Academic literature on the topic 'Coconut coir'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Coconut coir.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Coconut coir"
Indahyani, Titi. "Pemanfaatan Limbah Sabut Kelapa pada Perencanaan Interior dan Furniture yang Berdampak pada Pemberdayaan Masyarakat Miskin." Humaniora 2, no. 1 (April 30, 2011): 15. http://dx.doi.org/10.21512/humaniora.v2i1.2941.
Full textCHRISTITA, MARGARETTA, and ADY SURYAWAN. "ECONOMICAL AND ECOLOGICAL FRIENDLY OF GROWTH MEDIA FOR EDIBLE MUSHROOM Pleurotus ostreatus MADE OF THE COCONUT WASTE." Jurnal Biologi Udayana 22, no. 1 (June 30, 2018): 35. http://dx.doi.org/10.24843/jbiounud.2018.v22.i01.p05.
Full textIhwan, Khairul, and Roberta Zulfhi Surya. "Analisa Potensi Pengembangan Energi Alternative Berbasis Limbah Kelapa Di Kabupaten Indragiri Hilir." JUTI UNISI 3, no. 2 (December 28, 2019): 27–31. http://dx.doi.org/10.32520/juti.v3i2.840.
Full textMudiyono, R., and S. Sudarno. "The Influence of Coconut Fiber on the Compressive and Flexural Strength of Paving Blocks." Engineering, Technology & Applied Science Research 9, no. 5 (October 9, 2019): 4702–5. http://dx.doi.org/10.48084/etasr.3008.
Full textBradley, Walter L., and Sean Conroy. "Using Agricultural Waste to Create More Environmentally Friendly and Affordable Products and Help Poor Coconut Farmers." E3S Web of Conferences 130 (2019): 01034. http://dx.doi.org/10.1051/e3sconf/201913001034.
Full textP. Chandy Mathew. "RUBBERISED COIR INDUSTRY - AN INTRODUCTION." CORD 4, no. 01 (December 1, 1988): 34. http://dx.doi.org/10.37833/cord.v4i01.211.
Full textMK Raghunadh, Yakkala, Neeluri Suresh, Mohd Mujtaba Ahmed, Konduru Ashok, and A. Indra reddy. "Investigation of Energy Values in Tender Coconut by Various Methods." International Journal of Engineering & Technology 7, no. 4.5 (September 22, 2018): 217. http://dx.doi.org/10.14419/ijet.v7i4.5.20049.
Full textZhia, Nurfajriah, Halim Mahfud, and Rudhy Ho Purabaya. "VALUE ADDED MODEL OF COCONUT PROCESSING INDUSTRY (CASE STUDY)." Journal of Industrial Engineering Management 6, no. 2 (August 20, 2021): 11–16. http://dx.doi.org/10.33536/jiem.v6i2.927.
Full textDas, D., M. Kadiruzzaman, SK Adhikary, MY Kabir, and M. Akhtaruzzaman. "Yield performance of oyster mushroom (Pleurotus ostreatus) on different substrates." Bangladesh Journal of Agricultural Research 38, no. 4 (May 25, 2014): 613–23. http://dx.doi.org/10.3329/bjar.v38i4.18946.
Full textIkhsan, Zahlul, Intan Sari, Suryadi Suryadi, and Dede Suhendra. "RESPON KOMBINASI PUPUK KCl DAN PUPUK ORGANIK CAIR (POC) SABUT KELAPA TERHADAP PERTUMBUHAN JAGUNG MANIS (Zea mays saccaharata Sturt) DI TANAH GAMBUT." JURNAL AGROPLASMA 7, no. 1 (May 31, 2020): 40–52. http://dx.doi.org/10.36987/agroplasma.v7i1.1757.
Full textDissertations / Theses on the topic "Coconut coir"
Garcia, Arcos Marcos 1963. "Evaluation of coconut coir-based media in transplant production." Thesis, The University of Arizona, 1997. http://hdl.handle.net/10150/278591.
Full textDeRose, Haley Nicole. "Coconut Coir as a Vertical Textile in Soilless Growth Systems." Kent State University / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=kent1619537140131192.
Full textBeozzi, Sara. "Valorização de resíduos orgânicos na formulação de substratos alternativos à turfa para a produção de plantas aromáticas envasadas em modo de produção biológico." Master's thesis, ISA/UTL, 2013. http://hdl.handle.net/10400.5/5737.
Full textThe objective of this work was to evaluate the performance of two coconut coir and one compost (based on forestry wastes and horse manure), as components of peat-free substrates for the organic production (OP) of potted herbs. Seven different species of herbs were grown in seven peat-free substrates (based on coir and compost), one peat based substrate certified for OP (control) and two peat based substrate certified for OP with an extra fertilization. One of the tested coconut coir was phyto-toxic, with a Munoo-Liisa Vitality index of 9%, produced small plants with a poor root system. In all seven species, plants growth in the mixtures of non-phytotoxic coir and compost was equal or higher than the growth in control, showing that these peat-free mixtures are a viable alternative, cheaper than commercial substrates. Extra fertilization tended to increase plants growth, showing the need to optimize fertilization. Coconut fiber and compost can be successfully used as substrate components for organic production of potted herbs, once phytotoxicity is evaluated and fertilization optimized
Lowry, Bonita Kristine. "Zinnia Growth and Water Use Efficiency in a Rate Study of Coconut Coir Pith and Sphagnum Peat Moss in Container Growing Substrates." The Ohio State University, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=osu1419244167.
Full textSOUSA, Jokderlea Correa de. "Estudo da cinética de cristalização do compósito poli(butileno-adipato-co-tereftalato)/fibra de coco." Universidade Federal de Pernambuco, 2016. https://repositorio.ufpe.br/handle/123456789/17526.
Full textMade available in DSpace on 2016-07-22T13:49:26Z (GMT). No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Dissertação Jokderléa - Versão digital.pdf: 2657401 bytes, checksum: aa4dfc40144fb6bdb5d19dd66aa43470 (MD5) Previous issue date: 2016-02-25
FINEP
ANP
PRH
Neste trabalho estudou-se compósitos poliméricos obtidos a partir de um poliéster biodegradável e fibra de coco (Cocus nucifera), uma fibra abundante na região Nordeste e para a qual não existem relatos na literatura de sua utilização em compósitos com o poli(butileno-adipato-co-tereftalato)(PBAT). O uso de fibra de coco nas formulações é uma alternativa para redução de custos, pois propõe uma substituição parcial do polímero a ser utilizado. Estudou-se a influência da fibra sobre as propriedades reológicas e térmicas dos compósitos. As fibras naturais foram secas e classificadas antes de sua utilização. Foi realizado um teste preliminar por Calorimetria Diferencial Exploratória (DSC) com o PBAT onde foi definida a temperatura de fusão para o processamento no reômetro. Compósitos de PBAT e fibra de coco foram preparados com formulações de 10, 20, 30, 40 e 50% em massa de fibra em um misturador interno. Foi possível quantificar a dependência do torque com a velocidade de rotação dos rotores pelo índice de pseudoplasticidade através da lei da potência. A avaliação reológica dos compósitos obtidos mostrou a dependência do torque e da temperatura com a quantidade de fibra adicionada. Foi realizado um estudo sobre a cristalização dos compósitos com 10, 20 e 30% de fibra comparando com o polímero puro, submetido as mesmas condições de preparação. A análise dos resultados obtidos pelo DSC indicou que a adição de fibras nos compósitos alterou a temperatura de cristalização para valores mais elevados, sugerindo que as fibras podem ter um efeito nucleante. Os compósitos quando submetidos a variações nas velocidades de resfriamento, mostraram que o processo de cristalização se altera, deslocando os picos de cristalização para temperaturas menores, conforme aumentava a velocidade de arrefecimento. Foi construído o modelo cinético de Pseudo-Avrami para o compósito PBAT/10% fibra de coco, pois seus parâmetros de cristalização apresentaram desvios menores ou próximos de 10% em relação ao PBAT puro. Houve boa adequação dos modelos aos dados experimentais nas três taxas de resfriamento utilizadas.
In this work, it was studied polymer composites made from a biodegradable polyester and natural coconut fibre (Cocus nucifera). Great abundance of this fibre can be found in the northeast areas of Brazil, and there are no reports in the literature of its use in polymer composites with poly (butylene-adipate-co-terephthalate). The use of coconut fiber in the formulations is an alternative for reducing costs, because it proposes a partial replacement for the polymer to be used. The study assessed the effects of the fibre on rheological and thermal properties of the biocomposites. Natural fibres were dried and classified before its utilization. Initially, the PBAT characterization was performed by differential scanning calorimetry in which were defined the melting temperature for processing in the rheometer. Composites of PBAT and coconut fibre were prepered with formulations containing 10, 20, 30, 40 and 50% in mass of fibre in the internal mixer. It was possible to quantify the dependence of torque with rotor speeds by the pseudoplasticity index through the power law. The rheological evaluation of the obtained composites showed the dependency on torque and temperature with the amount of fiber added. A study was conducted on composites crystallization of 10, 20 and 30% of fibre comparing it to the pure polymer submitted to the same conditions of preparation. Analysis of the results obtained by DSC indicated that the addition of fibres in the composite altered the crystallization temperature to higher values, suggesting that the fibres may have a nucleating effect. The composites when exposed to variations in the cooling rates, showed that the crystallization process is changed, displacing the crystallization peaks to lower temperatures as the cooling rate was increased. It was built the kinetic model of Pseudo-Avrami for the composite PBAT/10% coconut fibre, because its crystallization parameters showed lower error values or near 10% compared to pure PBAT. There was a good adjustment between models and experimental data in the three cooling rates utilized.
Cabala, Guillermo Van Erven. "Estudo do comportamento mec?nico de estruturas de solo-cimento refor?ado com fibras de coco e hastes de bambu." Universidade Federal do Rio Grande do Norte, 2007. http://repositorio.ufrn.br:8080/jspui/handle/123456789/18332.
Full textIn this work the use of coconut fiber (coir) and bamboo shafts as reinforcement of soil-cement was studied, in order to obtain an alternative material to make stakes for fences in rural properties. The main objective was to study the effect of the addition of reinforcement to the soil-cement matrix. The effect of humidity on the mechanical properties was also analyzed. The soil-cement mortar was composed by a mixture, in equal parts, of soil and river sand, 14% in weight of cement and 10 % in weight of water. As reinforcement, different combinations of (a) coconut fiber with 15 mm mean length (0,3 %, 0,6 % and 1,2 % in weight) and (b) bamboo shafts, also in crescent quantities (2, 4 and 8 shafts per specimen) were used. For each combination 6 specimens were made and these were submitted to three point flexural test after 28 days of cure. In order to evaluate the effect of humidity, 1 specimen from each of the coconut fiber reinforced combination was immersed in water 24 hours prior to flexural test. The results of the tests carried out indicated that the addition of the reinforcement affected negatively the mechanical resistance and, on the other hand, increased the tenacity and the ductility of the material.
Neste trabalho foi estudada a utiliza??o de fibra de coco e de hastes de bambu como refor?o de solo-cimento, para obten??o de um material alternativo para a confec??o de estacas para cercas em propriedades agr?colas. O objetivo principal foi estudar o efeito da adi??o de solo-cimento e, tamb?m, avaliar o efeito da umidade sobre a resist?ncia mec?nica. A argamassa de solo-cimento foi composta por uma mistura em partes iguais de solo e areia de rio (solo corrigido), 14 % em peso de cimento e 10 % em peso de ?gua. Com o refor?o foram utilizadas diferentes combina??es de (a) fibra de coco com comprimento m?dio de 15 mm (teores de 0,3 %, 0,6 % e 1,2 % em peso) e (b) hastes de bambu, tamb?m em quantidades crescentes (2, 4 e 8 hastes por corpo-de-prova). Foram confeccionados 6 corpos-de-prova para cada tratamento e esses foram submetidos a ensaios de reflex?o de tr?s pontos aos 28 dias de cura. Para avalia??o do efeito da umidade, 1 corpo de prova de cada tratamento refor?ado com fibra de coco foi imerso em ?gua pro 24 horas um dia antes da realiza??o do ensaio de flex?o. Os resultados mostraram que a inclus?o do refor?o no solo-cimento influencia negativamente a resist?ncia mec?nica e, em contrapartida, resulta no aumento da tenacidade e ductilidade do material
Books on the topic "Coconut coir"
Reddy, Narendra. Sustainable Applications of Coir and Other Coconut By-products. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-21055-7.
Full textK, Kokula Krishna Hari, ed. Determination of Modulus of Elasticity of Hybrid composite material with reinforcement of Coconut coir: ICIEMS 2014. India: Association of Scientists, Developers and Faculties, 2014.
Find full textReddy, Narendra. Sustainable Applications of Coir and Other Coconut By-products. Springer, 2019.
Find full textBridging The Gap Between Engineering And The Global World A Case Study Of The Coconut Coir Fiber Industry In Kerala India. Morgan & Claypool, 2008.
Find full textBook chapters on the topic "Coconut coir"
Jayasekara, Chitrangani, and Nalinie Amarasinghe. "Coir - Coconut Cultivation, Extraction and Processing of Coir." In Industrial Applications of Natural Fibres, 197–217. Chichester, UK: John Wiley & Sons, Ltd, 2010. http://dx.doi.org/10.1002/9780470660324.ch9.
Full textReddy, Narendra. "Agricultural Applications of Coir." In Sustainable Applications of Coir and Other Coconut By-products, 31–54. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-21055-7_2.
Full textReddy, Narendra. "Energy Applications of Coir." In Sustainable Applications of Coir and Other Coconut By-products, 95–113. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-21055-7_5.
Full textReddy, Narendra. "Coir for Environmental Remediation." In Sustainable Applications of Coir and Other Coconut By-products, 115–40. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-21055-7_6.
Full textReddy, Narendra. "Composites from Coir Fibers." In Sustainable Applications of Coir and Other Coconut By-products, 141–85. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-21055-7_7.
Full textReddy, Narendra. "Applications of Coir Fibers in Construction." In Sustainable Applications of Coir and Other Coconut By-products, 75–93. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-21055-7_4.
Full textReddy, Narendra. "Miscellaneous Applications for Coir and Other Coconut By-products." In Sustainable Applications of Coir and Other Coconut By-products, 187–216. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-21055-7_8.
Full textUpadhe, Sudeep N., Jitesh K. Roman, Javed G. Dhalait, Rakesh S. Motgi, Ninad R. Patil, Devanshi A. Jhaveri, and Sunildatta N. Kulkarni. "Strength Analysis of Graphite-Epoxy-Coconut Coir Composite Material." In Techno-Societal 2018, 489–501. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-16848-3_45.
Full textReddy, Narendra. "Processing and Properties of Coconuts." In Sustainable Applications of Coir and Other Coconut By-products, 1–30. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-21055-7_1.
Full textReddy, Narendra. "Biotechnological Applications for Coir and Other Coconut Tree By-products." In Sustainable Applications of Coir and Other Coconut By-products, 55–73. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-21055-7_3.
Full textConference papers on the topic "Coconut coir"
Jaafar, A., M. F. A. Rahman, M. L. A. Jeni, M. H. Osman, Z. Awang, M. S. Abdullah, T. N. H. T. Ismail, and M. E. Sanik. "Coconut Coir Mat for Slope Vegetation." In Third International Conference on Separation Technology 2020 (ICoST 2020). Paris, France: Atlantis Press, 2020. http://dx.doi.org/10.2991/aer.k.201229.036.
Full textZaim, M., Refnaldi, Yofita Sandra, and Rifqi Aulia Zaim. "Creating Waste Coconut Coir as A Creative Art." In Ninth International Conference on Language and Arts (ICLA 2020). Paris, France: Atlantis Press, 2021. http://dx.doi.org/10.2991/assehr.k.210325.066.
Full textSilva, Giselle Moreira, Max de Castro Magalhães, and Adriana Guerra Guimieri. "Acoustical Properties of Coconut Coir Fibers Used as Multilayered Materials." In SAE Brasil Noise and Vibration Conference. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2008. http://dx.doi.org/10.4271/2008-36-0594.
Full textKassim, Syuhaimi, Hasliza A. Rahim, Fareq Malek, Nur Syahirah Sabli, and M. E. Mat Salleh. "UWB Nanocellulose Coconut Coir Fibre Inspired Antenna For 5G Applications." In 2019 International Conference on Communications, Signal Processing, and their Applications (ICCSPA). IEEE, 2019. http://dx.doi.org/10.1109/iccspa.2019.8713653.
Full textFatmawati, Akbarningrum, and Rudy Agustriyanto. "Kinetic study of enzymatic hydrolysis of acid-pretreated coconut coir." In INTERNATIONAL CONFERENCE OF CHEMICAL AND MATERIAL ENGINEERING (ICCME) 2015: Green Technology for Sustainable Chemical Products and Processes. AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4938297.
Full textR. Kosseva, Maria, Natasia A.S. Tjutju, and Billy D. Tantra. "ENZYMATIC HYDROLYSIS OF CELLULOSE IN COCONUT COIR: PRE-TREATED VIA SONICATION." In International Conference on Bioscience and Biotechnology. The International Institute of Knowledge Management (TIIKM), 2017. http://dx.doi.org/10.17501/biotech.2017.2107.
Full textAulia, Hadi Nur, Zulkurnain Abdul Malek, Yanuar Z. Arief, Muhamd Fahmi, and Z. Adzis. "Partial discharge and mechanical characteristics of NR-LLDPE-TiO2-coconut coir fibre." In 2013 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP 2013). IEEE, 2013. http://dx.doi.org/10.1109/ceidp.2013.6747451.
Full textYah, N. F. N., H. A. Rahim, M. Abdulmalek, Y. S. Lee, N. Z. Yahaya, M. Jusoh, Q. H. Abbasi, and Sehar Mirza. "Ultrathin Metamaterial Microwave Absorber Using Coconut Coir Fibre over X-Band Frequency Range." In 2019 International Conference on Communications, Signal Processing, and their Applications (ICCSPA). IEEE, 2019. http://dx.doi.org/10.1109/iccspa.2019.8713715.
Full textChaudhuri, M., and S. N. B. Saminal. "Coconut coir activated carbon: an adsorbent for removal of lead from aqueous solution." In RAVAGE OF THE PLANET III. Southampton, UK: WIT Press, 2011. http://dx.doi.org/10.2495/rav110101.
Full textSakthivel, P., S. Santhosh, K. Sriram, S. Sanjay, and N. Mohan Raj. "Investigation of mechanical properties for coconut coir and tamarind fiber reinforced composite materials." In PROCEEDINGS OF INTERNATIONAL CONFERENCE ON RECENT TRENDS IN MECHANICAL AND MATERIALS ENGINEERING: ICRTMME 2019. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0024927.
Full textReports on the topic "Coconut coir"
Bhattarai, Rabin, Yufan Zhang, and Jacob Wood. Evaluation of Various Perimeter Barrier Products. Illinois Center for Transportation, May 2021. http://dx.doi.org/10.36501/0197-9191/21-009.
Full text