Academic literature on the topic 'Cohomologie groupe'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Cohomologie groupe.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Cohomologie groupe"
Colliot-Thélène, Jean-Louis. "Troisième groupe de cohomologie non ramifiée des hypersurfaces de Fano." Tunisian Journal of Mathematics 1, no. 1 (January 1, 2019): 47–57. http://dx.doi.org/10.2140/tunis.2019.1.47.
Full textTouzé, Antoine. "Cohomologie du groupe linéaire à coefficients dans les polynômes de matrices." Comptes Rendus Mathematique 345, no. 4 (August 2007): 193–98. http://dx.doi.org/10.1016/j.crma.2007.06.024.
Full textBoissière, Samuel. "Automorphismes naturels de l'espace de Douady de points sur une surface." Canadian Journal of Mathematics 64, no. 1 (February 1, 2012): 3–23. http://dx.doi.org/10.4153/cjm-2011-041-5.
Full textHarari, David. "Quelques propriétés d’approximation reliées à la cohomologie galoisienne d’un groupe algébrique fini." Bulletin de la Société mathématique de France 135, no. 4 (2007): 549–64. http://dx.doi.org/10.24033/bsmf.2545.
Full textHuyghe, Christine, and Tobias Schmidt. "𝒟-modules arithmétiques sur la variété de drapeaux." Journal für die reine und angewandte Mathematik (Crelles Journal) 2019, no. 754 (September 1, 2019): 1–15. http://dx.doi.org/10.1515/crelle-2017-0021.
Full textArabia, Alberto. "Cohomologie T-équivariante de la variété de drapeaux d'un groupe de Kač-Moody." Bulletin de la Société mathématique de France 117, no. 2 (1989): 129–65. http://dx.doi.org/10.24033/bsmf.2116.
Full textPascal BOYER. "Groupe mirabolique, stratification de Newton raffinée et cohomologie des espaces de Lubin-Tate." Bulletin de la Société mathématique de France 148, no. 1 (2020): 1–23. http://dx.doi.org/10.24033/bsmf.2797.
Full textTchoudjem, Alexis. "Cohomologie des fibrés en droites sur la compactification magnifique d'un groupe semi-simple adjoint." Comptes Rendus Mathematique 334, no. 6 (January 2002): 441–44. http://dx.doi.org/10.1016/s1631-073x(02)02288-4.
Full textFargues, Laurent. "G-torseurs en théorie de Hodge p-adique." Compositio Mathematica 156, no. 10 (October 2020): 2076–110. http://dx.doi.org/10.1112/s0010437x20007423.
Full textBenson, D. J., and V. Franjou. "Séries de compositions de modules instables et injectivité de la cohomologie du groupe ℤ/2." Mathematische Zeitschrift 208, no. 1 (December 1991): 389–99. http://dx.doi.org/10.1007/bf02571535.
Full textDissertations / Theses on the topic "Cohomologie groupe"
Lourdeaux, Alexandre. "Sur les invariants cohomologiques des groupes algébriques linéaires." Thesis, Lyon, 2020. http://www.theses.fr/2020LYSE1044.
Full textOur thesis deals with the cohomological invariants of smooth and connected linear algebraic groups over an arbitrary field. More precisely, we study degree 2 invariants with coefficients Q/Z(1), that is invariants taking values in the Brauer group. Our main tool is the étale cohomology of sheaves on simplicial schemes. We get a description of these invariants for every smooth and connected linear groups, in particular for non reductive groups over an imperfect field (as pseudo-reductive or unipotent groups for instance).We use our description to investigate how the groups of invariants with values in the Brauer group behave with respect to operations on algebraic groups. We detail this group of invariants for particular non reductive algebraic groups over an imperfect field
Nguyen, Tuong-Huy. "Cohomologie des variétés de Coxeter pour le groupe linéaire : algèbre d'endomorphismes, compactification." Thesis, Montpellier, 2015. http://www.theses.fr/2015MONTS031/document.
Full textDeligne-Lusztig varieties associated to Coxeter elements, or more simply Coxeter Varieties denoted by $YY(dot{c})$, are good candidates to realize the derived equivalence needed for the Broué's conjecture. The conjecture implies that the varieties should have disjoint cohomology as well as gives a description of the endomorphisms algebra.For linear groups, we describe the cohomology of the Coxeter varieties and hence show that it agrees with the conditions implied by Broué's conjecture. To do so, we prove it is possible to apply a og transitivityfg result allowing us to restrict to og smallerfg Coxeter varieties. Then, we apply a result obtained by Lusztig on varieties $XX(c)$, which are quotient varieties of $YY(dot{c})$ by some finite groups.In the last part of the thesis, we use the description of the cohomology of Coxeter varieties to connect the cohomology of the compactification $overline{YY}(dot{c})$ and the cohomology of the compactification $overline{XX}(c)$
Touzé, Antoine. "Cohomologie rationnelle du groupe linéaire et extensions de bifoncteurs." Phd thesis, Université de Nantes, 2008. http://tel.archives-ouvertes.fr/tel-00289942.
Full textNous rappelons dans un premier temps la structure de la catégorie des bifoncteurs polynomiaux sur un anneau commutatif quelconque. Nous démontrons que la cohomologie des bifoncteurs calcule la cohomologie rationnelle du groupe linéaire sur un anneau quelconque (ce résultat n'était auparavant connu que sur un corps). Puis nous développons des techniques générales pour le calcul de la cohomologie des bifoncteurs. Nous introduisons notamment de nouveaux outils efficaces pour étudier la torsion de Frobenius en caractéristique p. Enfin, nous appliquons ces méthodes à des familles explicites de bifoncteurs. Nous obtenons ainsi de nouveaux résultats (par exemple des séries de Poincaré) sur la cohomologie rationnelle à valeur dans des représentations classiques, telles que les puissances symétriques et divisées des twists de l'algèbre de Lie du groupe linéaire.
Touzé, Antoine Franjou Vincent. "Cohomologie rationnelle du groupe linéaire et extensions de bifoncteurs." [S.l.] : [s.n.], 2008. http://castore.univ-nantes.fr/castore/GetOAIRef?idDoc=37741.
Full textReynaud, Eric. "Le groupe fondamental algébrique." Phd thesis, Université Montpellier II - Sciences et Techniques du Languedoc, 2002. http://tel.archives-ouvertes.fr/tel-00202368.
Full textLader, Olivier. "Une résolution projective pour le second groupe de Morava pour p ≥ 5 et applications." Phd thesis, Université de Strasbourg, 2013. http://tel.archives-ouvertes.fr/tel-00875761.
Full textFlorence, Mathieu. "Points rationnels sur les espaces homogènes." Paris 11, 2005. http://www.theses.fr/2005PA112101.
Full textThis thesis presents two results concerning homogeneous spaces of algebraic groups. In the first part, we consider the following question, recently asked by Burt Totaro:Let k be a field, G a linear algebraic k-group, and X a quasi-projective variety, endowed with the structure of a homogeneous space of G. Assume there exists a zero-cycle of degree d>0 on X; that is to say, there exists a family of closed points of X, having the property that the gcd of thedegrees (over k) of their residue fields divides d. Can we say that X has a rational point in a separable field extension of k, of degree dividing d ?We show that, in general, the answer is negative. In particular, we produce a counter-example X when k is a number field. The space X is geometrically rational, and a smooth k-compactification of X cannot have a k-rational point. This suggests to considerthe following general question: let X be a homogeneous space of an algebraic group (over a field k), such that X admits a k-compactification having a k-rational point. Then, does X itself possess a rational point ? In the second part of this thesis, we show the answer is positive,in full generality. Roughly speaking, we use cohomological tools to reduce the problem to the case of torsors under semi-simple groups, which is settled by the theory of Bruhat and Tits
Lucchini, Arteche Giancarlo. "Groupe de Brauer des espaces homogènes à stabilisateur non connexe et applications arithmétiques." Thesis, Paris 11, 2014. http://www.theses.fr/2014PA112207/document.
Full textThis thesis studies the unramified Brauer group of homogeneous spaces with non connected stabilizer and its arithmetic applcations. In particular, we develop different formulas of algebraic and/or arithmetic nature allowing an explicit calculation, both over a finite field and over a field of characteristic 0, of the algebraic part of the unramified Brauer group of a homogeneous space G\G' under a semisimple simply connected linear group G' with finite stabilizer G. We also give examples of the calculations that can be done with these formulas. For achieving this goal, we prove beforehand (using a theorem of Gabber on alterations) a result describing the prime-to-p torsion part of the unramified Brauer group of a smooth and geometrically integral variety V over a global field of characteristic p or over a finite field by evaluating the elements of Br(V) at its local points. The formulas for finite stabilizers are later generalised to the case where the stabilizer G is any linear algebraic group using a reduction of the Galois cohomology of the group G to that of a certain finite subquotient.Finally, for a global field K and a finite solvable K-group G, we show under certain hypotheses concerning the extension splitting G that the homogeneous space V:=G\G' with G' a semi-simple simply connected K-group has the weak approximation property (the hypotheses ensuring the triviality of the unramified algebraic Brauer group). We use then a more precise version of this result to prove the Hasse principle forhomogeneous spaces X under a semi-simple simply connected K-group G' with finite solvable geometric stabilizer, under certain hypotheses concerning the K-kernel (or K-lien) defined by X
Picaud, Jean-Claude. "Un aspect géométrique du deuxième groupe de cohomologie bornée réelle des surfaces." Université Joseph Fourier (Grenoble), 1995. http://www.theses.fr/1995GRE10174.
Full textCombe, Noémie. "On a new cell decomposition of a complement of the discriminant variety : application to the cohomology of braid groups." Thesis, Aix-Marseille, 2018. http://www.theses.fr/2018AIXM0140.
Full textThis thesis mainly concerns two closely related classical objects: on the one hand, the variety of unitary complex polynomials of degree $ d> 1 $ with a variable, and with simple roots (hence with a non-zero discriminant), and on the other hand, the $d$ strand Artin braid groups. The work presented in this thesis proposes a new approach allowing explicit cohomological calculations with coefficients in any sheaf. In order to obtain explicit cohomological calculations, it is necessary to have a good cover in the sense of Čech. One of the main objectives of this thesis is to construct such a good covering, based on graphs that are reminiscent of the ''dessins d'enfants'' and which are associated to the complex polynomials. This decomposition of the space of polynomials provides a semi-algebraic stratification. The number of connected components in each stratum is counted in the last chapter of this thesis. Nevertheless, this partition does not immediately provide a ''good'' cover adapted to the computation of the cohomology of Čech (with any coefficients) for two related and obvious reasons: on the one hand the subsets of the cover are not open, and moreover they are disjoint since they correspond to different signatures. Therefore, the main purpose of Chapter 6 is to ''correct'' the cover in order to transform it into a good open cover, suitable for the calculation of the Čech cohomology. It is explicitly verified that there is an open cover such that all the multiple intersections are contractible. This allows an explicit calculation of cohomology groups of Čech with values in a locally constant sheaf
Books on the topic "Cohomologie groupe"
Mimura, M. Topology of lie groups, I and II. Providence, R.I: American Mathematical Society, 1991.
Find full textJames, Milgram R., ed. Cohomology of finite groups. 2nd ed. Berlin: Springer, 2004.
Find full textAdem, Alejandro, and R. James Milgram. Cohomology of Finite Groups. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-06280-7.
Full textAdem, Alejandro, and R. James Milgram. Cohomology of Finite Groups. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-662-06282-1.
Full textCogdell, James W., Günter Harder, Stephen Kudla, and Freydoon Shahidi, eds. Cohomology of Arithmetic Groups. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-95549-0.
Full textVermani, L. R. Lectures on cohomology of groups. Kurukshetra: Publication Bureau, Kurukshetra University, 1994.
Find full textBook chapters on the topic "Cohomologie groupe"
Drezet, J. M. "Cohomologie du Groupe de Jauge." In Module Des Fibrés Stables Sur Les Courbes Algébriques, 51–80. Boston, MA: Birkhäuser Boston, 1985. http://dx.doi.org/10.1007/978-1-4684-7603-3_3.
Full textDolbeault, par P. "Sur le groupe de cohomologie entière de dimension deux d'une variété analytique complexe." In Forme differenziali e loro integrali, 139–59. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-10952-2_5.
Full textSerre, Jean-Pierre. "Cohomologie des groupes profinis." In Cohomologie Galoisienne, 1–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/bfb0108759.
Full textLee, Kyung, and Frank Raymond. "Group cohomology." In Seifert Fiberings, 95–107. Providence, Rhode Island: American Mathematical Society, 2010. http://dx.doi.org/10.1090/surv/166/05.
Full textChoie, YoungJu, and Min Ho Lee. "Group Cohomology." In Springer Monographs in Mathematics, 107–20. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-29123-5_6.
Full textSerre, Jean-Pierre. "Cohomologie des groupes discrets." In Springer Collected Works in Mathematics, 532–35. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-37726-6_83.
Full textSerre, Jean-Pierre. "Cohomologie des groupes discrets." In Springer Collected Works in Mathematics, 593–685. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-37726-6_88.
Full textJantzen, Jens. "Cohomology." In Representations of Algebraic Groups, 49–64. Providence, Rhode Island: American Mathematical Society, 2007. http://dx.doi.org/10.1090/surv/107/04.
Full textBump, Daniel. "Cohomology of Grassmannians." In Lie Groups, 517–27. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-8024-2_48.
Full textBump, Daniel. "Cohomology of Grassmannians." In Lie Groups, 428–37. New York, NY: Springer New York, 2004. http://dx.doi.org/10.1007/978-1-4757-4094-3_50.
Full textConference papers on the topic "Cohomologie groupe"
Masuoka, Akira. "Hopf cohomology vanishing via approximation by Hochschild cohomology." In Noncommutative Geometry and Quantum Groups. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2003. http://dx.doi.org/10.4064/bc61-0-8.
Full textKhalkhali, M., and B. Rangipour. "Cyclic cohomology of (extended) Hopf algebras." In Noncommutative Geometry and Quantum Groups. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2003. http://dx.doi.org/10.4064/bc61-0-5.
Full textVenkataramana, T. N. "Cohomology of Arithmetic Groups and Representations." In Proceedings of the International Congress of Mathematicians 2010 (ICM 2010). Published by Hindustan Book Agency (HBA), India. WSPC Distribute for All Markets Except in India, 2011. http://dx.doi.org/10.1142/9789814324359_0100.
Full textBONANZINGA, V., and L. SORRENTI. "LEXSEGMENT IDEALS AND SIMPLICIAL COHOMOLOGY GROUPS." In Selected Contributions from the 8th SIMAI Conference. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812709394_0016.
Full textSharygin, G. I. "Hopf-type Cyclic Cohomology via the Karoubi Operator." In Noncommutative Geometry and Quantum Groups. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2003. http://dx.doi.org/10.4064/bc61-0-14.
Full textGrochow, Joshua A., and Youming Qiao. "Algorithms for Group Isomorphism via Group Extensions and Cohomology." In 2014 IEEE Conference on Computational Complexity (CCC). IEEE, 2014. http://dx.doi.org/10.1109/ccc.2014.19.
Full textVENKATESH, AKSHAY. "COHOMOLOGY OF ARITHMETIC GROUPS - FIELDS MEDAL LECTURE." In International Congress of Mathematicians 2018. WORLD SCIENTIFIC, 2019. http://dx.doi.org/10.1142/9789813272880_0014.
Full textSAKANE, YUSUKE, and TAKUMI YAMADA. "HARMONIC COHOMOLOGY GROUPS ON COMPACT SYMPLECTIC NILMANIFOLDS." In Proceedings of the International Conference on Modern Mathematics and the International Symposium on Differential Geometry. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812776419_0014.
Full textLI, JIAN-SHU, and JOACHIM SCHWERMER. "AUTOMORPHIC REPRESENTATIONS AND COHOMOLOGY OF ARITHMETIC GROUPS." In Proceedings of the International Conference on Fundamental Sciences: Mathematics and Theoretical Physics. WORLD SCIENTIFIC, 2001. http://dx.doi.org/10.1142/9789812811264_0005.
Full textSOMA, TERUHIKO. "THE THIRD BOUNDED COHOMOLOGY AND KLEINIAN GROUPS." In Proceedings of the 37th Taniguchi Symposium. WORLD SCIENTIFIC, 1996. http://dx.doi.org/10.1142/9789814503921_0015.
Full textReports on the topic "Cohomologie groupe"
Holod, Petro I. Geometric Quantization, Cohomology Groups and Intertwining Operators. GIQ, 2012. http://dx.doi.org/10.7546/giq-1-2000-95-104.
Full text