mostly by freshwater inputs. High-Ωcal conditions (max. 3.6) occurred in the Archipelago Madre de Dios. Ωcal ranged from 2.0–2.6 in the western Strait of Magellan and 1.5–2.2 in the inner channel and was subsaturating (0.5) in Skyring Sound. Emiliania huxleyi was the only coccolithophore widely distributed in Patagonian fjords (> 96 % of total coccolithophores), only disappearing in the Skyring Sound, a semi-closed mesohaline system. Correspondence analysis associated higher E. huxleyi biomasses with lower diatom biomasses. The highest E. huxleyi abundances in Patagonia were in the lower range of those reported in Norwegian fjords. Predominant morphotypes were distinct from those previously documented in nearby oceans but similar to those of Norwegian fjords. Moderately calcified forms of E. huxleyi A morphotype were uniformly distributed throughout Patagonia fjords. The exceptional R/hyper-calcified coccoliths, associated with low Ωcal values in Chilean and Peruvian coastal upwellings, were a minor component associated with high Ωcal levels in Patagonia. Outlying mean index (OMI) niche analysis suggested that pH and Ωcal conditions explained most variation in the realized niches of E. huxleyi morphotypes. The moderately calcified A morphotype exhibited the widest niche breadth (generalist), while the R/hyper-calcified morphotype exhibited a more restricted realized niche (specialist). Nevertheless, when considering an expanded sampling domain, including nearby southeast Pacific coastal and offshore waters, even the R/hyper-calcified morphotype exhibited a higher niche breadth than other closely phylogenetically related coccolithophore species. The occurrence of E. huxleyi in naturally low pH–Ωcal environments indicates that its ecological response is plastic and capable of adaptation.
APA, Harvard, Vancouver, ISO, and other styles
30

Hattich, Giannina S. I., Luisa Listmann, Julia Raab, Dorthe Ozod-Seradj, Thorsten B. H. Reusch, and Birte Matthiessen. "Inter- and intraspecific phenotypic plasticity of three phytoplankton species in response to ocean acidification." Biology Letters 13, no. 2 (February 2017): 20160774. http://dx.doi.org/10.1098/rsbl.2016.0774.

Full text
Abstract:
Phenotypic plasticity describes the phenotypic adjustment of the same genotype to different environmental conditions and is best described by a reaction norm. We focus on the effect of ocean acidification on inter- and intraspecific reaction norms of three globally important phytoplankton species ( Emiliania huxleyi, Gephyrocapsa oceanica and Chaetoceros affinis ). Despite significant differences in growth rates between the species, they all showed a high potential for phenotypic buffering (similar growth rates between ambient and high CO 2 conditions). Only three coccolithophore genotypes showed a reduced growth in high CO 2 . Diverging responses to high CO 2 of single coccolithophore genotypes compared with the respective mean species responses, however, raise the question of whether an extrapolation to the population level is possible from single-genotype experiments. We therefore compared the mean response of all tested genotypes with a total species response comprising the same genotypes, which was not significantly different in the coccolithophores. Assessing species reaction norms to different environmental conditions on short time scale in a genotype-mix could thus reduce sampling effort while increasing predictive power.
APA, Harvard, Vancouver, ISO, and other styles
31

Dimiza, M. D., and M. V. Triantaphyllou. "COMPARING LIVING AND HOLOCENE COCCOLITHOPHORE ASSEMBLAGES IN THE AEGEAN MARINE ENVIRONMENTS." Bulletin of the Geological Society of Greece 43, no. 2 (January 23, 2017): 602. http://dx.doi.org/10.12681/bgsg.11222.

Full text
Abstract:
Detailed quantitative analyses of coccolithophores performed on the shallow deposits of the southeastern Aegean region (core NS-14, 505 m depth), evidenced that the distribution of calcare-ous nannoplankton assemblages during the last 13 ka BP reflects paleoenvironmental changes which are directly related to parameters such as temperature, salinity, productivity and nutrient flux in the water column. Analysis enabled the separation of the assemblages in four groups. Group A consists of Emiliania huxleyi and the subtropical species Syracosphaera spp. and Rhabdosphaera clavigera, Group B is composed of Helicospaera spp. and Florisphaera profunda, typical species for high productivity conditions in the middle-lower photic zone, Group C consists of Gephyrocapsa oceanica and Braarudosphaera bigelowii, that characterise low salinity conditions and Group D includes Umbilicosphaera spp. and Calcidiscus spp. which are described as relatively eutrophic species. The Holocene assemblages differ distinctly from the living coccolithophore communities in the coastal ecosystems of the Aegean Sea, where only Group A coccolithophores are thriving in the seasonally controlled marine environment.
APA, Harvard, Vancouver, ISO, and other styles
32

Perrin, Laura, Ian Probert, Gerald Langer, and Giovanni Aloisi. "Growth of the coccolithophore <i>Emiliania huxleyi</i> in light- and nutrient-limited batch reactors: relevance for the BIOSOPE deep ecological niche of coccolithophores." Biogeosciences 13, no. 21 (November 2, 2016): 5983–6001. http://dx.doi.org/10.5194/bg-13-5983-2016.

Full text
Abstract:
Abstract. Coccolithophores are unicellular calcifying marine algae that play an important role in the oceanic carbon cycle via their cellular processes of photosynthesis (a CO2 sink) and calcification (a CO2 source). In contrast to the well-studied, surface-water coccolithophore blooms visible from satellites, the lower photic zone is a poorly known but potentially important ecological niche for coccolithophores in terms of primary production and carbon export to the deep ocean. In this study, the physiological responses of an Emiliania huxleyi strain to conditions simulating the deep niche in the oligotrophic gyres along the BIOSOPE transect in the South Pacific Gyre were investigated. We carried out batch culture experiments with an E. huxleyi strain isolated from the BIOSOPE transect, reproducing the in situ conditions of light and nutrient (nitrate and phosphate) limitation. By simulating coccolithophore growth using an internal stores (Droop) model, we were able to constrain fundamental physiological parameters for this E. huxleyi strain. We show that simple batch experiments, in conjunction with physiological modelling, can provide reliable estimates of fundamental physiological parameters for E. huxleyi that are usually obtained experimentally in more time-consuming and costly chemostat experiments. The combination of culture experiments, physiological modelling and in situ data from the BIOSOPE cruise show that E. huxleyi growth in the deep BIOSOPE niche is limited by availability of light and nitrate. This study contributes more widely to the understanding of E. huxleyi physiology and behaviour in a low-light and oligotrophic environment of the ocean.
APA, Harvard, Vancouver, ISO, and other styles
33

Bonomo, Sergio, Michael Grelaud, Allesandro Incarbona, Elisa Malinverno, Francesco Placenti, Angelo Bonanno, Enrico Di Stefano, et al. "Living Coccolithophores from the Gulf of Sirte (Southern Mediterranean Sea) during the summer of 2008." Micropaleontology 58, no. 6 (2012): 487–503. http://dx.doi.org/10.47894/mpal.58.6.02.

Full text
Abstract:
The Gulf of Sirte is a largely unexplored area in the southernmost Mediterranean Sea.We are presenting here 2008 summer data on the distribution pattern of living coccolithophores, a main phytoplankton calcifying group, in 105 samples from 20 stations. The survey includes coastal and offshore stations, enabling us to provide indications on the dynamics of phytoplankton productivity in relation to oceanographic processes. The total coccosphere concentrations show higher values in the offshore stations and lower ones for coastal sites. Umbellosphaera tenuis, Emiliania huxleyi, Florisphaera profunda, Syracosphaera pulchra HOL (Calyptrosphaera oblonga) and Rhabdosphaera spp. dominate the assemblages. The coccolithophore community shows the typical vertical zonation, with K-strategist taxa (among others U. tenuis, Rhabdosphaera spp. and Discosphaera tubifera) in the upper 75 meters depth and Lower Photic Zone taxa, dominated by F. profunda, below. The latter species shows its maximum development in the Deep Chlorophyll Maximum layer, which occurs in the upper part of the Levantine Intermediate Water, where the nutrient content is higher than in the overlying layers. The mesoscale oceanographic circulation significantly affects the spatial and vertical distribution of coccolithophores, with the thermocline and halocline depth shaping the vertical zonation of coccolithophore taxa and resulting in a strong lateral gradient within the gulf: in the eastern sector, under the influence of the Gulf of Sirte anticyclone, the DCM is deeper and so is the occurrence of K-strategist taxa and F. profunda.
APA, Harvard, Vancouver, ISO, and other styles
34

Silkin, Vladimir, Alexander S. Mikaelyan, Larisa Pautova, and Alexey Fedorov. "Annual Dynamics of Phytoplankton in the Black Sea in Relation to Wind Exposure." Journal of Marine Science and Engineering 9, no. 12 (December 15, 2021): 1435. http://dx.doi.org/10.3390/jmse9121435.

Full text
Abstract:
Studies of the annual dynamics of phytoplankton in the NE Black Sea at two stations on the shelf and the continental slope were conducted in 2016, 2017, and 2019. The species composition of phytoplankton has not undergone significant changes compared to previous decades. The coccolithophore Emiliania huxleyi, small flagellates, and diatoms determined the abundance of phytoplankton; and diatoms, coccolithophores, and dinoflagellates determined the total biomass. The annual dynamics of the satellite-derived chlorophyll-a showed peaks in spring and autumn, and sometimes in summer. During the stratified water column period, strong winds in most cases led to a detectible increase in chlorophyll-a. The annual dynamics of phytoplankton followed the pattern: small diatoms (spring) → coccolithophores (late spring, early summer) → large diatoms (summer, autumn). Such a pattern was typical for the previous decades. Coccolithophores dominated in weak SE winds, diatoms in NE winds. The combined effect of sustained offshore wind and strong current can cause diatom blooms during stratified water, even if the wind velocity is moderate.
APA, Harvard, Vancouver, ISO, and other styles
35

Rickaby, R. E. M., J. Henderiks, and J. N. Young. "Perturbing phytoplankton: response and isotopic fractionation with changing carbonate chemistry in two coccolithophore species." Climate of the Past 6, no. 6 (December 1, 2010): 771–85. http://dx.doi.org/10.5194/cp-6-771-2010.

Full text
Abstract:
Abstract. All species of coccolithophore appear to respond to perturbations of carbonate chemistry in a different way. Here, we show that the degree of malformation, growth rate and stable isotopic composition of organic matter and carbonate produced by two contrasting species of coccolithophore (Gephyrocapsa oceanica and Coccolithus pelagicus ssp. braarudii) are indicative of differences between their photosynthetic and calcification response to changing DIC levels (ranging from ~1100 to ~7800 μmol kg−1) at constant pH (8.13 ± 0.02). Gephyrocapsa oceanica thrived under all conditions of DIC, showing evidence of increased growth rates at higher DIC, but C. braarudii was detrimentally affected at high DIC showing signs of malformation, and decreased growth rates. The carbon isotopic fractionation into organic matter and the coccoliths suggests that C. braarudii utilises a common internal pool of carbon for calcification and photosynthesis but G. oceanica relies on independent supplies for each process. All coccolithophores appear to utilize bicarbonate as their ultimate source of carbon for calcification resulting in the release of a proton. But, we suggest that this proton can be harnessed to enhance the supply of CO2(aq) for photosynthesis either from a large internal HCO3- pool which acts as a pH buffer (C. braarudii), or pumped externally to aid the diffusive supply of CO2 across the membrane from the abundant HCO3- (G. oceanica), likely mediated by an internal and external carbonic anhydrase respectively. Our simplified hypothetical spectrum of physiologies may provide a context to understand different species response to changing pH and DIC, the species-specific εp and calcite "vital effects", as well as accounting for geological trends in coccolithophore cell size.
APA, Harvard, Vancouver, ISO, and other styles
36

Rickaby, R. E. M., J. Henderiks, and J. N. Young. "Perturbing phytoplankton: a tale of isotopic fractionation in two coccolithophore species." Climate of the Past Discussions 6, no. 2 (March 4, 2010): 257–94. http://dx.doi.org/10.5194/cpd-6-257-2010.

Full text
Abstract:
Abstract. No two species of coccolithophore appear to respond to perturbations of carbonate chemistry in the same way. Here, we show that the degree of malformation, growth rate and stable isotopic composition of organic matter and carbonate produced by two contrasting species of coccolithophore (Gephyrocapsa oceanica and Coccolithus pelagicus ssp. braarudii) are indicative of differences between their photosynthetic and calcification response to changing dissolved inorganic carbon (DIC) levels (ranging from ~1100 to ~7800 μmol kg−1) at constant pH (8.13±0.02). G. oceanica thrived under all conditions of DIC, showing evidence of increased growth rates at higher DIC, but C. braarudii was detrimentally affected at high DIC showing signs of malformation, and decreased growth rates. The carbon isotopic fractionation into organic matter and the coccoliths suggests that C. braarudii utilises a common internal pool of carbon for calcification and photosynthesis but G. oceanica relies on independent supplies for each process. All coccolithophores appear to utilize bicarbonate as their ultimate source of carbon for calcification resulting in the release of a proton. But, we suggest that this proton can be harnessed to enhance the supply of aqueous dissolved carbon dioxide (CO2(aq)) for photosynthesis either from a large internal bicarbonate ion (HCO3-) pool which acts as a pH buffer (C. braarudii), or pumped externally to aid the diffusive supply of CO2 across the membrane from the abundant HCO3- (G. oceanica), likely mediated by an internal and external carbonic anhydrase, respectively. Our simplified hypothetical spectrum of physiologies may provide a context to understand different species response to changing pH and DIC, the species-specific εp and calcite "vital effects", as well as accounting for geological trends in coccolithophore cell size.
APA, Harvard, Vancouver, ISO, and other styles
37

Young, Jeremy R., Jose-Abel Flores, and Mario Cachao. "Quaternary coccolithophore palaeoceanography." Marine Micropaleontology 69, no. 1 (October 2008): 1–2. http://dx.doi.org/10.1016/j.marmicro.2007.11.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Berger, C., K. J. S. Meier, H. Kinkel, and K. H. Baumann. "Changes in calcification of coccoliths under stable atmospheric CO<sub>2</sub>." Biogeosciences 11, no. 4 (February 20, 2014): 929–44. http://dx.doi.org/10.5194/bg-11-929-2014.

Full text
Abstract:
Abstract. The response of coccolithophore calcification to ocean acidification has been studied in culture experiments as well as in present and past oceans. The response, however, is different between species and strains, and for the relatively small carbonate chemistry changes observed in natural environments, a uniform response of the entire coccolithophore community has not been documented so far. Moreover, previous palaeo-studies basically focus on changes in coccolith weight due to increasing CO2 and the resulting changes in the carbonate system, and only few studies focus on the influence of other environmental factors. In order to untangle changes in coccolithophore calcification due to environmental factors such as temperature and/or productivity from changes caused by increasing pCO2 and decreasing carbonate ion concentration, we here present a study on coccolith calcification from the Holocene North Atlantic Ocean. The pre-industrial Holocene, with its predominantly stable atmospheric CO2, provides the conditions for such a comprehensive analysis. For an analysis on changes in major components of Holocene coccolithophores under natural conditions, the family Noelaerhabdaceae was selected, which constitutes the main part of the assemblage in the North Atlantic. Records of average coccolith weights from three Holocene sediment cores along a north–south transect in the North Atlantic were analysed. During the Holocene, mean weight (and therefore calcification) of Noelaerhabdaceae (Emiliania huxleyi and Gephyrocapsa) coccoliths decreased at the Azores (Geofar KF 16) from around 7 to 6 pg, but increased at the Rockall Plateau (ODP site 980) from around 6 to 8 pg, and at the Vøring Plateau (MD08-3192) from 7 to 10 pg. The amplitude of average weight variability is within the range of glacial–interglacial changes that were interpreted to be an effect of decreasing carbonate ion concentration. By comparison with SEM assemblage counts, we show that weight changes are not only partly due to variations in the coccolithophore assemblage but also an effect of a change in calcification and/or morphotype variability within single species. Our results indicate that there is no single key factor responsible for the observed changes in coccolith weight. A major increase in coccolith weight occurs during a slight decrease in carbonate ion concentration in the late Holocene at the Rockall Plateau and Vøring Plateau. Here, more favourable productivity conditions apparently lead to an increase in coccolith weight, either due to the capability of coccolithophore species, especially E. huxleyi, to adapt to decreasing carbonate ion concentration or due to a shift towards heavier calcifying morphotypes.
APA, Harvard, Vancouver, ISO, and other styles
39

Young, Jeremy R., and Harald Andruleit. "<i>Navilithus altivelum</i>: a remarkable new genus and species of deep photic coccolithophores." Journal of Micropalaeontology 25, no. 2 (November 1, 2006): 141–51. http://dx.doi.org/10.1144/jm.25.2.141.

Full text
Abstract:
Abstract. A very distinctive new deep-photic coccolithophore is described from the NE Indian Ocean. The new species is trimorphic with: 200–300 body coccoliths bearing low spines attached by narrow stems to a basal narrow-rimmed placolith structure; up to 18 circum-flagellar coccoliths with tall sail-like spines; and up to 22 coccoliths with moderately elevated spines occurring both around the circum-flagellar coccoliths and antapically. These features make the coccolithophore unique and require placement in a new species and genus. The basal structure, however, shows similarities to a recently recognized group of narrow-rimmed placoliths. Hence, the new coccolithophore provides some support for this grouping as a significant addition to our understanding of coccolithophore biodiversity, and potentially an explanation for a set of anomalous molecular genetic results. In addition the new taxon provides further evidence that the deep-photic coccolithophore community is more diverse than has been assumed.
APA, Harvard, Vancouver, ISO, and other styles
40

Halloran, P. R., I. R. Hall, E. Colmenero-Hidalgo, and R. E. M. Rickaby. "Evidence for a multi-species coccolith volume change over the past two centuries: understanding a potential ocean acidification response." Biogeosciences 5, no. 6 (December 10, 2008): 1651–55. http://dx.doi.org/10.5194/bg-5-1651-2008.

Full text
Abstract:
Abstract. Major questions surround the species-specific nature of coccolithophore calcification in response to rising atmospheric CO2 levels. Here we present CaCO3 particle volume distribution data from the coccolith size-fraction of a rapidly accumulating North Atlantic sediment core. Without direct volume measurements on coccoliths produced by individual coccolithophore species, and knowledge of organic, as well as inorganic carbon production, it is not possible to state conclusively the coccolithophore calcification change at this site. However, by analysing the size distribution of CaCO3 particles in the less than 10 μm sediment fraction, we demonstrate a changing particle volume since the late 20th Century consistent with an increase in the mass of coccoliths produced by the larger coccolithophore species, and potentially a decrease in mass of coccoliths produced by the smaller species, present at this location. This finding has significant implications for the realistic representation of an assemblage-wide coccolithophore CO2-calcification response in numerical models.
APA, Harvard, Vancouver, ISO, and other styles
41

O'Brien, C. J., J. A. Peloquin, M. Vogt, M. Heinle, N. Gruber, P. Ajani, H. Andruleit, et al. "Global marine plankton functional type biomass distributions: coccolithophores." Earth System Science Data Discussions 5, no. 2 (July 24, 2012): 491–520. http://dx.doi.org/10.5194/essdd-5-491-2012.

Full text
Abstract:
Abstract. Coccolithophores are calcifying marine phytoplankton of the class Prymnesiophyceae. They are considered to play an import role in the global carbon cycle through the production and export of organic carbon and calcite. We have compiled observations of global coccolithophore abundance from several existing databases as well as individual contributions of published and unpublished datasets. We estimate carbon biomass using standardised conversion methods and provide estimates of uncertainty associated with these values. The database contains 58 384 individual observations at various taxonomic levels. This corresponds to 12 391 observations of total coccolithophore abundance and biomass. The data span a time period of 1929–2008, with observations from all ocean basins and all seasons, and at depths ranging from the surface to 500 m. Highest biomass values are reported in the North Atlantic, with a maximum of 501.7 μg C l−1. Lower values are reported for the Pacific (maximum of 79.4 μg C l−1) and Indian Ocean (up to 178.3 μg C l−1). Coccolithophores are reported across all latitudes in the Northern Hemisphere, from the Equator to 89° N, although biomass values fall below 3 μg C l−1 north of 70° N. In the Southern Hemisphere, biomass values fall rapidly south of 50° S, with only a single non-zero observation south of 60° S. Biomass values show a clear seasonal cycle in the Northern Hemisphere, reaching a maximum in the summer months (June–July). In the Southern Hemisphere the seasonal cycle is less evident, possibly due to a greater proportion of low-latitude data. The original and gridded datasets can be downloaded from Pangaea (http://doi.pangaea.de/10.1594/PANGAEA.785092).
APA, Harvard, Vancouver, ISO, and other styles
42

Müller, M. N., M. Lebrato, U. Riebesell, J. Barcelos e Ramos, K. G. Schulz, S. Blanco-Ameijeiras, S. Sett, A. Eisenhauer, and H. M. Stoll. "Influence of temperature and CO<sub>2</sub> on the strontium and magnesium composition of coccolithophore calcite." Biogeosciences Discussions 10, no. 10 (October 2, 2013): 15559–86. http://dx.doi.org/10.5194/bgd-10-15559-2013.

Full text
Abstract:
Abstract. Marine calcareous sediments provide a fundamental basis for paleoceanographic studies aiming to reconstruct past oceanic conditions and understand key biogeochemical element cycles. Calcifying unicellular phytoplankton (coccolithophores) are a major contributor to both carbon and calcium cycling by photosynthesis and the production of calcite (coccoliths) in the euphotic zone and the subsequent long-term deposition and burial into marine sediments. Here we present data from controlled laboratory experiments on four coccolithophore species and elucidate the relation between the divalent cation (Sr, Mg and Ca) partitioning in coccoliths and cellular physiology (growth, calcification and photosynthesis). Coccolithophores were cultured under different seawater temperature and carbonate chemistry conditions. The partition coefficient of strontium (DSr) was positively correlated with both carbon dioxide (pCO2) and temperature but displayed no coherent relation to particulate organic and inorganic carbon production rates. Furthermore, DSr correlated positively with cellular growth rates when driven by temperature but no correlation was present when changes in growth rates were pCO2-induced. The results demonstrate the complex interaction between environmental forcing and physiological control on the strontium partitioning in coccolithophore calcite. The partition coefficient of magnesium (DMg) displayed species-specific differences and elevated values under nutrient limitation. No conclusive correlation between coccolith DMg and temperature was observed but pCO2 induced a rising trend in coccolith DMg. Interestingly, the best correlation was found between coccolith DMg and chlorophyll a production suggesting that chlorophyll a and calcite associated Mg originate from the same intracellular pool. These results give an extended insight into the driving factors that lead to variations in the coccolith Mg / Ca ratio and can be used for Sr / Ca and Mg / Ca paleoproxy calibration.
APA, Harvard, Vancouver, ISO, and other styles
43

Saavedra-Pellitero, Mariem, Karl-Heinz Baumann, Miguel Ángel Fuertes, Hartmut Schulz, Yann Marcon, Nele Manon Vollmar, José-Abel Flores, and Frank Lamy. "Calcification and latitudinal distribution of extant coccolithophores across the Drake Passage during late austral summer 2016." Biogeosciences 16, no. 19 (September 30, 2019): 3679–702. http://dx.doi.org/10.5194/bg-16-3679-2019.

Full text
Abstract:
Abstract. Coccolithophores are globally distributed microscopic marine algae that exert a major influence on the global carbon cycle through calcification and primary productivity. There is recent interest in coccolithophore polar communities; however field observations regarding their biogeographic distribution are scarce for the Southern Ocean (SO). This study documents the latitudinal, as well as in depth, variability in the coccolithophore assemblage composition and the coccolith mass variation in the ecologically dominant Emiliania huxleyi across the Drake Passage. Ninety-six water samples were taken between 10 and 150 m water depth from 18 stations during POLARSTERN Expedition PS97 (February–April 2016). A minimum of 200 coccospheres per sample were identified in the scanning electron microscope, and coccolith mass was estimated with light microscopy. We find that coccolithophore abundance, diversity and maximum depth habitat decrease southwards, marking different oceanographic fronts as ecological boundaries. We characterize three zones: (1) the Chilean margin, where E. huxleyi type A (normal and overcalcified) and type R are present; (2) the Subantarctic Zone (SAZ), where E. huxleyi reaches maximum values of 212.5×103 cells L−1 and types B/C, C and O are dominant; and (3) the Polar Front Zone (PFZ), where E. huxleyi types B/C and C dominate. We link the decreasing trend in E. huxleyi coccolith mass to the poleward latitudinal succession from the type A to the type B group. Remarkably, we find that coccolith mass is strongly anticorrelated to total alkalinity, total CO2, the bicarbonate ion and pH. We speculate that low temperatures are a greater limiting factor than carbonate chemistry in the Southern Ocean. However, further in situ oceanographic data are needed to verify the proposed relationships. We hypothesize that assemblage composition and calcification modes of E. huxleyi in the Drake Passage will be strongly influenced by the ongoing climate change.
APA, Harvard, Vancouver, ISO, and other styles
44

Benner, Ina, Rachel E. Diner, Stephane C. Lefebvre, Dian Li, Tomoko Komada, Edward J. Carpenter, and Jonathon H. Stillman. "Emiliania huxleyi increases calcification but not expression of calcification-related genes in long-term exposure to elevated temperature and p CO 2." Philosophical Transactions of the Royal Society B: Biological Sciences 368, no. 1627 (October 5, 2013): 20130049. http://dx.doi.org/10.1098/rstb.2013.0049.

Full text
Abstract:
Increased atmospheric p CO 2 is expected to render future oceans warmer and more acidic than they are at present. Calcifying organisms such as coccolithophores that fix and export carbon into the deep sea provide feedbacks to increasing atmospheric p CO 2 . Acclimation experiments suggest negative effects of warming and acidification on coccolithophore calcification, but the ability of these organisms to adapt to future environmental conditions is not well understood. Here, we tested the combined effect of p CO 2 and temperature on the coccolithophore Emiliania huxleyi over more than 700 generations. Cells increased inorganic carbon content and calcification rate under warm and acidified conditions compared with ambient conditions, whereas organic carbon content and primary production did not show any change. In contrast to findings from short-term experiments, our results suggest that long-term acclimation or adaptation could change, or even reverse, negative calcification responses in E. huxleyi and its feedback to the global carbon cycle. Genome-wide profiles of gene expression using RNA-seq revealed that genes thought to be essential for calcification are not those that are most strongly differentially expressed under long-term exposure to future ocean conditions. Rather, differentially expressed genes observed here represent new targets to study responses to ocean acidification and warming.
APA, Harvard, Vancouver, ISO, and other styles
45

Walsh, Pamela, Kathryn Fee, Susan Clarke, Matthew Julius, and Fraser Buchanan. "Blueprints for the Next Generation of Bioinspired and Biomimetic Mineralised Composites for Bone Regeneration." Marine Drugs 16, no. 8 (August 20, 2018): 288. http://dx.doi.org/10.3390/md16080288.

Full text
Abstract:
Coccolithophores are unicellular marine phytoplankton, which produce intricate, tightly regulated, exoskeleton calcite structures. The formation of biogenic calcite occurs either intracellularly, forming ‘wheel-like’ calcite plates, or extracellularly, forming ‘tiled-like’ plates known as coccoliths. Secreted coccoliths then self-assemble into multiple layers to form the coccosphere, creating a protective wall around the organism. The cell wall hosts a variety of unique species-specific inorganic morphologies that cannot be replicated synthetically. Although biomineralisation has been extensively studied, it is still not fully understood. It is becoming more apparent that biologically controlled mineralisation is still an elusive goal. A key question to address is how nature goes from basic building blocks to the ultrafine, highly organised structures found in coccolithophores. A better understanding of coccolithophore biomineralisation will offer new insight into biomimetic and bioinspired synthesis of advanced, functionalised materials for bone tissue regeneration. The purpose of this review is to spark new interest in biomineralisation and gain new insight into coccolithophores from a material science perspective, drawing on existing knowledge from taxonomists, geologists, palaeontologists and phycologists.
APA, Harvard, Vancouver, ISO, and other styles
46

Henderiks, J., and R. E. M. Rickaby. "A coccolithophore concept for constraining the Cenozoic carbon cycle." Biogeosciences 4, no. 3 (June 19, 2007): 323–29. http://dx.doi.org/10.5194/bg-4-323-2007.

Full text
Abstract:
Abstract. An urgent question for future climate, in light of increased burning of fossil fuels, is the temperature sensitivity of the climate system to atmospheric carbon dioxide (pCO>sub>2). To date, no direct proxy for past levels of pCO2 exists beyond the reach of the polar ice core records. We propose a new methodology for placing a constraint on pCO2 over the Cenozoic based on the physiological plasticity of extant coccolithophores. Specifically, our premise is that the contrasting calcification tolerance of various extant species of coccolithophore to raised pCO2 reflects an "evolutionary memory" of past atmospheric composition. The different times of evolution of certain morphospecies allows an upper constraint of past pCO2 to be placed on Cenozoic timeslices. Further, our hypothesis has implications for the response of marine calcifiers to ocean acidification. Geologically "ancient" species, which have survived large changes in ocean chemistry, are likely more resilient to predicted acidification.
APA, Harvard, Vancouver, ISO, and other styles
47

Halloran, P. R., I. R. Hall, E. Colmenero-Hidalgo, and R. E. M. Rickaby. "A multi-species coccolith volume response to an anthropogenically-modified ocean." Biogeosciences Discussions 5, no. 4 (July 23, 2008): 2923–30. http://dx.doi.org/10.5194/bgd-5-2923-2008.

Full text
Abstract:
Abstract. Major questions surround the species-specific nature of coccolithophore calcification in response to rising atmospheric CO2 levels. Here we present CaCO3 particle volume distribution data from the coccolith size-fraction of a rapidly accumulating North Atlantic sediment core. These data appear to indicate that coccoliths produced by the larger coccolithophore species present at this location increase in mass in parallel with anthropogenic CO2 release. This finding has significant implications for the realistic representation of an assemblage-wide coccolithophore CO2-calcification response in numerical models.
APA, Harvard, Vancouver, ISO, and other styles
48

Triantaphyllou, M. V., A. Antonarakou, K. Kouli, M. Dimiza, G. Kontakiotis, P. Ziveri, G. Mortyn, V. Lykousis, and M. D. Dermitzakis. "PLANKTON ECOSTRATIGRAPHY AND POLLEN ASSEMBLAGE ZONES OVER THE LAST 14 000 YEARS IN SE AEGEAN SEA (CORE NS-14)." Bulletin of the Geological Society of Greece 40, no. 1 (June 8, 2018): 209. http://dx.doi.org/10.12681/bgsg.16515.

Full text
Abstract:
A quantitative analysis of coccolithophores, planktonic foraminifera and pollen assemblages was carried out on core NS-14 (SE Aegean Sea), recovered in the Western Kos Basin. Eleven coccolithophore (ACE 1-11) and ten planktonic foraminifera (APFE1-10) ecozones have been recognized during the last 14 000 yrs using calcareous nannofossil and planktonic foraminifera abundances. Additionally eight pollen assemblage zones (PAZ 1-8) have been recognised. The established high resolution ecozonal scheme allows a detailed paleoecological reconstruction for the Holocene archive in the SE Aegean Sea, defining two warm and humid phases (9300-8600 yr caiBP and 7600-6400 yr caiBP) associated with the deposition of SI and a third one between 5200-4200 yr ca[BP.
APA, Harvard, Vancouver, ISO, and other styles
49

Giraud, X. "Modelling an alkenone-like proxy record in the NW African upwelling." Biogeosciences 3, no. 3 (June 21, 2006): 251–69. http://dx.doi.org/10.5194/bg-3-251-2006.

Full text
Abstract:
Abstract. A regional biogeochemical model is applied to the NW African coastal upwelling between 19° N and 27° N to investigate how a water temperature proxy, alkenones, are produced at the sea surface and recorded in the slope sediments. The biogeochemical model has two phytoplankton groups: an alkenone producer group, considered to be coccolithophores, and a group comprising other phytoplankton. The Regional Ocean Modelling System (ROMS) is used to simulate the ocean circulation and takes advantage of the Adaptive Grid Refinement in Fortran (AGRIF) package to set up an embedded griding system. In the simulations the alkenone temperature records in the sediments are between 1.1 and 2.3°C colder than the annual mean SSTs. Despite the seasonality of the coccolithophore production, this temperature difference is not mainly due to a seasonal bias, nor to the lateral advection of phytoplankton and phytodetritus seaward from the cold near-shore waters, but to the production depth of the coccolithophores. If coretop alkenone temperatures are effectively recording the annual mean SSTs, the amount of alkenone produced must vary among the coccolithophores in the water column and depend on physiological factors (e.g. growth rate, nutrient stress).
APA, Harvard, Vancouver, ISO, and other styles
50

Luan, Qingshan, Jianqiang Sun, and Jun Wang. "Large-scale distribution of coccolithophores and Parmales in the surface waters of the Atlantic Ocean." Journal of the Marine Biological Association of the United Kingdom 98, no. 3 (December 20, 2016): 567–79. http://dx.doi.org/10.1017/s0025315416001740.

Full text
Abstract:
Coccolithophores and Parmales are important functional groups of calcified and siliceous marine nanophytoplankton. Large-scale biogeographic distributions of the two groups were investigated based on 71 samples that were collected in the Atlantic Ocean. Using a scanning electron microscope, a total of 48 taxa of coccolithophores and eight taxa of Parmales were recorded, with Emiliania huxleyi, Tetraparma pelagica and Triparma strigata as the predominant forms. The highest abundances of coccolithophores (376 × 103 cells l−1) and Parmales (624 × 103 cells l−1) were observed in waters north-east of the Falkland Islands and the South Georgia Island, in close association with the Subantarctic Front and Polar Front, respectively. Three major biogeographic assemblages, i.e. the Falkland Shelf Assemblage, the Southern Ocean Assemblage and the Atlantic Ocean Assemblage, were revealed in cluster analysis. Additionally, canonical correspondence analysis indicated that temperature significantly affects the latitudinal patterns of the two algal groups. High abundances of Parmales were closely coupled with those of E. huxleyi in waters of the Southern Ocean with low temperature (<10°C). However, the number of coccolithophore species, along with the Shannon–Weaver diversity, significantly increased with elevated temperature, suggesting more diverse assemblages in tropical waters.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography