Academic literature on the topic 'Cohesive zone law'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Cohesive zone law.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Cohesive zone law"
Yuan, Huang, Guoyu Lin, and Alfred Cornec. "Verification of a Cohesive Zone Model for Ductile Fracture." Journal of Engineering Materials and Technology 118, no. 2 (April 1, 1996): 192–200. http://dx.doi.org/10.1115/1.2804886.
Full textKim, Kyungmok. "Creep–rupture model of aluminum alloys: Cohesive zone approach." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 229, no. 8 (July 10, 2014): 1343–47. http://dx.doi.org/10.1177/0954406214543413.
Full textCazes, Fabien, Anita Simatos, Michel Coret, Alain Combescure, and Anthony Gravouil. "Cracking Cohesive Law Thermodynamically Equivalent to a Non-Local Damage Model." Key Engineering Materials 385-387 (July 2008): 81–84. http://dx.doi.org/10.4028/www.scientific.net/kem.385-387.81.
Full textShintaku, Yuichi, Kenjiro Terada, and Seiichiro Tsutsumi. "Anisotropic Damage Constitutive Law for Cleavage Failure in Crystalline Grain by Cohesive Zone Model." QUARTERLY JOURNAL OF THE JAPAN WELDING SOCIETY 35, no. 2 (2017): 165s—168s. http://dx.doi.org/10.2207/qjjws.35.165s.
Full textPandya, K. C., and J. G. Williams. "Cohesive zone modelling of crack growth in polymers Part 1 –Experimental measurement of cohesive law." Plastics, Rubber and Composites 29, no. 9 (September 2000): 439–46. http://dx.doi.org/10.1179/146580100101541274.
Full textYuan, Huang, and Xiao Li. "Effects of the cohesive law on ductile crack propagation simulation by using cohesive zone models." Engineering Fracture Mechanics 126 (August 2014): 1–11. http://dx.doi.org/10.1016/j.engfracmech.2014.04.019.
Full textRoy, Samit, and Yong Wang. "Analytical Solution for Cohesive Layer Model and Model Verification." Polymers and Polymer Composites 13, no. 8 (November 2005): 741–52. http://dx.doi.org/10.1177/096739110501300801.
Full textFager, Leif-Olof, and J. L. Bassani. "Stable Crack Growth in Rate-Dependent Materials With Damage." Journal of Engineering Materials and Technology 115, no. 3 (July 1, 1993): 252–61. http://dx.doi.org/10.1115/1.2904215.
Full textScheel, Johannes, Alexander Schlosser, and Andreas Ricoeur. "The J-integral for mixed-mode loaded cracks with cohesive zones." International Journal of Fracture 227, no. 1 (November 23, 2020): 79–94. http://dx.doi.org/10.1007/s10704-020-00496-6.
Full textHuang, Xiao Hui, Wen Guang Liu, Guo Qun Zhao, and Xin Hai Zhao. "An Investigation into the Fracture Mechanical Behavior of Bone Cement: Simulation Using Cohesive Zone Models (CZMs)." Advanced Materials Research 156-157 (October 2010): 1658–64. http://dx.doi.org/10.4028/www.scientific.net/amr.156-157.1658.
Full textDissertations / Theses on the topic "Cohesive zone law"
Salih, Sarmed. "Rate-dependent cohesive-zone models for fracture and fatigue." Thesis, University of Manchester, 2018. https://www.research.manchester.ac.uk/portal/en/theses/ratedependent-cohesivezone-models-for-fracture-and-fatigue(d8bfee97-1a75-4418-8916-b5a7cf8cdfd9).html.
Full textSarrado, Molina Carlos. "Experimental characterization and numerical simulation of composite adhesive joints using the cohesive zone model approach." Doctoral thesis, Universitat de Girona, 2015. http://hdl.handle.net/10803/384001.
Full textL’objectiu de la present tesi és el desenvolupament de mètodes numèrics i experimentals robustos per a la simulació de la fractura en unions adhesives de material compòsit. En primer lloc es presenta un nou mètode per a la caracterització experimental d’unions adhesives que amplia el rang d’aplicació dels mètodes existents i en disminueix la incertesa. A partir d’aquí, es realitza un estudi crític sobre la idoneïtat dels mètodes de caracterització d’unions adhesives existents i es presenta la caracterització exhaustiva d’un adhesiu en termes de la llei cohesiva del material. Les evidencies experimentals obtingudes s’analitzen per tal de proporcionar les directrius necessàries per a la simulació d’unions adhesives i es presenta la formulació d’un nou element cohesiu per modelar la resposta elàstica, el dany i la fallada d’adhesius. El model proposat permet l’ús de propietats del material mesurables experimentalment, sense la necessitat de dur a terme ajustaments o calibratges addicionals.
Bahadursha, Venkata Rama Lakshmi Preeethi. "Tearing of Styrene Butadiene Rubber using Finite Element Analysis." University of Akron / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=akron1431029910.
Full textShanmugam, Venkateswaran. "Efficient Risk Assessment Using Probability of Fracture Nomographs." Wright State University / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=wright1322059829.
Full textTaleb, Ali Mahfoudh. "Effet des défauts d'adhésion sur la résistance mécanique des assemblages collés." Thesis, Bordeaux, 2018. http://www.theses.fr/2018BORD0061/document.
Full textStructural adhesive bonding has known an increasing use in many fields like aeronautics, aerospace and automotive and other fields like construction and sports. This very advantageous technique allows the assembly of similar or different materials using an adhesive, the significant reduction in weight and a uniform distribution of loads on the assembly. Despite its advantages, the bonding still suffers from some disadvantages related to the existence of defects in the bonded joints. Among them, there are defects that are located at the interface glue / substrate as "kissing bond" or poor surface due to bad surface treatment, which remain undetectable or hardly detectable using non-destructive control techniques. Therefore, in order to take into account the existence of adhesion defects in bonded assemblies during the design phase, it is necessary to provide an analytical model capable of predicting crack propagation and estimate the criticality of a defect. In this thesis, an analytical model that predicts crack propagation and evaluates the effective strength of a bonded assembly containing adhesion defects has been developed. A defect usually has a complex geometry, and a generic study is difficult to achieve, which leads us to consider ideal defect geometries. The model was verified by experiments performed on DCB specimens. Numerical simulations using the cohesive zone method were also performed to more fully describe the decohesion process and to simulate the experimental tests. The last part of this work was devoted to the study of titanium alloy assembly containing patterns. Taking advantage of the collaboration with Safran and Alphanov, the substrates underwent a laser surface treatment leaving untreated areas. The purpose of this part was to check the proposed analytical model with more complex configurations
Andersson, Lassila Andreas, and Marcus Folcke. "Numerical and experimental analysis of adhesively bonded T-joints : Using a bi-material interface and cohesive zone modelling." Thesis, Högskolan i Skövde, Institutionen för ingenjörsvetenskap, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-15280.
Full textMokashi, Prasad Shrikant. "Numerical modeling of homogeneous and bimaterial crack tip and interfacial cohesive zones with various traction-displacement laws." Columbus, Ohio : Ohio State University, 2007. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1180621217.
Full textLucchi, Andrea. "Numerical simulation of low velocity impact on fiber metal laminates." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017.
Find full textRaghavan, Sathyanarayanan. "Experimental and theoretical study of on-chip back-end-of-line (BEOL) stack fracture during flip-chip reflow assembly." Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/54298.
Full textIslam, Mohammad Majharul. "Global-local Finite Element Fracture Analysis of Curvilinearly Stiffened Panels and Adhesive Joints." Diss., Virginia Tech, 2012. http://hdl.handle.net/10919/38687.
Full textPh. D.
Book chapters on the topic "Cohesive zone law"
Kovalchick, Christopher, Shuman Xia, and Guruswami Ravichandran. "Cohesive Zone Law Extraction from an Experimental Peel Test." In Conference Proceedings of the Society for Experimental Mechanics Series, 237–45. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-4226-4_28.
Full textHong, Soonsung. "Identification of Cohesive-Zone Laws from Crack-tip Deformation Fields." In Application of Imaging Techniques to Mechanics of Materials and Structures, Volume 4, 7–9. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-9796-8_2.
Full textGamstedt, E. K., T. K. Jacobsen, and B. F. Sørensen. "Determination of Cohesive Laws for Materials Exhibiting Large Scale Damage Zones." In IUTAM Symposium on Analytical and Computational Fracture Mechanics of Non-Homogeneous Materials, 349–53. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-017-0081-8_38.
Full textConference papers on the topic "Cohesive zone law"
Stigh, Ulf, K. Svante Alfredsson, and Anders Biel. "Measurement of Cohesive Laws and Related Problems." In ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-10474.
Full textShishir, MD Imrul Reza, and Alireza Tabarraei. "Molecular Dynamics Simulation Based Cohesive Zone Representation of Intergranular Fracture Processes in Bicrystalline Graphene." In ASME 2020 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/imece2020-23624.
Full textDunbar, Andrew, Xin Wang, Bill (W R. ). Tyson, and Su Xu. "Simulation of Ductile Crack Propagation in Pipeline Steels Using Cohesive Zone Modeling." In ASME 2012 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/pvp2012-78091.
Full textChaudhari, Vikas, D. M. Kulkarni, Shivam Rathi, Akshay Sancheti, and Swadesh Dixit. "Investigation of Cohesive Zone Model Parameters for Steel Used in Shipbuilding Structure." In ASME 2017 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/imece2017-70977.
Full textSimatos, A., S. Marie, A. Combescure, and F. Cazes. "Modelling Ductile Tearing From Diffuse Plasticity to Crack Propagation." In ASME 2010 Pressure Vessels and Piping Division/K-PVP Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/pvp2010-25387.
Full textTruong, Do Van. "Simulation of Crack Initiation at the Interface Edge Between Sub-Micron Thick Films Under Creep by Cohesive Zone Model." In ASME 2008 International Manufacturing Science and Engineering Conference collocated with the 3rd JSME/ASME International Conference on Materials and Processing. ASMEDC, 2008. http://dx.doi.org/10.1115/msec_icmp2008-72061.
Full textJi, Gefu, Zhenyu Ouyang, Guoqiang Li, H. Dwayne Jerro, and Su-Seng Pang. "Effect of Bondline Thickness on Interfacial Fracture of Laminated Composite Materials." In ASME 2010 Pressure Vessels and Piping Division/K-PVP Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/pvp2010-25714.
Full textJi, Gefu, Zhenyu Ouyang, Guoqiang Li, Su-Seng Pang, and Samuel Ibekwe. "Effect of Adhesive Thickness on Interfacial Fracture of Bonded Steel Joints." In ASME 2010 Pressure Vessels and Piping Division/K-PVP Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/pvp2010-25755.
Full textWang, Yanfei, Jianming Gong, Luyang Geng, and Yong Jiang. "Prediction on Initiation of Hydrogen-Induced Delayed Cracking in High-Strength Steel Based on Cohesive Zone Modeling." In ASME 2014 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/pvp2014-28964.
Full textParmar, Shreya, Xin Wang, Bill (W R. ). Tyson, and Su Xu. "Simulation of Ductile Fracture in Pipeline Steels Under Varying Constraint Conditions Using Cohesive Zone Modeling." In ASME 2015 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/pvp2015-45873.
Full text