Academic literature on the topic 'Coefficient of runoff'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Coefficient of runoff.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Coefficient of runoff"
Schärer, Lotte Askeland, Jan Ove Busklein, Edvard Sivertsen, and Tone M. Muthanna. "Limitations in using runoff coefficients for green and gray roof design." Hydrology Research 51, no. 2 (March 30, 2020): 339–50. http://dx.doi.org/10.2166/nh.2020.049.
Full textDel Giudice, G., R. Padulano, and G. Rasulo. "Factors affecting the runoff coefficient." Hydrology and Earth System Sciences Discussions 9, no. 4 (April 17, 2012): 4919–41. http://dx.doi.org/10.5194/hessd-9-4919-2012.
Full textŞen, Zekai, and Abdüsselam Altunkaynak. "A comparative fuzzy logic approach to runoff coefficient and runoff estimation." Hydrological Processes 20, no. 9 (2006): 1993–2009. http://dx.doi.org/10.1002/hyp.5992.
Full textZhao, Na Na, Fu Liang Yu, Chuan Zhe Li, Jia Liu, and Hao Wang. "An Experimental Study on the Rainfall-Runoff Progress of Wheat under Different Slope Angle." Advanced Materials Research 912-914 (April 2014): 1986–94. http://dx.doi.org/10.4028/www.scientific.net/amr.912-914.1986.
Full textZhang, Chao, Bo Fu Li, and Ying He Jiang. "Flush Rule and Initial Flush Analysis of Cement Concrete Pavement." Advanced Materials Research 941-944 (June 2014): 701–6. http://dx.doi.org/10.4028/www.scientific.net/amr.941-944.701.
Full textViglione, A., R. Merz, and G. Blöschl. "On the role of the runoff coefficient in the mapping of rainfall to flood return periods." Hydrology and Earth System Sciences 13, no. 5 (May 12, 2009): 577–93. http://dx.doi.org/10.5194/hess-13-577-2009.
Full textAbd-Elhamid, Hany F., Martina Zeleňáková, Zuzana Vranayová, and Ismail Fathy. "Evaluating the Impact of Urban Growth on the Design of Storm Water Drainage Systems." Water 12, no. 6 (May 31, 2020): 1572. http://dx.doi.org/10.3390/w12061572.
Full textChen, Xiaofei, Juraj Parajka, Borbála Széles, Peter Valent, Alberto Viglione, and Günter Blöschl. "Impact of Climate and Geology on Event Runoff Characteristics at the Regional Scale." Water 12, no. 12 (December 9, 2020): 3457. http://dx.doi.org/10.3390/w12123457.
Full textLIU, Jianbo, Guangyao GAO, Shuai WANG, and Bojie FU. "Combined effects of rainfall regime and plot length on runoff and soil loss in the Loess Plateau of China." Earth and Environmental Science Transactions of the Royal Society of Edinburgh 109, no. 3-4 (September 2018): 397–406. http://dx.doi.org/10.1017/s1755691018000531.
Full textSriwongsitanon, Nutchanart, and Wisuwat Taesombat. "Effects of land cover on runoff coefficient." Journal of Hydrology 410, no. 3-4 (November 2011): 226–38. http://dx.doi.org/10.1016/j.jhydrol.2011.09.021.
Full textDissertations / Theses on the topic "Coefficient of runoff"
Acinan, Sezen. "Determination Of Runoff Coefficient Of Basins By Using Geographic Information Systems." Master's thesis, METU, 2008. http://etd.lib.metu.edu.tr/upload/12609522/index.pdf.
Full textHade, James D. "Determining the runoff coefficient for compressed concrete unit pavements in situ." Virtual Press, 1987. http://liblink.bsu.edu/uhtbin/catkey/483966.
Full textCarrigan, Lindsey DeBoer. "Examination of Nonpoint Source Nutrient Export from a Snowfall-Dominated Watershed." DigitalCommons@USU, 2012. https://digitalcommons.usu.edu/etd/1377.
Full textLarsson, Johan. "Metodik för beräkning av anslutna hårdgjorda ytor till spillvattennätet." Thesis, Uppsala University, Department of Earth Sciences, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-119704.
Full textSveriges avloppsledningsnät förnyas och utvidgas kontinuerligt. Idag finns ett flertal datorprogram för hydraulisk modellering av flöden och uppdämningsnivåer i spill- och dagvattennät. Modellerna kan även användas som planeringsverktyg för att bedöma effekter av planerade åtgärder samt för uppföljning av utförda åtgärder. Vid uppbyggnaden av en modell krävs beräkningsresultat från en hydrologisk avrinningsmodell som indata. Det största arbetet vid modelluppbyggandet ligger just i beskrivningen av hydrologin. För att kunna simulera avrinningsförlopp i samband med nederbörd på ett verklighetsliknande sätt är kännedom om storleken på och fördelningen av anslutna hårdgjorda ytor till ledningsnätet med snabb nederbördsavrinning väsentligt.
Till kalibreringen och valideringen av avloppsmodellen krävs mätdata. Flödesmätningar är dyra att genomföra vilket har skapat ett intresse att hitta metoder som säkert beräknar de anslutna hårdgjorda ytorna redan från de uppgifter som finns på kartor och i databaser. Svenska riktlinjer för beräkning av hårdgjorda ytor tillhandahålls av branschorganisationen Svenskt Vatten som företräder VA-verken och VA-bolagen i Sverige. Beräkningar med dessa riktlinjer ger dock inte alltid den korrekta storleken på de hårdgjorda ytorna. Syftet med examensarbetet har varit att undersöka olika metoder att beräkna anslutna hårdgjorda ytor till spillvattennätet samt att undersöka huruvida det finns ett samband mellan de avrinningsområden där beräkningarna av de hårdgjorda ytorna inte stämmer. Nio befintliga modeller framtagna i modelleringsverktyget MIKE URBAN användes vid undersökningen. Sex av dessa modeller användes till kalibrering och tre modeller användes till validering.
Undersökningen visade inget samband mellan ytavrinning (reduktionsfaktor) och lutning. Fördelningen av mätpunkter mellan olika jordartskategorier var väldigt ojämn vilket gjorde det svårt att studera huruvida det finns ett samband mellan avrinning och jordart. Resultatet från undersökningen visar att avrinningskoefficienter bör delas upp efter typ av ledningsnät i avrinningsområdet. Metoden med olika avrinningskoefficienter för olika typer av ytor visar på bra resultat för tätbebyggda områden. Metoden med sammanvägda avrinningskoefficienter för olika bebyggelsetyper visar relativt bra resultat med tanke på att det är en överslagsberäkningsmetod.
För tätbebyggda områden bedöms metoden med avrinningskoefficienter för olika typer av ytor fungera bra. Vid mindre tätbebyggda områden ökar osäkerheten. Metoden med sammanvägda avrinningskoefficienter för olika bebyggelsetyper bedöms fungera väl för överslagsberäkningar då den är mindre tidskrävande än den andra metoden. Ingen av de undersökta metoderna bedöms kunna ersätta flödesmätningar.
Sweden’s sewage systems are continuously being maintained and expanded. Several computer programs are today available for hydraulic modeling in sewage and storm water systems. The models can also be used as a planning tool to evaluate effects of planned interventions and to follow up performed interventions. Input data from a runoff model is required at the model build-up. Most of the work in model build-up lies at the description of the hydrology. In order to simulate runoff processes in connection with precipitation, understanding of the size and distribution of impervious surfaces with fast response runoff are essential.
Measurements are required for the calibration and validity check of the model. Unfortunately, flow measurements are expensive to perform. This has created an interest to find methods that safely calculate the connected impervious surfaces already from the information that can be found in maps and in databases. The Swedish guidelines for calculation of impervious surfaces are provided by the Swedish Water and Wastewater Association. Calculations with these guidelines do not always give the true size of the impervious surfaces. The aim of this master thesis was to examine various methods to calculate impervious surfaces connected to the sewage system and whether there is a correlation between drainage areas where the calculations do not agree. Nine existing models developed in the computer program MIKE URBAN were used in this study. Six of these models were used in the calibration and three models were used in the validity check of the methods.
The study did not show any correlation between runoff (reduction factor) and slope. The distribution of datum points between different soil types varied so much that it made it difficult to study whether there was correlation between runoff and soil type. The result from the study showed that the runoff coefficients should be divided after type of sewage system in the drainage area. The method with runoff coefficients for different types of surfaces showed fairly good results for highly urbanized areas. The method with weighted runoff coefficients for different types of habitations showed relatively good results considering that it is a method for rough calculations.
The method with runoff coefficients for different types of surfaces is considered well-functioning for highly urbanized areas. In less urbanized areas, this method showed shorter results. The method with weighted runoff coefficients for different types of habitations is considered well for rough calculations when it is less time consuming than the other method. None of the examined methods are considered able to replace flow measurements.
Fonley, Morgan Rae. "Effects of oscillatory forcing on hydrologic systems under extreme conditions: a mathematical modeling approach." Diss., University of Iowa, 2015. https://ir.uiowa.edu/etd/2075.
Full textHamade, Firas Nadim. "Sediment removal from urban runoff using seep berms and vegetative filtration." Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/50271.
Full textBanzetová, Diana. "Srovnání účinků deště na starém a novém simulátoru dešťů." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2015. http://www.nusl.cz/ntk/nusl-227517.
Full textChu, Shao-Hua, and 朱紹華. "The study of the relation between runoff and runoff coefficient in different rainfall data." Thesis, 2008. http://ndltd.ncl.edu.tw/handle/58864569696461895420.
Full text淡江大學
水資源及環境工程學系碩士班
96
This research had collected the daily runoff and daily rainfall data of five different watersheds, which are Chung-Techou watershed, A-Lien-2 watershed, Nan-AO-Chao watershed, Ao-Wei-Chiao watershed, and Hsueh-Shan-Keng watershed, from 1997 to 2006. These data also explains the way of reasoning the time of concentration and runoff coefficient in different watersheds. The rational formula was discussed the relationship between rainfall and runoff coefficient. The data is divided into 5 types, which are one year, November to April, May to October, May to July, August to October, November to January, and February to April. This research makes use of Geographic Information Systems to analyze the effects of the degree of development and slope of each watershed. The relationships between different watershed’s slope, time of concentration and rainfall intensities were also discussed. This preliminary research inquired into the statistical characteristics from the actual measurements in the historical flood, and summed up the influences of the geographically characteristics of five different watersheds. From the analyses’ results, the time of concentration was not directly proportional to the degree of slope. The texture of soil and the type of land use in different watershed area were also examined and analyzed in order to find out how these factors have affected on the surface runoff and the river discharge. The result shows how the influence of land uses and the slope on runoff coefficient in different watersheds. This research suggests that the use of Geographic Information Systems to investigate the watershed environment is essential in the future. Owing to the relationship between nature environment and land exploitation are complicated, it could have great differences according to the various characteristics for different districts. Therefore in the future with similar research, the model (watersheds) should be carefully chosen.
Chen, Li-Ren, and 陳立人. "The Study on Runoff Coefficient Distribution in Taiwan Area." Thesis, 1998. http://ndltd.ncl.edu.tw/handle/84235490075636430845.
Full text國立中興大學
土木工程學系
86
In general, runoff coefficient plays an important role in watershed hydrologic designs and managements. Therefore, to systematically determine individual watershed runoff coefficient is quite necessary. This study is thus to combine GIS and rational formula to establish a runoff coefficient distribution map over Taiwan area. Firstly, the entire Taiwan island is divided into three major areas according their geomorphologic and hydrologic properties, the related physiographic factors such as watershed area, slope, stream length ---, etc., can all be generated through GIS software ARC/INFO and ArcView analyses. As for the estimation of watershed design peak flow rates, multi-regression method is used to obtain the 100-year frequency design peak flow rate from the above physiographic independent variables. The results shows the hydrogeneity for the watersheds selected in each area and proves the zonal distributed properties in Taiwan area. On the other hand, rainfall intensity and time of concentration for individual watershed can be solved simultaneously through kinematic-wave governing equations and rainfall-duration formula. These parameters are then fitted into rational formula, runoff coefficients can be obtained and the associated distribution map can then be produced. In summary, the runoff coefficients distribution over the island declines from both east and west coast toward inland mountain areas. In central mountainous area, the values are in closed ring forms with the range 0.55-0.7.The outer value of runoff coefficients in the plain area is 0.8 and it can be considered as an upper value of watershed mountain zones.Also, the general framework of this study is constructed on ArcView GIS software. Since ArcView software employs AVENUE object-oriented programming, the proposed method also contains a group of user interfaces to automatically, user-friendly calculate the outcomes of watersheddesign peak flow rate, time of concentration, rainfall intensity as well as runoff coefficients.
Lu, Cheng-Yi, and 呂政宜. "The study of the influence of typhoon and rainfall on relation between runoff and runoff coefficient." Thesis, 2008. http://ndltd.ncl.edu.tw/handle/80154202932532767655.
Full text淡江大學
水資源及環境工程學系碩士班
96
Thesis studies used the measured river discharges and rainfalls from different watersheds for different typhoons and rainfall events. The Rational Formula is analyzed the relation between runoff coefficient and runoff . GIS is calculated slopes and landuses in different watersheds. Compared between concentration times, rainfall intensity, slopes, and landuses, and we analyzed the relation between landuses and the runoff coefficient. It collected the daily runoff and rainfall data from five different watersheds from 1997 to 2006, and the five different typhoons’ data which are Amber, Toraji, Mindulle, HaiTang, and Talim had also been gathered. And it calculated the time of concentration, the rainfall intensity, and runoff coefficient in different watersheds, and it analyzed the relation between runoff coefficient and runoff. From the results, we known that in the rainfall events shown the better agreement in the linear regression analysis. In GIS application on DTM, three type of slope, Ⅰ(0%~5%), Ⅱ(5%~40%), and Ⅲ(>40%), were use to study the slope effects on the relation between river discharge and surface runoff. From the analyses’ results, the time of concentration was directly proportional to the degree of slope. According to different landuses, we discussed the relation between the degree of the developmens and runoff coefficients. The results of this research showed, besides Ma-An-Chi Bridge and Ma-Yeuan Bridge, landuses were better and run-off coefficient were better in the typhoon events.In the effective rainfall''s events, landuses were better and run-off coefficient were better in all watersheds.
Book chapters on the topic "Coefficient of runoff"
Goel, Manmohan Kumar. "Runoff Coefficient." In Encyclopedia of Earth Sciences Series, 952–53. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-90-481-2642-2_456.
Full textKiani-Harchegani, M., S. H. R. Sadeghi, and A. Ghahramani. "Intra-storm Variability of Coefficient of Variation of Runoff and Soil Loss in Consecutive Storms at Experimental Plot Scale." In Springer Proceedings in Earth and Environmental Sciences, 98–103. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-03646-1_19.
Full text"runoff coefficient." In Dictionary Geotechnical Engineering/Wörterbuch GeoTechnik, 1152. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-41714-6_183838.
Full text"5274 runoff coefficient [n]." In Encyclopedic Dictionary of Landscape and Urban Planning, 862. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-76435-9_12119.
Full textW. Bellamy, Philip, and Hyun Jung Cho. "A GIS-Based Approach for Determining Potential Runoff Coefficient and Runoff Depth for the Indian River Lagoon, Florida, USA." In Lagoon Environments Around the World - A Scientific Perspective. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.87163.
Full textLi, X. D., H. Yang, J. Wang, L. J. Guo, and Z. Wang. "Characteristics of runoff coefficient of abandoned mine land using the storm water management model." In Land Reclamation in Ecological Fragile Areas, 369–72. CRC Press, 2017. http://dx.doi.org/10.1201/9781315166582-70.
Full textConference papers on the topic "Coefficient of runoff"
Tay, H. N., and Nasser R. Afshar. "Evaluation of Runoff Coefficient (Samarahan Basin)." In Proceedings of the International Engineering Conference. Singapore: Research Publishing Services, 2014. http://dx.doi.org/10.3850/978-981-09-4587-9_p19.
Full textChia-Chun Wu, Chao-Jung Huang, Chung-Fu Hsiao, and Ching-Lun Kao. "Characteristics of Runoff Coefficient Generated from Gravel-rich Bare Slopes." In 2009 Reno, Nevada, June 21 - June 24, 2009. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2009. http://dx.doi.org/10.13031/2013.27080.
Full textWong, Tommy S. W., and M. C. Zhou. "Re-Evaluation of Manning's Roughness Coefficient for Runoff over Concrete Surface." In Ninth International Conference on Urban Drainage (9ICUD). Reston, VA: American Society of Civil Engineers, 2002. http://dx.doi.org/10.1061/40644(2002)300.
Full textSuryoputro, Nugroho, Suhardjono, Widandi Soetopo, and Ery Suhartanto. "Calibration of infiltration parameters on hydrological tank model using runoff coefficient of rational method." In GREEN CONSTRUCTION AND ENGINEERING EDUCATION FOR SUSTAINABLE FUTURE: Proceedings of the Green Construction and Engineering Education (GCEE) Conference 2017. Author(s), 2017. http://dx.doi.org/10.1063/1.5003539.
Full textSuyono, Surya Arief Maulana Dewa, Tedy Agung Cahyadi, Indah Setyowati, Nurkhamim, Alan Maris Ridho, and Angelina Metta Arilia. "Effect of differences in runoff coefficient value on channel dimensions at open pit mines." In 2ND INTERNATIONAL CONFERENCE ON EARTH SCIENCE, MINERAL, AND ENERGY. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0010529.
Full textVolokitin, Mitrofan. "PHYSICAL DEGRADATION OF SOILS DURING THEIR USE." In Land Degradation and Desertification: Problems of Sustainable Land Management and Adaptation. LLC MAKS Press, 2020. http://dx.doi.org/10.29003/m1712.978-5-317-06490-7/218-222.
Full textOrlando, D., M. Giglioni, and Stefano Magnaldi. "Calibration of Maidment’s formula coefficients for runoff velocity." In PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2014 (ICNAAM-2014). AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4912472.
Full textDhakal, Nirajan, Xing Fang, Theodore G. Cleveland, David B. Thompson, and Luke J. Marzen. "Estimation of Rational Runoff Coefficients for Texas Watersheds." In World Environmental and Water Resources Congress 2010. Reston, VA: American Society of Civil Engineers, 2010. http://dx.doi.org/10.1061/41114(371)344.
Full textPekárová, Pavla, Pavol Miklánek, Veronika Bačová Mitková, Marcel Garaj, and Ján Pekár. "ASSESSMENT HARMONIZATION PROBLEMS OF THE LONG RETURN PERIOD FLOODS ON THE DANUBE RIVER." In XXVII Conference of the Danubian Countries on Hydrological Forecasting and Hydrological Bases of Water Management. Nika-Tsentr, 2020. http://dx.doi.org/10.15407/uhmi.conference.01.16.
Full textMalytska, L., O. Lukianets, and S. Moskalenko. "MAXIMUM RIVERINE RUNOFF IN THE BASIN OF TYSA AND PRUT WITHIN UKRAINE." In XXVII Conference of the Danubian Countries on Hydrological Forecasting and Hydrological Bases of Water Management. Nika-Tsentr, 2020. http://dx.doi.org/10.15407/uhmi.conference.01.18.
Full text