To see the other types of publications on this topic, follow the link: Coil to Globule transition.

Journal articles on the topic 'Coil to Globule transition'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Coil to Globule transition.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Birshtein, T. M., and V. A. Pryamitsyn. "Coil-globule type transitions in polymers. 2. Theory of coil-globule transition in linear macromolecules." Macromolecules 24, no. 7 (1991): 1554–60. http://dx.doi.org/10.1021/ma00007a017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Tiktopulo, Elizaveta I., Vladimir N. Uversky, Vanda B. Lushchik, Stanislav I. Klenin, Valentina E. Bychkova, and Oleg B. Ptitsyn. ""Domain" Coil-Globule Transition in Homopolymers." Macromolecules 28, no. 22 (1995): 7519–24. http://dx.doi.org/10.1021/ma00126a032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Tanaka, Fumihiko. "The polymer‐induced coil–globule transition." Journal of Chemical Physics 82, no. 5 (1985): 2466–71. http://dx.doi.org/10.1063/1.448291.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Birshtein, T. M., and V. A. Pryamitsyn. "Theory of the coil-globule transition." Polymer Science U.S.S.R. 29, no. 9 (1987): 2039–46. http://dx.doi.org/10.1016/0032-3950(87)90010-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lebedev, Vassili, Gyula Török, László Cser, Wolfgang Treimer, Diana Orlova, and Avgustin Sibilev. "Polymer hydration and microphase decomposition in poly(N-vinylcaprolactam)–water complex." Journal of Applied Crystallography 36, no. 4 (2003): 967–69. http://dx.doi.org/10.1107/s0021889803008422.

Full text
Abstract:
Poly(N-vinylcaprolactam) (PVCL) is a synthetic analogue of biomolecules (enzymes, proteins). It demonstrates a specific hydration and undergoes a coil–globule transition. The PVCL–D2O system (PVCL massM= 106) has been investigated by small-angle neutron scattering (SANS) atT= 296–316 K to identify the structural features of the collapse at concentrationC= 0.5 wt% near the threshold of the coil overlap. (The collapse leads to the segregation of the phase enriched with polymer atT> 305 K). The SANS experiments atq= 0.1–5 nm−1(scales from monomer unit to globule gyration radiusRG≃ 16 nm) have
APA, Harvard, Vancouver, ISO, and other styles
6

Yu, Jiqun, Zhulun Wang, and Benjamin Chu. "Kinetic study of coil-to-globule transition." Macromolecules 25, no. 5 (1992): 1618–20. http://dx.doi.org/10.1021/ma00031a041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Yuan, Bin, Linli He, and Linxi Zhang. "Magnetic-induced coil-globule transition for polyelectrolytes." Journal of Applied Polymer Science 126, no. 5 (2012): 1754–62. http://dx.doi.org/10.1002/app.36769.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Mishra, P. K., and Sanjay Kumar. "Effect of confinement on coil-globule transition." Journal of Chemical Physics 121, no. 17 (2004): 8642. http://dx.doi.org/10.1063/1.1796233.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hsu, Hsiao-Ping, and Peter Grassberger. "The coil–globule transition of confined polymers." Journal of Statistical Mechanics: Theory and Experiment 2005, no. 01 (2005): P01007. http://dx.doi.org/10.1088/1742-5468/2005/01/p01007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Zhulina, Ye B., O. V. Borisov, and T. M. Birshtein. "Coil-globule transition in star-like macromolecules." Polymer Science U.S.S.R. 30, no. 4 (1988): 780–88. http://dx.doi.org/10.1016/0032-3950(88)90189-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Podewitz, Maren, Yin Wang, Patrick K. Quoika, Johannes R. Loeffler, Michael Schauperl, and Klaus R. Liedl. "Coil–Globule Transition Thermodynamics of Poly(N-isopropylacrylamide)." Journal of Physical Chemistry B 123, no. 41 (2019): 8838–47. http://dx.doi.org/10.1021/acs.jpcb.9b06125.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

TERAMOTO, T., and F. YONEZAWA. "COIL-GLOBULE TRANSITION OF A SEMI-FLEXIBLE CHAIN." International Journal of Modern Physics B 14, no. 06 (2000): 621–33. http://dx.doi.org/10.1142/s021797920000056x.

Full text
Abstract:
We carry out Monte Carlo simulations of a semi-flexible chain model, in which we add a bending and torsional restrictions to the bead-spring model. From our simulations for various temperatures, we show that the coil and globule state coexist over a finite temperature region for stiff chains. On the basis of our analysis, we assert that the ratio of the persistence length to the chain length is a key factor in determining whether or not the coexistence of the two states appears for short chains. This assertion of ours differs from the proposition offered by the so-called modern theory of coil-
APA, Harvard, Vancouver, ISO, and other styles
13

Chu, B., R. Xu, Z. Wang, and J. Zuo. "Critical phenomena and polymer coil-to-globule transition." Journal of Applied Crystallography 21, no. 6 (1988): 707–14. http://dx.doi.org/10.1107/s0021889888000767.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Jug, G. "Polymer coil-globule transition by real space renormalisation." Journal of Physics A: Mathematical and General 20, no. 8 (1987): L503—L508. http://dx.doi.org/10.1088/0305-4470/20/8/004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Ushiki, H., and F. Tanaka. "Study on polymer induced coil-globule transition—I." European Polymer Journal 21, no. 8 (1985): 701–5. http://dx.doi.org/10.1016/0014-3057(85)90109-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Faizullina, Kamilla, and Evgeni Burovski. "Globule-coil transition in the dynamic HP model." Journal of Physics: Conference Series 1740 (January 2021): 012014. http://dx.doi.org/10.1088/1742-6596/1740/1/012014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Das, S., N. Kennedy, and A. Cacciuto. "The coil–globule transition in self-avoiding active polymers." Soft Matter 17, no. 1 (2021): 160–64. http://dx.doi.org/10.1039/d0sm01526a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Maki, Yasuyuki, Naoki Sasaki, and Mitsuo Nakata. "Coil−Globule Transition of Poly(methyl methacrylate) in Acetonitrile." Macromolecules 37, no. 15 (2004): 5703–9. http://dx.doi.org/10.1021/ma049208l.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Park, Il Hyun, Jae Hoon Kim, and Taihyun Chang. "Universal scaling parameter in the coil-to-globule transition." Macromolecules 25, no. 26 (1992): 7300–7305. http://dx.doi.org/10.1021/ma00052a035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Lappala, Anna, and Eugene M. Terentjev. "“Raindrop” Coalescence of Polymer Chains during Coil–Globule Transition." Macromolecules 46, no. 3 (2013): 1239–47. http://dx.doi.org/10.1021/ma302364f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Guo, Jiayi, Haojun Liang, and Zhen-Gang Wang. "Coil-to-globule transition by dissipative particle dynamics simulation." Journal of Chemical Physics 134, no. 24 (2011): 244904. http://dx.doi.org/10.1063/1.3604812.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Badasyan, Artem, Matjaz Valant, Jože Grdadolnik, and Vladimir N. Uversky. "The Finite Size Effects and Two-State Paradigm of Protein Folding." International Journal of Molecular Sciences 22, no. 4 (2021): 2184. http://dx.doi.org/10.3390/ijms22042184.

Full text
Abstract:
The coil to globule transition of the polypeptide chain is the physical phenomenon behind the folding of globular proteins. Globular proteins with a single domain usually consist of about 30 to 100 amino acid residues, and this finite size extends the transition interval of the coil-globule phase transition. Based on the pedantic derivation of the two-state model, we introduce the number of amino acid residues of a polypeptide chain as a parameter in the expressions for two cooperativity measures and reveal their physical significance. We conclude that the k2 measure, defined as the ratio of v
APA, Harvard, Vancouver, ISO, and other styles
23

Ji, Shengyan, Yuting Xiong, Wenqi Lu, et al. "cAMP sensitive nanochannels driven by conformational transition of a tripeptide-based smart polymer." Chemical Communications 56, no. 23 (2020): 3425–28. http://dx.doi.org/10.1039/c9cc09588h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Tavagnacco, L., E. Zaccarelli, and E. Chiessi. "On the molecular origin of the cooperative coil-to-globule transition of poly(N-isopropylacrylamide) in water." Physical Chemistry Chemical Physics 20, no. 15 (2018): 9997–10010. http://dx.doi.org/10.1039/c8cp00537k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Birshtein, T. M., and V. A. Pryamitsyn. "Coil-globule type transitions in polymers. 2. Theory of coil-globule transition in linear macromolecules [Erratum to document cited in CA114(22):208164m]." Macromolecules 24, no. 11 (1991): 3468. http://dx.doi.org/10.1021/ma00011a071.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Lebedev, V. T., Gy Török, L. Cser, et al. "NSE-study of poly(N-vinylcaprolactam) by coil–globule transition." Physica B: Condensed Matter 297, no. 1-4 (2001): 50–54. http://dx.doi.org/10.1016/s0921-4526(00)00836-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Shi, Yu, Jingfa Yang, Jiang Zhao, Haruhisa Akiyama, and Masaru Yoshida. "Photo-controllable coil-to-globule transition of single polymer molecules." Polymer 97 (August 2016): 309–13. http://dx.doi.org/10.1016/j.polymer.2016.05.036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Yang, Zhiyong, Zheyu Deng, and Linxi Zhang. "Coil-helix-globule transition for self-attractive semiflexible ring chains." Polymer 110 (February 2017): 105–13. http://dx.doi.org/10.1016/j.polymer.2016.12.075.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Vasilevskaya, Valentina V., Alexei A. Klochkov, Alexei A. Lazutin, Pavel G. Khalatur, and Alexei R. Khokhlov. "HA (Hydrophobic/Amphiphilic) Copolymer Model: Coil−Globule Transition versus Aggregation." Macromolecules 37, no. 14 (2004): 5444–60. http://dx.doi.org/10.1021/ma0359741.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Wang, Mao-Xiang. "Effect of Coil–Globule Transition on the Single-Chain Crystallization." Journal of Physical Chemistry B 117, no. 21 (2013): 6541–46. http://dx.doi.org/10.1021/jp3120397.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Nakata, Mitsuo, and Tomohide Nakagawa. "Coil-globule transition of poly(methyl methacrylate) in isoamyl acetate." Physical Review E 56, no. 3 (1997): 3338–45. http://dx.doi.org/10.1103/physreve.56.3338.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Imbert, J. B., A. Lesne, and J. M. Victor. "Distribution of the order parameter of the coil-globule transition." Physical Review E 56, no. 5 (1997): 5630–47. http://dx.doi.org/10.1103/physreve.56.5630.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Yang, Qing-Hui, Fan Wu, Qi Wang, and Meng-Bo Luo. "Simulation study on the coil-globule transition of adsorbed polymers." Journal of Polymer Science Part B: Polymer Physics 54, no. 22 (2016): 2359–67. http://dx.doi.org/10.1002/polb.24149.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Chu, Benjamin, and Chi Wu. "Coil-globule transition: Self-assembly of a single polymer chain." Macromolecular Symposia 106, no. 1 (1996): 421–23. http://dx.doi.org/10.1002/masy.19961060140.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Lim, Sung Taek, Hyoung Jin Choi та Chi-Keung Chan. "Effect of Turbulent Flow on Coil-Globule Transition ofλ-DNA". Macromolecular Rapid Communications 26, № 15 (2005): 1237–40. http://dx.doi.org/10.1002/marc.200500232.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Minagawa, K., Y. Matsuzawa, K. Yoshikawa, A. R. Khokhlov, and M. Doi. "Direct observation of the coil-globule transition in dna molecules." Biopolymers 34, no. 4 (1994): 555–58. http://dx.doi.org/10.1002/bip.360340410.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Murayama, Y., and M. Sano. "Force Measurements of Single DNA Molecules in Coil-Globule Transition." Seibutsu Butsuri 40, supplement (2000): S154. http://dx.doi.org/10.2142/biophys.40.s154_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Kundagrami, Arindam, and M. Muthukumar. "Effective Charge and Coil−Globule Transition of a Polyelectrolyte Chain." Macromolecules 43, no. 5 (2010): 2574–81. http://dx.doi.org/10.1021/ma9020888.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Rein ten Wolde, Pieter, David W. Oxtoby, and Daan Frenkel. "Coil-Globule Transition in Gas-Liquid Nucleation of Polar Fluids." Physical Review Letters 81, no. 17 (1998): 3695–98. http://dx.doi.org/10.1103/physrevlett.81.3695.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Polson, James M., Sheldon B. Opps, and Nicholas Abou Risk. "Theoretical study of solvent effects on the coil-globule transition." Journal of Chemical Physics 130, no. 24 (2009): 244902. http://dx.doi.org/10.1063/1.3153350.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Baysal, Bahattin M., and Nilhan Kayaman. "Coil–globule transition of poly(methyl methacrylate) by intrinsic viscosity." Journal of Chemical Physics 109, no. 19 (1998): 8701–7. http://dx.doi.org/10.1063/1.477536.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Pande, Vijay S., Alexander Yu Grosberg, and Toyoichi Tanaka. "Thermodynamics of the coil to frozen globule transition in heteropolymers." Journal of Chemical Physics 107, no. 13 (1997): 5118–24. http://dx.doi.org/10.1063/1.474875.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Vshivkov, Sergei A., and Alexander P. Safronov. "The conformational coil-globule transition of polystyrene in cyclohexane solution." Macromolecular Chemistry and Physics 198, no. 10 (1997): 3015–23. http://dx.doi.org/10.1002/macp.1997.021981003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Smith, Micholas Dean, Loukas Petridis, Xiaolin Cheng, Barmak Mostofian, and Jeremy C. Smith. "Enhanced sampling simulation analysis of the structure of lignin in the THF–water miscibility gap." Physical Chemistry Chemical Physics 18, no. 9 (2016): 6394–98. http://dx.doi.org/10.1039/c5cp07088k.

Full text
Abstract:
Using temperature replica-exchange molecular dynamics, we characterize a globule-to-coil transition for a softwood-like lignin biopolymer in a tetrahydrofuran (THF)–water cosolvent system at temperatures at which the cosolvent undergoes a de-mixing transition.
APA, Harvard, Vancouver, ISO, and other styles
45

Min, Sa Hoon, Sang Kyu Kwak, and Byeong-Su Kim. "Atomistic simulation for coil-to-globule transition of poly(2-dimethylaminoethyl methacrylate)." Soft Matter 11, no. 12 (2015): 2423–33. http://dx.doi.org/10.1039/c4sm02242d.

Full text
Abstract:
We investigate the coil-to-globule transition of poly(2-dimethylaminoethyl methacrylate) (PDMAEMA) in the aqueous solution through the lower critical solution temperature (LCST) by atomistic molecular dynamics (MD) simulations.
APA, Harvard, Vancouver, ISO, and other styles
46

Tavagnacco, Letizia, Ester Chiessi, and Emanuela Zaccarelli. "Molecular insights on poly(N-isopropylacrylamide) coil-to-globule transition induced by pressure." Physical Chemistry Chemical Physics 23, no. 10 (2021): 5984–91. http://dx.doi.org/10.1039/d0cp06452a.

Full text
Abstract:
By using extensive all-atom molecular dynamics simulations of an atactic linear polymer chain, we unveil the role of pressure in the coil-to-globule transition of poly(N-isopropylacrylamide) (PNIPAM).
APA, Harvard, Vancouver, ISO, and other styles
47

Ortiz de Solorzano, Isabel, Karteek K. Bejagam, Yaxin An, Samrendra K. Singh, and Sanket A. Deshmukh. "Solvation dynamics of N-substituted acrylamide polymers and the importance for phase transition behavior." Soft Matter 16, no. 6 (2020): 1582–93. http://dx.doi.org/10.1039/c9sm01798d.

Full text
Abstract:
Functional groups present in thermo-responsive polymers are known to play an important role in aqueous solutions by manifesting their coil-to-globule conformational transition in a specific temperature range.
APA, Harvard, Vancouver, ISO, and other styles
48

Samanta, Himadri S., Mauro L. Mugnai, T. R. Kirkpatrick, and D. Thirumalai. "Giant Casimir Nonequilibrium Forces Drive Coil to Globule Transition in Polymers." Journal of Physical Chemistry Letters 10, no. 11 (2019): 2788–93. http://dx.doi.org/10.1021/acs.jpclett.9b00695.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Piçarra, Susana, Paula Relógio, Carlos A. M. Afonso, J. M. G. Martinho, and J. P. S. Farinha. "Coil−Globule Transition of Poly(Dimethylacrylamide): Fluorescence and Light Scattering Study." Macromolecules 36, no. 21 (2003): 8119–29. http://dx.doi.org/10.1021/ma0345899.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Mel'nikov, Sergey M., Vladimir G. Sergeyev, and Kenichi Yoshikawa. "Discrete Coil-Globule Transition of Large DNA Induced by Cationic Surfactant." Journal of the American Chemical Society 117, no. 9 (1995): 2401–8. http://dx.doi.org/10.1021/ja00114a004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!