Journal articles on the topic 'Cochlear microphonics potential'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Cochlear microphonics potential.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Nishida, Hiroaki, Mayumi Okada, Yasuo Tanaka, and Yoshie Inoue. "Evoked Otoacoustic Emissions and Electrocochleography in a Patient with Multiple Sclerosis." Annals of Otology, Rhinology & Laryngology 104, no. 6 (1995): 456–62. http://dx.doi.org/10.1177/000348949510400608.
Full textBouman, Henk, John C. M. J. de Groot, Sjaak F. L. Klis, Guido F. Smoorenburg, Frits Meeuwsen, and Jan E. Veldman. "Experimental Autoimmune Inner Ear Disease: An Electrocochleographic and Histophysiologic Study." Annals of Otology, Rhinology & Laryngology 109, no. 5 (2000): 457–66. http://dx.doi.org/10.1177/000348940010900504.
Full textYamada, Katsushi, Kimitaka Kaga, Akira Uno, Hideaki Sakata, and Toshihero Tsuzuku. "Auditory Evoked Responses under Total Spinal Anesthesia in Rats." Annals of Otology, Rhinology & Laryngology 106, no. 12 (1997): 1087–92. http://dx.doi.org/10.1177/000348949710601214.
Full textYamamura, K., N. Yamamoto, A. Kohyama, Y. Sawada, H. Ohno, and Y. Saitoh. "Effect of intense sound exposure on cochlear microphonics and whole nerve action potential." Journal of Sound and Vibration 131, no. 2 (1989): 287–94. http://dx.doi.org/10.1016/0022-460x(89)90493-8.
Full textKomune, Shizuo, and Tamotsu Morimitsu. "Dissociation of the cochlear microphonics and endocochlear potential after injection of ethacrynic acid." Archives of Oto-Rhino-Laryngology 241, no. 2 (1985): 149–56. http://dx.doi.org/10.1007/bf00454348.
Full textZidanic, M., and W. E. Brownell. "Fine structure of the intracochlear potential field. II. Tone-evoked waveforms and cochlear microphonics." Journal of Neurophysiology 67, no. 1 (1992): 108–24. http://dx.doi.org/10.1152/jn.1992.67.1.108.
Full textSkinner, Liam J., Véronique Enée, Maryline Beurg, et al. "Contribution of BK Ca2+-Activated K+ Channels to Auditory Neurotransmission in the Guinea Pig Cochlea." Journal of Neurophysiology 90, no. 1 (2003): 320–32. http://dx.doi.org/10.1152/jn.01155.2002.
Full textKobayashi, Toshimitsu, Daniel C. Marcus, You Rong, Kenji Ohyama, Toshihiko Chiba, and Tomonori Takasaka. "Ototoxic Effect of Erythromycin on Cochlear Potentials in the Guinea Pig." Annals of Otology, Rhinology & Laryngology 106, no. 7 (1997): 599–603. http://dx.doi.org/10.1177/000348949710600713.
Full textHANDA, TORU. "EFFECTS OF HEAVY METAL IONS IN ENDOCOCHLEAR DC POTENTIAL AND COCHLEAR MICROPHONICS IN THE GUINEA PIG." Nippon Jibiinkoka Gakkai Kaiho 94, no. 9 (1991): 1127–33. http://dx.doi.org/10.3950/jibiinkoka.94.9_1127.
Full textRuggero, M. A., and N. C. Rich. "Timing of spike initiation in cochlear afferents: dependence on site of innervation." Journal of Neurophysiology 58, no. 2 (1987): 379–403. http://dx.doi.org/10.1152/jn.1987.58.2.379.
Full textKössl, M., E. Foeller, M. Drexl, et al. "Postnatal Development of Cochlear Function in the Mustached Bat, Pteronotus parnellii." Journal of Neurophysiology 90, no. 4 (2003): 2261–73. http://dx.doi.org/10.1152/jn.00100.2003.
Full textCampbell, Luke, Christofer Bester, Claire Iseli, et al. "Electrophysiological Evidence of the Basilar-Membrane Travelling Wave and Frequency Place Coding of Sound in Cochlear Implant Recipients." Audiology and Neurotology 22, no. 3 (2017): 180–89. http://dx.doi.org/10.1159/000478692.
Full textEl Afia, Fahd, Fabrice Giraudet, Laurent Gilain, Thierry Mom, and Paul Avan. "Resistance of Gerbil Auditory Function to Reversible Decrease in Cochlear Blood Flow." Audiology and Neurotology 22, no. 2 (2017): 89–95. http://dx.doi.org/10.1159/000478650.
Full textFu, Mingyu, Mengzi Chen, Xiao Yan, Xueying Yang, Jinfang Xiao, and Jie Tang. "The Effects of Urethane on Rat Outer Hair Cells." Neural Plasticity 2016 (2016): 1–11. http://dx.doi.org/10.1155/2016/3512098.
Full textSugisawa, T., R. Nemoto, N. Inada, K. Yamamura, and A. Ishida. "Effect of 4 kHz Tone Exposure on the Guinea Pig Inner Ear: Relation in the Change of Cochlear Microphonics, Action Potential, Electrochemical Potential and K+ Ion Concentration Induced by Noise Exposure." ORL 56, no. 5 (1994): 263–68. http://dx.doi.org/10.1159/000276670.
Full textMeenderink, Sebastiaan W. F., and Marcel van der Heijden. "Reverse Cochlear Propagation in the Intact Cochlea of the Gerbil: Evidence for Slow Traveling Waves." Journal of Neurophysiology 103, no. 3 (2010): 1448–55. http://dx.doi.org/10.1152/jn.00899.2009.
Full textZheng, Jiefu, Chunfu Dai, Peter S. Steyger, et al. "Vanilloid Receptors in Hearing: Altered Cochlear Sensitivity by Vanilloids and Expression of TRPV1 in the Organ of Corti." Journal of Neurophysiology 90, no. 1 (2003): 444–55. http://dx.doi.org/10.1152/jn.00919.2002.
Full textSeidman, Michael D., Bhagylakshmi G. Shivapuja, and Wayne S. Quirk. "The Protective Effects of Allopurinol and Superoxide Dismutase on Noise-Induced Cochlear Damage." Otolaryngology–Head and Neck Surgery 109, no. 6 (1993): 1052–56. http://dx.doi.org/10.1177/019459989310900613.
Full textBonfils, Pierre, Marie-Claude Remond, and Rèmy Pujol. "Variations of cochlear microphonic potential after sectioning efferent fibers to the cochlea." Hearing Research 30, no. 2-3 (1987): 267–71. http://dx.doi.org/10.1016/0378-5955(87)90142-0.
Full textFridberger, Anders, Jiefu Zheng, Anand Parthasarathi, Tianying Ren, and Alfred Nuttall. "Loud Sound-Induced Changes in Cochlear Mechanics." Journal of Neurophysiology 88, no. 5 (2002): 2341–48. http://dx.doi.org/10.1152/jn.00192.2002.
Full textCarricondo, Francisco, Julio Sanjuán-Juaristi, Pablo Gil-Loyzaga, and Joaquín Poch-Broto. "Cochlear Microphonic Potentials: A New Recording Technique." Annals of Otology, Rhinology & Laryngology 110, no. 6 (2001): 565–73. http://dx.doi.org/10.1177/000348940111000612.
Full textGroff, J. Alan, and M. Charles Liberman. "Modulation of Cochlear Afferent Response by the Lateral Olivocochlear System: Activation Via Electrical Stimulation of the Inferior Colliculus." Journal of Neurophysiology 90, no. 5 (2003): 3178–200. http://dx.doi.org/10.1152/jn.00537.2003.
Full textLataye, Robert, Katy Maguin, and Pierre Campo. "Increase in cochlear microphonic potential after toluene administration." Hearing Research 230, no. 1-2 (2007): 34–42. http://dx.doi.org/10.1016/j.heares.2007.04.002.
Full textNoguchi, Yoshihiro, Atsushi Komatsuzaki, and Hiroaki Nishida. "Cochlear Microphonic Potentials in Patients with Vestibular Schwannomas." ORL 60, no. 5 (1998): 283–90. http://dx.doi.org/10.1159/000027611.
Full textSoares, Ilka do Amaral, Pedro de Lemos Menezes, Aline Tenório Lins Carnaúba, Kelly Cristina Lira de Andrade, and Otávio Gomes Lins. "Study of cochlear microphonic potentials in auditory neuropathy." Brazilian Journal of Otorhinolaryngology 82, no. 6 (2016): 722–36. http://dx.doi.org/10.1016/j.bjorl.2015.11.022.
Full textNISHIDA, HIROAKI, ATSUNOBU TSUNODA, YOSHIHIRO NOGUCHI, ATSUSHI KOMATSUZAKI, KAZUNORI YOKOYAMA, and YUKINORI OGAWA. "COCHLEAR MICROPHONIC POTENTIAL (CM) RECORDABLE AT NON-SHIELDED BEDSIDE." Nippon Jibiinkoka Gakkai Kaiho 98, no. 5 (1995): 825–31. http://dx.doi.org/10.3950/jibiinkoka.98.825.
Full textSanjuán Juaristi, Julio. "A procedure to Obtain the Recruitment Using Cochlear Microphonic Potentials." Acta Otorrinolaringologica (English Edition) 59, no. 3 (2008): 102–7. http://dx.doi.org/10.1016/s2173-5735(08)70203-5.
Full textMarangos, N. "Hearing loss in multiple sclerosis: localization of the auditory pathway lesion according to electrocochleographic findings." Journal of Laryngology & Otology 110, no. 3 (1996): 252–57. http://dx.doi.org/10.1017/s002221510013333x.
Full textButinar, Dušan, Arnold Starr, and Jagoda Vatovec. "Brainstem auditory evoked potentials and cochlear microphonics in the HMSN family with auditory neuropathy." Pflügers Archiv - European Journal of Physiology 439, S1 (2000): r204—r205. http://dx.doi.org/10.1007/s004240000146.
Full textButinar, Dušan, Arnold Starr, and Jagoda Vatovec. "Brainstem auditory evoked potentials and cochlear microphonics in the HMSN family with auditory neuropathy." Pflügers Archiv - European Journal of Physiology 439, no. 7 (2000): R204—R205. http://dx.doi.org/10.1007/bf03376572.
Full textKim, Young S., Timothy A. Jones, Mark E. Chertoff, and William C. Nunnally. "Columella footplate motion and the cochlear microphonic potential in the embryo and hatchling chicken." Journal of the Acoustical Society of America 120, no. 6 (2006): 3811–21. http://dx.doi.org/10.1121/1.2359236.
Full textWoolf, N. K., A. F. Ryan, and J. P. Harris. "Development of mammalian endocochlear potential: normal ontogeny and effects of anoxia." American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 250, no. 3 (1986): R493—R498. http://dx.doi.org/10.1152/ajpregu.1986.250.3.r493.
Full textEdoardo Arslan, Rosamaria Santarell. "Compound Action Potential and Cochlear Microphonic Extracted from Electrocochleographic Responses to Condensation or Rarefaction Clicks." Acta Oto-Laryngologica 120, no. 2 (2000): 192–96. http://dx.doi.org/10.1080/000164800750000892.
Full textFechter, Laurence D., and Ye Liu. "Trimethyltin disrupts N1 sensitivity, but has limited effects on the summating potential and cochlear microphonic." Hearing Research 78, no. 2 (1994): 189–96. http://dx.doi.org/10.1016/0378-5955(94)90025-6.
Full textJones, Heath G., Kanthaiah Koka, and Daniel J. Tollin. "Postnatal development of cochlear microphonic and compound action potentials in a precocious species, Chinchilla lanigera." Journal of the Acoustical Society of America 130, no. 1 (2011): EL38—EL43. http://dx.doi.org/10.1121/1.3601881.
Full textHe, Wenxuan, Edward Porsov, David Kemp, Alfred L. Nuttall, and Tianying Ren. "The Group Delay and Suppression Pattern of the Cochlear Microphonic Potential Recorded at the Round Window." PLoS ONE 7, no. 3 (2012): e34356. http://dx.doi.org/10.1371/journal.pone.0034356.
Full textStarr, A., Y. Sininger, T. Nguyen, H. J. Michalewski, S. Oba, and C. Abdala. "Cochlear Receptor (Microphonic and Summating Potentials, Otoacoustic Emissions) and Auditory Pathway (Auditory Brain Stem Potentials) Activity in Auditory Neuropathy." Ear and Hearing 22, no. 2 (2001): 91–99. http://dx.doi.org/10.1097/00003446-200104000-00002.
Full textHunter, Lisa L., Chelsea M. Blankenship, Rebekah G. Gunter, et al. "Cochlear Microphonic and Summating Potential Responses from Click-Evoked Auditory Brain Stem Responses in High-Risk and Normal Infants." Journal of the American Academy of Audiology 29, no. 05 (2018): 427–42. http://dx.doi.org/10.3766/jaaa.17085.
Full textMinoda, Ryosei, Takafumi Toriya, Keisuke Masuyama, and Eiji Yumoto. "The effects of histamine and its antagonists on the cochlear microphonic and the compound action potential of the guinea pig." Auris Nasus Larynx 28, no. 3 (2001): 219–22. http://dx.doi.org/10.1016/s0385-8146(01)00051-7.
Full textSente, Marko. "The history of audiology." Medical review 57, no. 11-12 (2004): 611–16. http://dx.doi.org/10.2298/mpns0412611s.
Full textFreeman, S., S. Zaaroura, and H. Sohmer. "Concomitant changes in the acoustic impedance and the cochlear microphonic potentials during twitch contractions of the middle ear muscles in cats." Archives of Oto-Rhino-Laryngology 245, no. 5 (1988): 311–15. http://dx.doi.org/10.1007/bf00464639.
Full textJamos, Abdullah M., Blair Hosier, Shelby Davis, and Thomas C. Franklin. "The Role of the Medial Olivocochlear Reflex in Acceptable Noise Level in Adults." Journal of the American Academy of Audiology 32, no. 03 (2021): 137–43. http://dx.doi.org/10.1055/s-0040-1718705.
Full textHe, David Z. Z., and Peter Dallos. "Development of Acetylcholine-Induced Responses in Neonatal Gerbil Outer Hair Cells." Journal of Neurophysiology 81, no. 3 (1999): 1162–70. http://dx.doi.org/10.1152/jn.1999.81.3.1162.
Full textRuggero, Mario A., Luis Robles, and Nola C. Rich. "Cochlear microphonics and the initiation of spikes in the auditory nerve: Correlation of single‐unit data with neural and receptor potentials recorded from the round window." Journal of the Acoustical Society of America 79, no. 5 (1986): 1491–98. http://dx.doi.org/10.1121/1.393763.
Full textKawasaki, M., D. Margoliash, and N. Suga. "Delay-tuned combination-sensitive neurons in the auditory cortex of the vocalizing mustached bat." Journal of Neurophysiology 59, no. 2 (1988): 623–35. http://dx.doi.org/10.1152/jn.1988.59.2.623.
Full textChen, Jin, Yan Zhu, Chun Liang, Jing Chen, and Hong-Bo Zhao. "Pannexin1 channels dominate ATP release in the cochlea ensuring endocochlear potential and auditory receptor potential generation and hearing." Scientific Reports 5, no. 1 (2015). http://dx.doi.org/10.1038/srep10762.
Full textLukashkina, Victoria A., Snezana Levic, Andrei N. Lukashkin, Nicola Strenzke, and Ian J. Russell. "A connexin30 mutation rescues hearing and reveals roles for gap junctions in cochlear amplification and micromechanics." Nature Communications 8, no. 1 (2017). http://dx.doi.org/10.1038/ncomms14530.
Full textCurthoys, Ian S., John Wally Grant, Christopher J. Pastras, Laura Fröhlich, and Daniel J. Brown. "Similarities and Differences Between Vestibular and Cochlear Systems – A Review of Clinical and Physiological Evidence." Frontiers in Neuroscience 15 (August 12, 2021). http://dx.doi.org/10.3389/fnins.2021.695179.
Full textLi, Yi, Huizhan Liu, Xiaochang Zhao, and David Z. He. "Endolymphatic Potential Measured From Developing and Adult Mouse Inner Ear." Frontiers in Cellular Neuroscience 14 (December 7, 2020). http://dx.doi.org/10.3389/fncel.2020.584928.
Full textSugisawa, T., A. Ishida, S. Hotta, and K. Yamamura. "The effect of 6 kHz tone exposure on inner ear function of the guinea pig: relation to changes in cochlear microphonics, action potential, endocochlear potential and chemical potentials of K+-ions and Na+-ions, using a double-barrel glass electrode." European Archives of Oto-Rhino-Laryngology 251, no. 3 (1994). http://dx.doi.org/10.1007/bf00181827.
Full text