To see the other types of publications on this topic, follow the link: CoFeS2.

Journal articles on the topic 'CoFeS2'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'CoFeS2.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Zhang, Minmin, Jiantao Zai, Jie Liu, et al. "A hierarchical CoFeS2/reduced graphene oxide composite for highly efficient counter electrodes in dye-sensitized solar cells." Dalton Transactions 46, no. 29 (2017): 9511–16. http://dx.doi.org/10.1039/c7dt01511a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Liu, Wen-Jen, Yung-Huang Chang, Yuan-Tsung Chen, et al. "Effect of Annealing on the Characteristics of CoFeBY Thin Films." Coatings 11, no. 2 (2021): 250. http://dx.doi.org/10.3390/coatings11020250.

Full text
Abstract:
In this study, the addition of Y to CoFeB alloy can refine the grain size to study the magnetic, adhesion and optical properties of as-deposited and annealed CoFeB alloy. XRD analysis shows that CoFeB(110) has a BCC CoFeB (110) nanocrystalline structure with a thickness of 10–50 nm under four heat-treatment conditions, and a CoFeB(110) peak at 44° (2θ). The measurements of saturation magnetization (MS) and low frequency alternate-current magnetic susceptibility (χac) revealed a thickness effect owed to exchange coupling. The maximum MS of the 300 °C annealed CoFeBY film with a thickness of 50
APA, Harvard, Vancouver, ISO, and other styles
3

Wang, Yanru, Wei Jin, Cuijuan Xuan, et al. "In-situ growth of CoFeS2 on metal-organic frameworks-derived Co-NC polyhedron enables high-performance oxygen electrocatalysis for rechargeable zinc-air batteries." Journal of Power Sources 512 (November 2021): 230430. http://dx.doi.org/10.1016/j.jpowsour.2021.230430.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Домашевская, Э. П., А. А. Гуда, А. В. Чернышев та В. Г. Ситников. "Особенности локальной атомной структуры металлических слоев многослойных наноструктур (CoFeZr/SiO-=SUB=-2-=/SUB=-)-=SUB=-32-=/SUB=- и (CoFeZr/a-Si)-=SUB=-40-=/SUB=- с различными прослойками". Физика твердого тела 59, № 2 (2017): 373. http://dx.doi.org/10.21883/ftt.2017.02.44065.296.

Full text
Abstract:
Многослойные наноструктуры (МНС) получали путем ионно-лучевого напыления в атмосфере аргона на поверхность вращающейся ситалловой подложки последовательно из двух мишеней, одна из которых была металлическая пластина сплава Co45Fe45Zr10, а второй мишенью была пластина из кварца (SiO2) или кремния. Тонкая структура рентгеновских спектров поглощения XANES вблизи K-краев Co и Fe в образце (CoFeZr/SiO2)32 с оксидными прослойками подобна XANES металлической фольги Fe. Это указывает на наличие в металлических слоях МНС нанокристаллов CoFeZr с локальным окружением, аналогичным локальному окружению ато
APA, Harvard, Vancouver, ISO, and other styles
5

Liu, Wen-Jen, Yung-Huang Chang, Yuan-Tsung Chen, et al. "Effect of Annealing on the Structural, Magnetic and Surface Energy of CoFeBY Films on Si (100) Substrate." Materials 14, no. 4 (2021): 987. http://dx.doi.org/10.3390/ma14040987.

Full text
Abstract:
The structure, magnetic properties, optical properties and adhesion efficiency of CoFeBY films were studied. Co40Fe40B10Y10 alloy was sputtered onto Si (100) with a thickness of 10–50 nm, and then annealed at room temperature, 100 °C, 200 °C and 300 °C for 1 h. X-ray diffraction (XRD) showed that the CoFeBY films deposited at room temperature are amorphous. Annealing at 100 °C gave the films enough thermal energy to change the structure from amorphous to crystalline. After annealing, the CoFeBY thin film showed a body-centered cubic (BCC) CoFeB (110) characteristic peak at 44°. However, the lo
APA, Harvard, Vancouver, ISO, and other styles
6

Ezekiel, I. P., T. Moyo, J. Z. Msomi, and H. M. I. Abdallah. "Structural and Magnetic Studies of CoFe2 O 4 Ferrite, CoFe2 O 4/CoFe2 Nanocomposites and CoFe2 Nano-alloy." Journal of Superconductivity and Novel Magnetism 30, no. 8 (2016): 2371–74. http://dx.doi.org/10.1007/s10948-016-3849-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Жуков, Д. А., В. В. Амеличев, Д. В. Костюк та ін. "ИССЛЕДОВАНИЕ МАГНИТОРЕЗИСТИВНЫХ НАНОСТРУКТУР С МАГНИТОСТРИКЦИОННЫМ ЭФФЕКТОМ ДЛЯ УСТРОЙСТВ МАГНИТНОЙ СТРЕЙНТРОНИКИ". NANOINDUSTRY Russia 96, № 3s (2020): 420–23. http://dx.doi.org/10.22184/1993-8578.2020.13.3s.420.423.

Full text
Abstract:
Представлены результаты экспериментальных исследований магнитострикционных и магниторезистивных свойств тонкопленочных многослойных наноструктур Ta/FeNiCo/CoFe/Ta и Ta/FeNiCo/CoFeВ/Ta на окисленных кремниевых подложках диаметром 100 мм. Экспериментально установлена зависимость величины анизотропного магниторезистивного эффекта от величины механических деформаций в экспериментальных образцах наноструктур. The paper presents the results of experimental studies of the magnetostriction and magnetoresistive properties of thin-film multilayer nanostructures Ta/FeNiCo/CoFe/Ta and Ta/FeNiCo/CoFeB/Ta o
APA, Harvard, Vancouver, ISO, and other styles
8

Sayed Hassan, R., C. Mény, N. Viart, et al. "Tuning the coercive field of CoFe2 in hard/soft CoFe2O4/CoFe2 bilayers." New Journal of Physics 9, no. 10 (2007): 364. http://dx.doi.org/10.1088/1367-2630/9/10/364.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Coldebella, E. H., E. F. Chagas, A. P. Albuquerque, R. J. Prado, M. Alzamora, and E. Baggio-Saitovitch. "Study of Soft/Hard Bimagnetic CoFe2/CoFe2O4 Nanocomposite." Journal of Nanoscience and Nanotechnology 21, no. 10 (2021): 5181–87. http://dx.doi.org/10.1166/jnn.2021.19369.

Full text
Abstract:
We report an experimental study of the bimagnetic nanocomposites CoFe2/CoFe2O4. The precursor material, CoFe2O4 was prepared using the conventional stoichiometric combustion method. The nano-structured material CoFe2/CoFe2O4 was obtained by total oxygen reduction of CoFe2O4 using a thermal treatment at 350 °C in H2 atmospheres following the partial oxidation in O2 atmospheres at 380 °C during 120; 30; 15, 10, and 5 min. The X-ray diffraction, Mössbauer spectroscopy and transmission electronic microscopy images confirmed the formation of the material CoFe2/CoFe2O4. The magnetic hysteresis for t
APA, Harvard, Vancouver, ISO, and other styles
10

Fix, T., S. Colis, K. Sauvet, et al. "Exchange coupling in NiO∕CoFe2 and CoFe2O4∕CoFe2 systems grown by pulsed laser deposition." Journal of Applied Physics 99, no. 4 (2006): 043907. http://dx.doi.org/10.1063/1.2173045.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Jurca, I. S., N. Viart, C. Mény, C. Ulhaq-Bouillet, P. Panissod, and G. Pourroy. "Structural study of CoFe2/CoFe2O4 multilayers." Surface Science 529, no. 1-2 (2003): 215–22. http://dx.doi.org/10.1016/s0039-6028(03)00269-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Lee, S. J., S. H. Song, C. C. Lo, S. T. Aldini, and D. C. Jiles. "Magneto-optic properties of CoFe2−xGaxO4." Journal of Applied Physics 101, no. 9 (2007): 09C502. http://dx.doi.org/10.1063/1.2693953.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Zhang, Yue, Rui Xiong, Zhi Yang, et al. "Enhancement of Interparticle Exchange Coupling in CoFe2 O4 /CoFe2 Composite Nanoceramics Via Spark Plasma Sintering Technology." Journal of the American Ceramic Society 96, no. 12 (2013): 3798–804. http://dx.doi.org/10.1111/jace.12582.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Masrour, R., M. Hamedoun, A. Hourmatallah, K. Bouslykhane, N. Benzakour, and A. Benyoussef. "Magnetic properties of the ferrimagnetic spinels systems CoFe2–2xCr2xO4." Canadian Journal of Physics 86, no. 11 (2008): 1287–90. http://dx.doi.org/10.1139/p08-062.

Full text
Abstract:
The magnetic properties of a diluted ferrimagnetic spinels system CoFe2–2xCr2xO4 are studied using the high-temperature series expansions method in the range 0 ≤ x ≤ 1. The inter-sublattice exchange interactions (JCo Cr or JCo–Fe) are calculated using the probability law. The high-temperature series expansions, together with the Padé-approximants method, are applied to the spinels systems CoFe2–2xCr2xO4 to determine the magnetic phase diagram, i.e., TC versus dilution x. The critical exponent associated with the magnetic susceptibility (γ) is deduced. PACS Nos.: 75.30.Et; 75.40.Cx; 74.25.Ha, 7
APA, Harvard, Vancouver, ISO, and other styles
15

Guan, Guangguang, Guojun Gao, Jun Xiang, et al. "CoFe2/BaTiO3 Hybrid Nanofibers for Microwave Absorption." ACS Applied Nano Materials 3, no. 8 (2020): 8424–37. http://dx.doi.org/10.1021/acsanm.0c01855.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Hien, N. T., N. X. Truong, V. T. K. Oanh, et al. "Preparation of exchange coupled CoFe2O4/CoFe2 nanopowders." Journal of Magnetism and Magnetic Materials 511 (October 2020): 166984. http://dx.doi.org/10.1016/j.jmmm.2020.166984.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Luo, Yuansu, and Konrad Samwer. "Superconductive spin-valve effect in CoFeHf/Pb/CoFeHf layered structures." EPL (Europhysics Letters) 91, no. 3 (2010): 37003. http://dx.doi.org/10.1209/0295-5075/91/37003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Johan, Akmal, Ari Adi Wisnu, Fitri Suryani Arsyad, and Dedi Setiabudidaya. "Effect of Lanthanum Substituted CoFe2-xLaxO4 on Change of Structure Parameter and Phase Formation." Key Engineering Materials 855 (July 2020): 70–77. http://dx.doi.org/10.4028/www.scientific.net/kem.855.70.

Full text
Abstract:
In this research, CoFe2-xLaxO4-based smart magnetic material has been developed which will be applied as a microwave absorbing material. This smart magnetic material is an artificial advanced material which has properties such as electromagnetic waves so that it is able to respond to the presence of microwaves through the mechanism of spin electron resonance and wall resonance domain. This smart magnetic material consists of a combination of rare earth metal elements (spin magnetic in the f orbital configuration) and transition metal elements (spin magnetic in the d orbital configuration) with
APA, Harvard, Vancouver, ISO, and other styles
19

Liu, Na, Hai Wang, and Tao Zhu. "Perpendicular Magnetic Anisotropy in the CoFeB/Pt Multilayers by Extraordinary Hall Effect." Materials Science Forum 694 (July 2011): 773–77. http://dx.doi.org/10.4028/www.scientific.net/msf.694.773.

Full text
Abstract:
The perpendicular magnetic anisotropy (PMA) in as-deposited [CoFeB/Pt]n multilayers has been studied by using extraordinary Hall effect (EHE). A clear PMA has been observed in the ultrathin (~ 0.5 nm) amorphous CoFeB layer sandwiched by Pt. Moreover, PMA in as-deposited [CoFeB/Pt]n multilayers is strongly dependent on the thickness of CoFeB and Pt and the number of CoFeB/Pt bilayers. With the increasing thickness of CoFeB and the number of CoFeB/Pt bilayers, the hysteresis loops change from rectangle into bow-tie shaped.
APA, Harvard, Vancouver, ISO, and other styles
20

Jurca, I. S., C. Meny, N. Viart, C. Ulhaq-Bouillet, P. Panissod, and G. Pourroy. "Growth, structure and morphology of CoFe2/CoFe2O4 multilayers." Thin Solid Films 444, no. 1-2 (2003): 58–63. http://dx.doi.org/10.1016/s0040-6090(03)01020-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Leite, G. C. P., E. F. Chagas, R. Pereira, et al. "Exchange coupling behavior in bimagnetic CoFe2O4/CoFe2 nanocomposite." Journal of Magnetism and Magnetic Materials 324, no. 18 (2012): 2711–16. http://dx.doi.org/10.1016/j.jmmm.2012.03.034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Bhattacharya, Utpal, and Vishu S. Darshane. "Spin–glass behaviour of the system CoFe2–xGaxO4." J. Mater. Chem. 3, no. 3 (1993): 299–302. http://dx.doi.org/10.1039/jm9930300299.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Soares, J. M., F. A. O. Cabral, J. H. de Araújo, and F. L. A. Machado. "Exchange-spring behavior in nanopowders of CoFe2O4–CoFe2." Applied Physics Letters 98, no. 7 (2011): 072502. http://dx.doi.org/10.1063/1.3552677.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Mohan, H., I. A. Shaikh, and R. G. Kulkarni. "Magnetic properties of the mixed spinel CoFe2−xCrxO4." Physica B: Condensed Matter 217, no. 3-4 (1996): 292–98. http://dx.doi.org/10.1016/0921-4526(95)00620-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Maat, S., and B. A. Gurney. "90° coupling induced by exchange biasing in PtMn/CoFe10/CoFe2O4/CoFe10 films." Journal of Applied Physics 93, no. 10 (2003): 7229–31. http://dx.doi.org/10.1063/1.1543893.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

MEHRIZI, SAEED, M. HYDARZADEH SOHI, and S. A. SEYYED EBRAHIMI. "MICROSTRUCTURAL EVALUATION OF NANOCRYSTALLINE COBALT-IRON-NICKEL THIN FILMS ELECTRODEPOSITED FROM CITRATE-FREE AND CITRATE-ADDED BATHS." International Journal of Modern Physics: Conference Series 05 (January 2012): 712–19. http://dx.doi.org/10.1142/s2010194512002668.

Full text
Abstract:
The microstructures of nanocrystalline CoFeNi thin films in direct current electrodeposition, under various processing conditions, have comparatively been investigated. Morphological studies by SEM showed that CoFeNi films plated from the sodium citrate-added baths were more uniform and denser than those deposited from the conventional citrate-free baths. Energy dispersive spectroscopy (EDS) showed the anomalous behaviors in electrodeposition of CoFeNi films from both citrate-added and citrate-free baths. It was also noticed that addition of 10g/L sodium citrate in the bath strongly decreases
APA, Harvard, Vancouver, ISO, and other styles
27

Mardani, R., M. R. Kazerani, and H. Shahmirzaee. "Investigating magnetic properties of Co68Fe4B15Si13 amorphous alloy by molecular dynamics and DFT calculations." Modern Physics Letters B 31, no. 09 (2017): 1750094. http://dx.doi.org/10.1142/s0217984917500944.

Full text
Abstract:
Cobalt-based amorphous alloys, in particular CoFeBSi, have been widely used to study the response of ac-impedance to the external dc magnetic field, i.e., the so-called Giant Magneto Impedance (GMI) effect. The utility of CoFeBSi in different applications such as field-sensitive sensors is known and practiced. Despite the wealth of experimental studies on GMI properties of CoFeBSi alloys, no computational approach has yet been addressed on electronic and magnetic properties of these systems at nanoscales. In this study, we have computed electronic and magnetic properties of amorphous CoFeBSi a
APA, Harvard, Vancouver, ISO, and other styles
28

Garcı́a, K. L., and R. Valenzuela. "Correlation between magnetization processes and giant magnetoimpedance response in CoFeBSi amorphous CoFeBSi wires." Journal of Non-Crystalline Solids 287, no. 1-3 (2001): 313–17. http://dx.doi.org/10.1016/s0022-3093(01)00572-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Ibuki, Chuleerat, and Rachasak Sakdanuphab. "Structural, Morphological and Adhesion Properties of Cofeb Thin Films Deposited by DC Magnetron Sputtering." Advanced Materials Research 802 (September 2013): 47–52. http://dx.doi.org/10.4028/www.scientific.net/amr.802.47.

Full text
Abstract:
In this work the effects of amorphous (glass) and crystalline (Si) substrates on the structural, morphological and adhesion properties of CoFeB thin film deposited by DC Magnetron sputtering were investigated. It was found that the structure of a substrate affects to crystal formation, surface morphology and adhesion of CoFeB thin films. The X-Ray diffraction patterns reveal that as-deposited CoFeB thin film at low sputtering power was amorphous and would become crystal when the power increased. The increase in crystalline structure of CoFeB thin film is attributed to the crystalline substrate
APA, Harvard, Vancouver, ISO, and other styles
30

Chen, Yuan-Tsung, and S. M. Xie. "Magnetic and Electric Properties of AmorphousCo40Fe40B20Thin Films." Journal of Nanomaterials 2012 (2012): 1–5. http://dx.doi.org/10.1155/2012/486284.

Full text
Abstract:
C40Fe40B20was deposited on a glass substrate to a thickness (tf) of between 100 Å and 500 Å. X-ray diffraction patterns (XRD) indicate thatC40Fe40B20films are in an amorphous state. The plane-view microstructures and grain size distributions of CoFeB thin films are observed under a high-resolution transmission electron microscope (HRTEM). The thicker CoFeB films have larger grain size distribution than thinner CoFeB films. The saturation magnetization (Ms) exhibits a size effect, meaning thatMsincreases astfincreases. The magnetic remanence magnetization (Mr) of CoFeB thin films are sensitive
APA, Harvard, Vancouver, ISO, and other styles
31

Kahnes, Marcel, Robert Müller, and Jörg Töpfer. "Phase formation and magnetic properties of CoFe2O4/CoFe2 nanocomposites." Materials Chemistry and Physics 227 (April 2019): 83–89. http://dx.doi.org/10.1016/j.matchemphys.2019.01.064.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Zhou, Ziyao, Garrett Grocke, Angel Yanguas-Gil, et al. "CoFe2/Al2O3/PMNPT multiferroic heterostructures by atomic layer deposition." Applied Physics Letters 108, no. 18 (2016): 182907. http://dx.doi.org/10.1063/1.4948977.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Zhang, Yue, Zhi Yang, Benpeng Zhu, et al. "Exchange-spring effect in CoFe2O4/CoFe2 composite nano-particles." Journal of Alloys and Compounds 567 (August 2013): 73–76. http://dx.doi.org/10.1016/j.jallcom.2013.03.078.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Mindru, Ioana, Dana Gingasu, Lucian Diamandescu, et al. "CoFe2−xCrxO4 ferrites: synthesis, characterization and their catalytic activity." Chemical Papers 72, no. 12 (2018): 3203–13. http://dx.doi.org/10.1007/s11696-018-0553-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Cheng, Chih Wei, H. M. Chen, C. H. Shiue, Y. Y. Lin, Y. Y. Li, and G. Chern. "Characterizations of the Perpendicular Magnetic Anisotropy in Ultrathin Films of Ta-CoFeB-MgO by X-Ray Photoelectron Spectroscopy." Advanced Materials Research 739 (August 2013): 61–65. http://dx.doi.org/10.4028/www.scientific.net/amr.739.61.

Full text
Abstract:
The high magnetic anisotropy may enhance the thermal stability of the magnetic tunnel junction of CoFeB/MgO/CoFeB, which is a promising candidate for the high performance magnetic random access memory (MRAM). However, the interface stabilized perpendicular magnetic anisotropy (PMA) is not completely understood at this moment. In this study, we fabricated separated top and bottom Ta-CoFeB-MgO thin films and found both structures showed strong PMA after a 300 °C post annealing. However, the top structure has thicker magnetic dead layer and much higher coercivity relative to the bottom structures
APA, Harvard, Vancouver, ISO, and other styles
36

Zan, Fenlian, Yongqing Ma, Qian Ma, et al. "Magnetic and Impedance Properties of Nanocomposite CoFe2 O4 /Co0.7 Fe0.3 and Single-Phase CoFe2 O4 Prepared Via a One-Step Hydrothermal Synthesis." Journal of the American Ceramic Society 96, no. 10 (2013): 3100–3107. http://dx.doi.org/10.1111/jace.12437.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Wang, S. K., Yuan-Tsung Chen, and S. R. Jian. "Determining Contact Angle and Surface Energy of Co60Fe20B20Thin Films by Magnetron Sputtering." Journal of Nanomaterials 2011 (2011): 1–4. http://dx.doi.org/10.1155/2011/291935.

Full text
Abstract:
This study examined the deposition of CoFeB thin films on a glass substrate at room temperature (RT), as well as the effects of conducting postannealing at heat annealingTA=150°C for 1 h. The thickness (tf) of the CoFeB thin films ranged from 100 Å to 500 Å. The microstructure, average contact angle, and surface energy properties were also investigated. X-ray diffraction (XRD) revealed that CoFeB films are nanocrystalline at RT and that post-annealing treatment increases in conjunction with the crystallinity. The surface energy of the CoFeB thin films is related to adhesive strength. The CoFeB
APA, Harvard, Vancouver, ISO, and other styles
38

Wen, Zhenchao, Junyeon Kim, Hiroaki Sukegawa, Masamitsu Hayashi, and Seiji Mitani. "Spin-orbit torque in Cr/CoFeAl/MgO and Ru/CoFeAl/MgO epitaxial magnetic heterostructures." AIP Advances 6, no. 5 (2016): 056307. http://dx.doi.org/10.1063/1.4944339.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Kalsen, Sonser, Mursel Alper, Hakan Kockar, Murside Haciismailoglu, Oznur Karaagac, and Hilal Kuru. "Properties of Electrodeposited CoFeNi/Cu Superlattices: The Effect of CoFeNi and Cu Layers Thicknesses." Journal of Superconductivity and Novel Magnetism 26, no. 4 (2012): 813–17. http://dx.doi.org/10.1007/s10948-012-1912-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Vyzulin, Sergey, Elena Gan’shina, Vladimir Garshin, Natalia Perova та Nikolaj Syr’ev. "MAGNETO-OPTICAL AND MAGNETIC RESONANCE PROPERTIES OF NANO-SCALED GRANULAR FILMS (CoFeB)x(SiO2)100-x and (CoFeB)xС100-x". EPJ Web of Conferences 185 (2018): 04002. http://dx.doi.org/10.1051/epjconf/201818504002.

Full text
Abstract:
The results of experimental studies of magneto-optical (MO) and magnetic resonance (MR) properties of nanogranular film structures (CoFeB)x(SiO2)100-x and (CoFeB)xС100-x obtained by the ion-beam sputtering method are presented. Magnetic spectra were registered by the method of ferromagnetic resonance (FMR), and magneto-optical spectra were registered by observation of Transversal Kerr Effect (TKE). A comparative analysis of the experimental MO spectra and FMR spectra for systems (CoFeB)x(SiO2)100-x and (CoFeB)xС100-x indicates that a multi-phase structure realizes in the (CoFeB)xС100-x system.
APA, Harvard, Vancouver, ISO, and other styles
41

Wu, Liang, Lei Shi, Shiming Zhou, Jiyin Zhao, Xianbing Miao, and Jianhui Guo. "Direct Growth of CoFe2 Alloy Strongly Coupling and Oxygen-Vacancy-Rich CoFe2 O4 Porous Hollow Nanofibers: an Efficient Electrocatalyst for Oxygen Evolution Reaction." Energy Technology 6, no. 12 (2018): 2350–57. http://dx.doi.org/10.1002/ente.201800298.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Chiara, Magdalena. "Relaciones intergubernamentales y política sanitaria en argentina en el contexto de la crisis 2001/3." Trabalho, Educação e Saúde 7, no. 3 (2009): 529–48. http://dx.doi.org/10.1590/s1981-77462009000300008.

Full text
Abstract:
El trabajo analiza los efectos de la crisis argentina 2001/3, concebida como resultado de un conjunto de 'insuficiencias acumuladas' que se engarzan entre la economía y la política, en la política sanitaria. A diferencia de lo que sucedía en otros sectores, su expresión en el campo de la salud aparece más vinculada a las demandas de los responsables por la gestión de los servicios que a la acción colectiva. La particularidad de tratarse de una agenda 'mediatizada' por distintos actores responsables del gobierno y la gestión del sector exige poner el foco en la trama de las relaciones intergube
APA, Harvard, Vancouver, ISO, and other styles
43

Chichay, Kseniay, Valeria Rodionova, Valentina Zhukova, Mihail Ipatov, and Arcady Zhukov. "Manipulation of Magnetic Properties and Domain Wall Dynamics in Amorphous Ferromagnetic Microwires by Annealing under Applied Stress." Solid State Phenomena 215 (April 2014): 432–36. http://dx.doi.org/10.4028/www.scientific.net/ssp.215.432.

Full text
Abstract:
The effect of annealing under applied stress on magnetic properties of Co-based or CoFeNi-based glass-coated microwires was studied. It was found that CoFeNi-based microwires became bistable after annealing because of changing of magnetostriction constant sign, while Co-based microwires keep S-shape of hysteresis loop. The domain wall dynamics of microwires which became bistable was also investigated and it was shown that microwires with acquired bistability are more suitable for applications.
APA, Harvard, Vancouver, ISO, and other styles
44

Guo, Liping, Xiangqian Shen, Fuzhan Song, Mingquan Liu, and Yongwei Zhu. "Characterization and magnetic exchange observation for CoFe2O4–CoFe2 nanocomposite microfibers." Journal of Sol-Gel Science and Technology 58, no. 2 (2011): 524–29. http://dx.doi.org/10.1007/s10971-011-2422-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Souza, R. M., Y. S. M. Santos, L. L. Oliveira, M. S. Nunes, Ana L. Dantas, and A. S. Carriço. "Energy product of cylindrical FePt@CoFe2 and FePt@Fe nanoparticles." AIP Advances 9, no. 12 (2019): 125131. http://dx.doi.org/10.1063/1.5129535.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

de Assis Olimpio Cabral, Francisco, Fernando Luis de Araujo Machado, Jose Humberto de Araujo, Joao Maria Soares, Alexandre Ricalde Rodrigues, and Armando Araujo. "Preparation and magnetic study of the CoFe2O4-CoFe2 nanocomposite powders." IEEE Transactions on Magnetics 44, no. 11 (2008): 4235–38. http://dx.doi.org/10.1109/tmag.2008.2001545.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Yang, Wenya, Zhanyong Wang, Zhipeng Zhou, et al. "Synthesis and Characterization of CoFe2 O 4/BaTiO3 Multiferroic Composites." Journal of Superconductivity and Novel Magnetism 30, no. 3 (2016): 665–73. http://dx.doi.org/10.1007/s10948-016-3838-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Mohan, H., I. A. Shaikh, and R. G. Kulkarni. "Mössbauer and magnetization study of the mixed spinel CoFe2−xCrxO4." Solid State Communications 82, no. 11 (1992): 907–10. http://dx.doi.org/10.1016/0038-1098(92)90717-n.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Sodaee, Tahmineh, Ali Ghasemi, and Reza Shoja Razavi. "Shape factors dependence of magnetic features of CoFe2−xGdxO4 nanocrystals." Journal of Alloys and Compounds 693 (February 2017): 1231–42. http://dx.doi.org/10.1016/j.jallcom.2016.10.102.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Таланцев, А. Д., Г. Л. Львова, О. В. Коплак та ін. "Ферромагнитный резонанс в монокристаллических спиновых вентилях CoFeB/Ta/CoFeB и пленках CoFeB c перпендикулярной магнитной анизотропией". Физика твердого тела 59, № 8 (2017): 1530. http://dx.doi.org/10.21883/ftt.2017.08.44753.47.

Full text
Abstract:
В пленке MgO/CoFeB/MgO/Ta с одним ферромагнитным слоем (монослой) и спиновом вентиле MgO/CoFeB/Ta/CoFeB/MgO/Ta, состоящем из двух ферромагнитных слоев CoFeB с монокристаллической структурой, разделенных немагнитным слоем Ta (бислой), исследованы ориентационные зависимости ферромагнитного резонанса. Анализ ориентационных зависимостей структур с перпендикулярной магнитной анизотропией позволил извлечь константы магнитной анизотропии, а также коэффициенты демпфирования. Обсуждаются физические причины различий этих параметров в однослойных и двухслойных структурах. Работа поддержана Министерством
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!