Academic literature on the topic 'Cohomology with compact support'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Cohomology with compact support.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Cohomology with compact support"

1

Chatel, Gweltaz, and David Lubicz. "A Point Counting Algorithm Using Cohomology with Compact Support." LMS Journal of Computation and Mathematics 12 (2009): 295–325. http://dx.doi.org/10.1112/s1461157000001534.

Full text
Abstract:
AbstractWe describe an algorithm to count the number of rational points of an hyperelliptic curve defined over a finite field of odd characteristic which is based upon the computation of the action of the Frobenius morphism on a basis of the Monsky-Washnitzer cohomology with compact support. This algorithm follows the vein of a systematic exploration of potential applications of cohomology theories to point counting.Our algorithm decomposes in two steps. A first step which consists of the computation of a basis of the cohomology and then a second step to obtain a representation of the Frobenius morphism. We achieve a Õ(g4n3) time complexity and O(g3n3) memory complexity where g is the genus of the curve and n is the absolute degree of its base field. We give a detailed complexity analysis of the algorithm as well as a proof of correctness.
APA, Harvard, Vancouver, ISO, and other styles
2

García-Calcines, J. M., P. R. García-Díaz, and A. Murillo. "Brown representability for exterior cohomology and cohomology with compact supports." Journal of the London Mathematical Society 90, no. 1 (May 30, 2014): 184–96. http://dx.doi.org/10.1112/jlms/jdu024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Nizioł, Wiesława. "On uniqueness of p-adic period morphisms, II." Compositio Mathematica 156, no. 9 (September 2020): 1915–64. http://dx.doi.org/10.1112/s0010437x20007344.

Full text
Abstract:
We prove equality of the various rational $p$-adic period morphisms for smooth, not necessarily proper, schemes. We start with showing that the $K$-theoretical uniqueness criterion we had found earlier for proper smooth schemes extends to proper finite simplicial schemes in the good reduction case and to cohomology with compact support in the semistable reduction case. It yields the equality of the period morphisms for cohomology with compact support defined using the syntomic, almost étale, and motivic constructions. We continue with showing that the $h$-cohomology period morphism agrees with the syntomic and almost étale period morphisms whenever the latter morphisms are defined (and up to a change of Hyodo–Kato cohomology). We do it by lifting the syntomic and almost étale period morphisms to the $h$-site of varieties over a field, where their equality with the $h$-cohomology period morphism can be checked directly using the Beilinson Poincaré lemma and the case of dimension $0$. This also shows that the syntomic and almost étale period morphisms have a natural extension to the Voevodsky triangulated category of motives and enjoy many useful properties (since so does the $h$-cohomology period morphism).
APA, Harvard, Vancouver, ISO, and other styles
4

Yang, Wu. "On Duality for Cohomology with Compact Supports." Moscow University Mathematics Bulletin 76, no. 1 (January 2021): 41–43. http://dx.doi.org/10.3103/s0027132221010083.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Xue, Cong. "Cuspidal cohomology of stacks of shtukas." Compositio Mathematica 156, no. 6 (May 14, 2020): 1079–151. http://dx.doi.org/10.1112/s0010437x20007058.

Full text
Abstract:
Let $G$ be a connected split reductive group over a finite field $\mathbb{F}_{q}$ and $X$ a smooth projective geometrically connected curve over $\mathbb{F}_{q}$. The $\ell$-adic cohomology of stacks of $G$-shtukas is a generalization of the space of automorphic forms with compact support over the function field of $X$. In this paper, we construct a constant term morphism on the cohomology of stacks of shtukas which is a generalization of the constant term morphism for automorphic forms. We also define the cuspidal cohomology which generalizes the space of cuspidal automorphic forms. Then we show that the cuspidal cohomology has finite dimension and that it is equal to the (rationally) Hecke-finite cohomology defined by V. Lafforgue.
APA, Harvard, Vancouver, ISO, and other styles
6

V�j�itu, Viorel. "Cohomology with compact supports for cohomologically q -convex spaces." Archiv der Mathematik 80, no. 5 (May 1, 2003): 496–500. http://dx.doi.org/10.1007/s00013-003-0496-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Edmundo, Mário J., and Luca Prelli. "Invariance of o-minimal cohomology with definably compact supports." Confluentes Mathematici 7, no. 1 (February 3, 2016): 35–53. http://dx.doi.org/10.5802/cml.17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Forni, Giovanni. "Homology and cohomology with compact supports forq-convex spaces." Annali di Matematica Pura ed Applicata 159, no. 1 (December 1991): 229–54. http://dx.doi.org/10.1007/bf01766303.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Petersen, Dan. "Cohomology of generalized configuration spaces." Compositio Mathematica 156, no. 2 (December 20, 2019): 251–98. http://dx.doi.org/10.1112/s0010437x19007747.

Full text
Abstract:
Let $X$ be a topological space. We consider certain generalized configuration spaces of points on $X$, obtained from the cartesian product $X^{n}$ by removing some intersections of diagonals. We give a systematic framework for studying the cohomology of such spaces using what we call ‘twisted commutative dg algebra models’ for the cochains on $X$. Suppose that $X$ is a ‘nice’ topological space, $R$ is any commutative ring, $H_{c}^{\bullet }(X,R)\rightarrow H^{\bullet }(X,R)$ is the zero map, and that $H_{c}^{\bullet }(X,R)$ is a projective $R$-module. We prove that the compact support cohomology of any generalized configuration space of points on $X$ depends only on the graded $R$-module $H_{c}^{\bullet }(X,R)$. This generalizes a theorem of Arabia.
APA, Harvard, Vancouver, ISO, and other styles
10

CHAPOTON, F. "ON THE NUMBER OF POINTS OVER FINITE FIELDS ON VARIETIES RELATED TO CLUSTER ALGEBRAS." Glasgow Mathematical Journal 53, no. 1 (December 22, 2010): 141–51. http://dx.doi.org/10.1017/s0017089510000777.

Full text
Abstract:
AbstractWe start here the study of some algebraic varieties related to cluster algebras. These varieties are defined as the fibres of the projection map from the cluster variety to the affine space of coefficients. We compute the number of points over finite fields on these varieties, for all simply laced Dynkin diagrams. We also compute the cohomology with compact support in some cases.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Cohomology with compact support"

1

Carrillo-Rouse, Paulo Roberto. "Indices analytiques à support compact pour des groupoïdes de Lie." Paris 7, 2007. http://www.theses.fr/2007PA077160.

Full text
Abstract:
Pour un groupoïde de Lie on construit un morphisme d'indice analytique à valeurs dans un « bon quotient« du groupe de K-théorie de l'algèbre des fonctions à support compact sur le groupoïde. Cet indice est intermédiaire entre l'indice purement algébrique et l'indice analytique à valeurs dans la K-théorie de la C ̂*-algèbre associée au groupoïde. L'avantage de ces indices est que pour les groupes de K-théorie du type support compact on dispose d'un accouplement avec la cohomologie cyclique qui permet d'obtenir des invariants numériques. En particulier on montre que l'accouplement de l'indice d'un G-opérateur elliptique avec un cocycle cyclique périodique est toujours donné au niveau de la classe du symbole principal. La construction des indices à support compact est basée, comme pour le cas C ̂*-algèbre, sur le groupoïde tangent de Connes. En effet, on a été menés à construire une algèbre des fonctions lisses sur le groupoïde tangent qui réalise une déformation entre l'algèbre de convolution du groupoïde de base et l'algèbre de Schwartz de l'algébroïde. On retrouve finalement des formules d'indice de Connes, Connes-Moscovici et Benameur-Heitsch, mais d'une façon purement algébrique
For a Lie groupoid we construct an analytic index morphism taking values in a « good quotient« of the K-theory group of the algebra of compactly supported functions over the groupoid. This index is intermediate between the purely algebraic index and the analytic index in the K-theory of the C ̂*-algebra. The advantage of these indices is that for the K-theory groups like the compactly supported we have a pairing with the Cyclic cohomology that allow to obtain numerical invariants. In particular we show that the pairing of a G-elliptic operator with a periodic cyclic cocycle is always given at the level of the principal symbol class. The construction of our indices is also based, as in the C ̂*-algebra case, in the Connes tangent groupoid. Indeed, we had to construct an algebra of smooth functions over the tangent groupoid that performs a deformation between the convolution algebra of the base groupoid on the Schwartz algebra of the Lie algebroid. We finally found some index formulas by Connes, Connes-Moscovici and Benameur-Heitsch, but in a purely algebraic way
APA, Harvard, Vancouver, ISO, and other styles
2

Carrillo, Rouse Paulo. "Indices analytiques à support compact pour des groupoïdes de Lie." Phd thesis, Université Paris-Diderot - Paris VII, 2007. http://tel.archives-ouvertes.fr/tel-00271219.

Full text
Abstract:
Pour un groupoïde de Lie, on construit un morphisme d'indice analytique à valeurs dans un certain quotient de la K-théorie de l'algèbre de convolution de fonctions lisses à support compact. La construction est aboutie grâce à l'introduction d'une algèbre de déformation de fonctions lisses sur le groupoïde tangent. Ceci permet en particulier de montrer une version plus primitive du théorème de l'indice longitudinal de Connes-Skandalis for Foliations, c'est à dire, un théorème de l'indice qui prend ses valeurs dans un groupe qui peut être accouplé avec des cocycles cycliques. Une autre application est la suivante: soit D un G-opérateur pseudodifférential eliiptique avec indice ind(D)€K_0(A) (où A est l'algèbre de convolution), alors l'accouplement de ind(D) avec un coycle cyclique borné ne dépend que de la classe du symbole principal de D. Ce résultat est général pour des goupoïdes étale.
APA, Harvard, Vancouver, ISO, and other styles
3

Cellini, Caroline Paula. "Dualidade de Poincaré e invariantes cohomológicos /." São José do Rio Preto : [s.n.], 2008. http://hdl.handle.net/11449/99831.

Full text
Abstract:
Orientador: Ermínia de Lourdes Campello Fanti
Banca: Fernanda Soares Pinto Cardona
Banca: Maria Gorete Carreira Andrade
Resumo: Neste trabalho são abordados alguns aspectos da teoria de dualidade. Ele pode ser dividido em três partes principais. Na primeira demonstramos o teorema de Dualidade de Poincaré para variedades (sem bordo) orientáveis. Para tanto, fez-se necessário o uso do limite direto e cohomologia com suporte compacto. Na segunda definimos grupos de dualidade, em particular, grupo de dualidade de Poincaré, apresentamos alguns resultados e observações sobre a relação existente entre tais grupos e os grupos fundamentais de variedades asféricas fechadas, que é ainda um problema em aberto. Finalmente, alguns resultados envolvendo invariantes cohomológicos "ends" e grupos de dualidade são apresentados.
Abstract: In this work we consider some aspects of duality theory. It can be divided in three principal parts. In the first we prove the Poincaré Duality theorem for orientable manifolds (without boundary). For that, it is necessary the use of the direct limit and cohomology with compact supports. In the second part we de¯ne duality groups, in particular, Poincaré duality groups, we introduce some results and observations about the relationship between such groups and fundamental groups of aspherical closed manifolds, that still is an open problem. Finally, some results envolving the cohomological invariant "ends" and duality groups are presented.
Mestre
APA, Harvard, Vancouver, ISO, and other styles
4

Cellini, Caroline Paula [UNESP]. "Dualidade de Poincaré e invariantes cohomológicos." Universidade Estadual Paulista (UNESP), 2008. http://hdl.handle.net/11449/99831.

Full text
Abstract:
Made available in DSpace on 2014-06-11T19:30:22Z (GMT). No. of bitstreams: 0 Previous issue date: 2008-03-31Bitstream added on 2014-06-13T19:19:04Z : No. of bitstreams: 1 cellini_cp_me_sjrp.pdf: 781641 bytes, checksum: 70ed1b385d132f8255370c0014be09b4 (MD5)
Neste trabalho são abordados alguns aspectos da teoria de dualidade. Ele pode ser dividido em três partes principais. Na primeira demonstramos o teorema de Dualidade de Poincaré para variedades (sem bordo) orientáveis. Para tanto, fez-se necessário o uso do limite direto e cohomologia com suporte compacto. Na segunda definimos grupos de dualidade, em particular, grupo de dualidade de Poincaré, apresentamos alguns resultados e observações sobre a relação existente entre tais grupos e os grupos fundamentais de variedades asféricas fechadas, que é ainda um problema em aberto. Finalmente, alguns resultados envolvendo invariantes cohomológicos ends e grupos de dualidade são apresentados.
In this work we consider some aspects of duality theory. It can be divided in three principal parts. In the first we prove the Poincaré Duality theorem for orientable manifolds (without boundary). For that, it is necessary the use of the direct limit and cohomology with compact supports. In the second part we de¯ne duality groups, in particular, Poincaré duality groups, we introduce some results and observations about the relationship between such groups and fundamental groups of aspherical closed manifolds, that still is an open problem. Finally, some results envolving the cohomological invariant ends and duality groups are presented.
APA, Harvard, Vancouver, ISO, and other styles
5

Rajhi, Anis. "Cohomologie d'espaces fibrés au-dessus de l'immeuble affine de GL(N)." Thesis, Poitiers, 2014. http://www.theses.fr/2014POIT2266/document.

Full text
Abstract:
Cette thèse se compose de deux parties : dans la première on donne une généralisation d'espaces fibrés construit au-dessus de l'arbre de Bruhat-Tits du groupe GL(2) sur un corps p-adique. Plus précisément, on a construit une tour projective d'espaces fibrés au-dessus du 1-squelette de l'immeuble de Bruhat-Tits de GL(n) sur un corps p-adique. On a montré que toute représentation cuspidale π de GL(n) se plonge avec multiplicité 1 dans le premier espace de cohomologie à support compact du k-ième étage de la tour, où k est le conducteur de π. Dans la deuxième partie on a construit un espace W au-dessus de la subdivision barycentrique de l'immeuble de Bruhat-Tits de GL(n) sur un corps p-adique. Pour étudier les espaces de cohomologie à support compact d'un G-complexe simplicial propre X muni d'un recouvrement équivariant assez particulier, où G est un groupe localement compact totalement discontinu, on a montré l'existence d'une suite spactrale dans la catégorie des représentations lisses de G qui converge vers la cohomologie à support compact de X. En s'appuyant sur ce dernier résultat, on a calculé la cohomologie à support compact de l'espace W comme représentation lisse de GL(n) puis on a montrer que les types cuspidaux de niveau 0 de GL(n) apparaissent avec multiplicité fini dans la cohomologie de certain complexes fini construit au niveau résiduel. Comme conséquence, on montre que les représentations cuspidales de niveau 0 de GL(n) apparaissent dans la cohomologie de W
This thesis consists of two parts: the first one gives a generalization of fiber spaces constructed above the Bruhat-Tits tree of the group GL(2) over a p-adic field. More precisely we construct a projective tower of spaces over the 1-skeleton of the Bruhat-Tits building of GL(n) over a p-adic field. We show that any cuspidal representation π of GL(n) embeds with multiplicity 1 in the first cohomology space with compact support of k-th floor of the tower, where k is the conductor of π. In the second part we constructed a space W above the barycentric subdivision of the Bruhat-Tits building of GL(n) over a p-adic field. To study the cohomology spaces with compact support of a proper G-simplicial complex X with a rather special equivariant covering, where G is a totally disconnected locally compact group, we show the existence of a spactrale sequence in the category of smooth representations of G that converges to the cohomology with compact support of X. Based on the latter results, we calculate the cohomology with compact support of W as smooth representation of GL(n), and then we show that the level zero cuspidal types of GL(n) appear with finite multiplicity in the cohomology of some finite simplicial complexes constructed in residual level. As a consequence, we show that the cuspidal representations of level 0 of GL(n) appear in the cohomology of W
APA, Harvard, Vancouver, ISO, and other styles
6

Limoges, Thierry. "Structures produits sur la filtration par le poids des variétés algébriques réelles." Thesis, Nice, 2015. http://www.theses.fr/2015NICE4001/document.

Full text
Abstract:
On associe à chaque variété algébrique définie sur R un complexe de cochaînes filtré, qui calcule la cohomologie à supports compacts et coefficients dans Z_2 de ses points réels. Ce complexe filtré est additif pour les inclusions fermées et acyclique pour la résolution des singularités, et est unique à quasi-isomorphisme filtré près. Il est représenté par la filtration duale de la filtration géométrique sur les chaînes semi-algébriques à supports fermés définie par McCrory and Parusiński, et induit une suite spectrale qui calcule la filtration par le poids sur la cohomologie à supports compacts. Cette suite spectrale est un invariant naturel qui contient les nombres de Betti virtuels. On montre que le produit cartésien de deux variétés nous permet de comparer le produit de leurs complexe de poids et suite spectrale respectifs avec ceux du produit, et on prouve que les produits cap et cup en cohomologie et homologie sont filtrés par rapport à ces filtrations par le poids réelles
We associate to each algebraic variety defined over R a filtered cochain complex, which computes the cohomology with compact supports and Z_2-coefficients of the set of its real points. This filtered complex is additive for closed inclusions and acyclic for resolution of singularities, and is unique up to filtered quasi-isomorphism. It is represented by the dual filtration of the geometric filtration on semialgebraic chains with closed supports defined by McCrory and Parusiński, and leads to a spectral sequence which computes the weight filtration on cohomology with compact supports. This spectral sequence is a natural invariant which contains the additive virtual Betti numbers. We then show that the cross product of two varieties allows us to compare the product of their respective weight complexes and spectral sequences with those of their product, and prove that the cup and cap products in cohomology and homology are filtered with respect to the real weight filtrations
APA, Harvard, Vancouver, ISO, and other styles
7

Bergh, Petter Andreas. "Hochschild cohomology, complexity and support varieties." Doctoral thesis, Norwegian University of Science and Technology, Faculty of Information Technology, Mathematics and Electrical Engineering, 2006. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-1491.

Full text
Abstract:

This PhD-thesis consists of the five papers

- On the Hochschild (co)homology of quantum exterior algebras, to appear in Comm. Algebra,

-Complexity and periodicity, Coll. Math. 104 (2006), no. 2, 169-191,

-Twisted support varieties,

-Modules with reducible complexity, to appear in J. Algebra,

- On support varieties for modules over complete intersections, to appear in Proc. Amer. Math. Soc.

These papers are roughly divided into two groups; the ¯rst three study modules over Artin algebras using techniques from Hochschild cohomology, whereas the last two papers study modules over commutative Noetherian local rings, in particular modules over complete intersections.

APA, Harvard, Vancouver, ISO, and other styles
8

Bletz-Siebert, Oliver. "Homogeneous spaces with the cohomology of sphere products and compact quadrangles." Doctoral thesis, [S.l. : s.n.], 2002. http://deposit.ddb.de/cgi-bin/dokserv?idn=966590341.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

馮淑貞 and Suk-ching Fung. "Asymptotic vanishing theorem of cohomology groups on compact quotientsof the unit ball." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1998. http://hub.hku.hk/bib/B31220848.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Fung, Suk-ching. "Asymptotic vanishing theorem of cohomology groups on compact quotients of the unit ball /." Hong Kong : University of Hong Kong, 1998. http://sunzi.lib.hku.hk/hkuto/record.jsp?B20667991.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Cohomology with compact support"

1

Monod, Nicolas, ed. Continuous Bounded Cohomology of Locally Compact Groups. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/b80626.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

1970-, Iyengar Srikanth, and Krause Henning 1962-, eds. Representations of finite groups: Local cohomology and support. Basel: Birkhäuser, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Benson, David J., Srikanth Iyengar, and Henning Krause. Representations of Finite Groups: Local Cohomology and Support. Basel: Springer Basel, 2012. http://dx.doi.org/10.1007/978-3-0348-0260-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Schneider, James C. Nebraska expert report in support of counterclaim and crossclaim: Nebraska's proposed changes to the RRCA accounting procedures. [Lincoln, Neb: Nebraska Dept. of Natural Resources], 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Compact, Barcelona Centre for the Support of the Global. Towards a corporate citizenship: Activity report 2006. Barcelona: Fundació Fòrum Universal de les Cultures, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

1938-, Griffiths Phillip, and Kerr Matthew D. 1975-, eds. Hodge theory, complex geometry, and representation theory. Providence, Rhode Island: Published for the Conference Board of the Mathematical Sciences by the American Mathematical Society, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Campbell, David K., and Karl H. Hofmann. Cohomology Theories for Compact Abelian Groups. Springer, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Cohomology Theories for Compact Abelian Groups. Springer, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Continuous Bounded Cohomology of Locally Compact Groups. Springer, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Monod, Nicolas. Continuous Bounded Cohomology of Locally Compact Groups. Springer, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Cohomology with compact support"

1

Iversen, Birger. "Cohomology with Compact Support." In Universitext, 146–201. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-82783-9_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Huber, Roland. "Cohomology with compact support." In Étale Cohomology of Rigid Analytic Varieties and Adic Spaces, 269–323. Wiesbaden: Vieweg+Teubner Verlag, 1996. http://dx.doi.org/10.1007/978-3-663-09991-8_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lazda, Christopher, and Ambrus Pál. "The Overconvergent Site, Descent, and Cohomology with Compact Support." In Algebra and Applications, 131–71. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-30951-4_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Amorós, J., M. Burger, K. Corlette, D. Kotschick, and D. Toledo. "𝐿²-cohomology of Kähler groups." In Fundamental Groups of Compact Kähler Manifolds, 47–63. Providence, Rhode Island: American Mathematical Society, 1996. http://dx.doi.org/10.1090/surv/044/04.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Duistermaat, J. J., and J. A. C. Kolk. "Distributions with Compact Support." In Distributions, 71–82. Boston: Birkhäuser Boston, 2010. http://dx.doi.org/10.1007/978-0-8176-4675-2_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bianchini, Bruno, Luciano Mari, Patrizia Pucci, and Marco Rigoli. "The Compact Support Principle." In Geometric Analysis of Quasilinear Inequalities on Complete Manifolds, 181–224. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-62704-1_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Turner, Nigel M., and Anneliese Nusmeier. "Pediatrische Basic Life Support (PBLS) voor professionals." In APLS compact, 73. Houten: Bohn Stafleu van Loghum, 2019. http://dx.doi.org/10.1007/978-90-368-2221-3_57.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Turner, Nigel M., and Anneliese Nusmeier. "Kinder–Advanced Life Support (K-ALS) – universeel algoritme." In APLS compact, 75. Houten: Bohn Stafleu van Loghum, 2019. http://dx.doi.org/10.1007/978-90-368-2221-3_59.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Turner, Nigel M., and Anneliese Nusmeier. "Kinder–Advanced Life Support (K-ALS) – volgorde van handelen." In APLS compact, 76. Houten: Bohn Stafleu van Loghum, 2019. http://dx.doi.org/10.1007/978-90-368-2221-3_60.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ishiguro, Kenshi. "Classifying spaces of compact simple lie groups and p-tori." In Algebraic Topology Homotopy and Group Cohomology, 210–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/bfb0087511.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Cohomology with compact support"

1

SAKANE, YUSUKE, and TAKUMI YAMADA. "HARMONIC COHOMOLOGY GROUPS ON COMPACT SYMPLECTIC NILMANIFOLDS." In Proceedings of the International Conference on Modern Mathematics and the International Symposium on Differential Geometry. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812776419_0014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

"Compact modeling support for heterogeneous systems." In 2014 21st International Conference "Mixed Design of Integrated Circuits & Systems" (MIXDES). IEEE, 2014. http://dx.doi.org/10.1109/mixdes.2014.6872149.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lu, Shuxia, Pu Shi, and Xianhao Liu. "Compact Fuzzy Multiclass Support Vector Machines." In 2008 Fourth International Conference on Natural Computation. IEEE, 2008. http://dx.doi.org/10.1109/icnc.2008.832.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

NAKAMURA, YAYOI, and SHINICHI TAJIMA. "A METHOD FOR CONSTRUCTING HOLONOMIC SYSTEMS FOR ALGEBRAIC LOCAL COHOMOLOGY CLASSES WITH SUPPORT ON A ZERO DIMENSIONAL VARIETY." In Proceedings of the First International Congress of Mathematical Software. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812777171_0016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Israel, Daniel M. "Code Verification for RANS Solutions with Compact Support." In AIAA Scitech 2019 Forum. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2019. http://dx.doi.org/10.2514/6.2019-2334.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Taassori, Meysam, Rajeev Balasubramonian, Siddhartha Chhabra, Alaa R. Alameldeen, Manjula Peddireddy, Rajat Agarwal, and Ryan Stutsman. "Compact Leakage-Free Support for Integrity and Reliability." In 2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA). IEEE, 2020. http://dx.doi.org/10.1109/isca45697.2020.00066.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Izenson, Michael G., Weibo Chen, Molly S. Anderson, and Edward W. Hodgson. "Compact Water Vapor Exchanger for Regenerative Life Support Systems." In 43rd International Conference on Environmental Systems. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2013. http://dx.doi.org/10.2514/6.2013-3514.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Dukkipati, Ambedkar, Debarghya Ghoshdastidar, and Jinu Krishnan. "Mixture modeling with compact support distributions for unsupervised learning." In 2016 International Joint Conference on Neural Networks (IJCNN). IEEE, 2016. http://dx.doi.org/10.1109/ijcnn.2016.7727539.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Abed, Mansour, Adel Belouchrani, Mohamed Cheriet, and Boualem Boashash. "Compact support kernels based time-frequency distributions: Performance evaluation." In ICASSP 2011 - 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2011. http://dx.doi.org/10.1109/icassp.2011.5947274.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lv, Baoxian. "An algorithm for Designing Biorthogonal Wavelets with Compact Support." In 2010 Asia-Pacific Power and Energy Engineering Conference. IEEE, 2010. http://dx.doi.org/10.1109/appeec.2010.5448426.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Cohomology with compact support"

1

Baldoumas, Abigael, Evelien van Roemburg, and Mathew Truscott. Welcome, Support, Pledge, Resettle: Responsibility sharing in the Global Compact on Refugees. Oxfam, December 2019. http://dx.doi.org/10.21201/2019.5402.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Baker, Mark S. Test Support of the 18K BTUH Compact Total Environmental Control System (TECS), 0500.0121. Fort Belvoir, VA: Defense Technical Information Center, September 1988. http://dx.doi.org/10.21236/ada210720.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Battahov, P. P. Geopolitical approaches to the legal support of the development of the indigenous small-numbered peoples of the North in places of their compact residence in the conditions of industrial development of the Far North. Ljournal, 2020. http://dx.doi.org/10.18411/3324-6674-2020-09990.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Spivack, Marla. Applying Systems Thinking to Education: The RISE Systems Framework. Research on Improving Systems of Education (RISE), May 2021. http://dx.doi.org/10.35489/bsg-rise-ri_2021/028.

Full text
Abstract:
Many education systems in low- and middle-income countries are experiencing a learning crisis. Many efforts to address this crisis do not account for the system features of education, meaning that they fail to consider the ways that interactions and feedback loops produce outcomes. Thinking through the feedback relationships that produce the education system can be challenging. The RISE Education Systems Framework, which is sufficiently structured to give boundaries to the analysis but sufficiently flexible to be adapted to multiple scenarios, can be helpful. The RISE Framework identifies four key relationships in an education system: politics, compact, management, and voice and choice; and five features that can be used to describe these relationships: delegation, finance, information, support, and motivation. This Framework can be a useful approach for characterising the key actors and interactions in the education system, thinking through how these interactions produce systems outcomes, and identifying ways to intervene that can shift the system towards better outcomes.
APA, Harvard, Vancouver, ISO, and other styles
5

Bland, Gary, Lucrecia Peinado, and Christin Stewart. Innovations for Improving Access to Quality Health Care: The Prospects for Municipal Health Insurance in Guatemala. RTI Press, December 2017. http://dx.doi.org/10.3768/rtipress.2017.pb.0016.1712.

Full text
Abstract:
Municipal insurance–a collective compact in which municipal government is the lead actor in designing, delivering, and supervising a health care financing arrangement—is considered by some Guatemalans as a potential new avenue for improving financial protection against rising costs and improved access to quality health care. This brief presents a political economy analysis of the prospects for the adoption of municipal insurance in Guatemala. Municipal insurance has so far been tried only once, in 2015, by the large suburban municipality of Villa Nueva. Drawing from the Villa Nueva experience, based on interviews with nearly 30 key informants, this brief examines the potential obstacles to municipal insurance reform as well as leading factors favoring its introduction. Consistent health ministry support and equity concerns are potential limitations, for example, while decentralization and the recent emergence of creative insurance products are likely to be supportive. This brief then concludes with consideration of the policy implications of such a reform. We also offer a series of policy recommendations for policymakers and practitioners who may be looking to implement municipal insurance reform.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography