Journal articles on the topic 'Coke ash'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Coke ash.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Gulyaev, Vitaly, Vadim Barsky, and Natalya Gurevina. "Effect of Total Ash Content and Coals Ash Composition on Coke Reactivity." Chemistry & Chemical Technology 3, no. 3 (2009): 231–36. http://dx.doi.org/10.23939/chcht03.03.231.
Full textFan, Yaoyao, Ruiqi Wang, Xiaolin Li, et al. "A high-efficiency utilization of coke-oven plant coke ash for the preparation of coke ash emulsion slurry." Fuel 245 (June 2019): 139–47. http://dx.doi.org/10.1016/j.fuel.2019.02.068.
Full textChakraborty, B., B. N. Prasad, N. K. Ghosh, and L. Parthasarathy. "Microstrength Characteristics of High Ash Coke." ISIJ International 38, no. 8 (1998): 807–11. http://dx.doi.org/10.2355/isijinternational.38.807.
Full textLi, Jiazhou, Jiansheng Zhang, Jiantao Zhao, and Yitian Fang. "Effect of Na2O in Ash Composition on Petroleum Coke Ash Fusibility." Energy & Fuels 33, no. 10 (2019): 9681–89. http://dx.doi.org/10.1021/acs.energyfuels.9b02317.
Full textNing, Zhe, Ke Qiang Xie, Wen Hui Ma, Kui Xian Wei, Yang Zhou, and Yang Yang. "The Investigation of Coke Breeze Demineralization on Temperature." Advanced Materials Research 581-582 (October 2012): 1123–26. http://dx.doi.org/10.4028/www.scientific.net/amr.581-582.1123.
Full textFan, Yaoyao, Ruixin Wang, Jinyan Sun, Jin Xiang, Ruiqi Wang, and Huanwu Sun. "An effective recycle way of waste coke ash and coking wastewater for preparing coke ash coking wastewater slurry." Science of The Total Environment 742 (November 2020): 140581. http://dx.doi.org/10.1016/j.scitotenv.2020.140581.
Full textXing, X., S. Jahanshahi, J. Yang, and O. Ostrovski. "Dissolution of carbon from coke and char in liquid Fe-C alloys." Archives of Materials Science and Engineering 1, no. 92 (2018): 22–27. http://dx.doi.org/10.5604/01.3001.0012.5508.
Full textLi, Qiu Yi, Xiang Ning Yang, Song Gao, and Lei Zhang. "Experimental Research on Environmental Friendly Ash Aerated Concrete." Advanced Materials Research 168-170 (December 2010): 751–54. http://dx.doi.org/10.4028/www.scientific.net/amr.168-170.751.
Full textPark, Woosung, and Myongsook S. Oh. "Slagging of petroleum coke ash using Korean anthracites." Journal of Industrial and Engineering Chemistry 14, no. 3 (2008): 350–56. http://dx.doi.org/10.1016/j.jiec.2007.12.004.
Full textNISHI, Tetsu, Hiroshi HARAGUCHI, and Toshiaki OKUHARA. "Deterioration of coke by ash-carbon reaction in coke during high-temperature treatment." Journal of the Fuel Society of Japan 69, no. 2 (1990): 126–33. http://dx.doi.org/10.3775/jie.69.126.
Full textLi, Jiazhou, Xiaodong Chen, Yubo Liu, Qingan Xiong, Jiantao Zhao, and Yitian Fang. "Effect of Ash Composition (Ca, Fe, and Ni) on Petroleum Coke Ash Fusibility." Energy & Fuels 31, no. 7 (2017): 6917–27. http://dx.doi.org/10.1021/acs.energyfuels.7b00850.
Full textKonstanciak, Anna. "High-Temperature Testing of the Properties of Blast Furnace Coke." Materials Science Forum 638-642 (January 2010): 2616–21. http://dx.doi.org/10.4028/www.scientific.net/msf.638-642.2616.
Full textAnthony, E. J., F. Preto, L. Jia, and J. V. Iribarne. "Agglomeration and Fouling in Petroleum Coke-Fired FBC Boilers." Journal of Energy Resources Technology 120, no. 4 (1998): 285–92. http://dx.doi.org/10.1115/1.2795049.
Full textMeng, Qingbo, Fanyu Meng, Li Zhan, Xiuli Xu, Jianglong Yu, and Qi Wang. "Attempts to replace nut coke with semi-coke for blast furnace ironmaking." Metallurgical Research & Technology 118, no. 3 (2021): 301. http://dx.doi.org/10.1051/metal/2021026.
Full textUeki, Yasuaki, Koki Teshima, Ryo Yoshiie, and Ichiro Naruse. "Ash Particle Behaviors during Combustion and Gasification of Coke." ISIJ International 60, no. 7 (2020): 1427–33. http://dx.doi.org/10.2355/isijinternational.isijint-2019-692.
Full textLi, Jiazhou, Jiantao Zhao, Xin Dai, Jin Bai, and Yitian Fang. "Effect of Vanadium on the Petroleum Coke Ash Fusibility." Energy & Fuels 31, no. 3 (2017): 2530–37. http://dx.doi.org/10.1021/acs.energyfuels.6b02858.
Full textJANG, H., and T. ETSELL. "Mineralogy and phase transition of oil sands coke ash." Fuel 85, no. 10-11 (2006): 1526–34. http://dx.doi.org/10.1016/j.fuel.2005.12.013.
Full textWang, Yueming, Jianqun Wu, Xiaolong Li, Dunxi Yu, Minghou Xu, and Jost O. L. Wendt. "Ash aerosol partitioning and ash deposition during the combustion of petroleum coke/natural gas mixtures." Fuel 256 (November 2019): 115982. http://dx.doi.org/10.1016/j.fuel.2019.115982.
Full textChen, Guan Yu, and Wei Hsing Huang. "Investigation on Blending CFB Ash with Blast Furnace Slag as Replacement for Portland Cement Used in Concrete Binders." Advanced Materials Research 723 (August 2013): 623–29. http://dx.doi.org/10.4028/www.scientific.net/amr.723.623.
Full textDuan, Qing Wen, Rong Zhen Liu, Hai Yun Jin, Jian Feng Yang, and Zhi Hao Jin. "Fabrication of Porous SiC/SiAlON Composites Using Semi Coke and Fly Ash as Raw Material." Materials Science Forum 724 (June 2012): 347–50. http://dx.doi.org/10.4028/www.scientific.net/msf.724.347.
Full textDeng, Yong, Kexin Jiao, Zhengjian Liu, Jianliang Zhang, and Qiangjian Song. "Effects of Coke Ash on Erosion of Carbon Composite Brick." ISIJ International 59, no. 3 (2019): 412–20. http://dx.doi.org/10.2355/isijinternational.isijint-2018-562.
Full textLi, Jiazhou, Xiaoyu Wang, Bing Wang, Jiantao Zhao, and Yitian Fang. "Effect of Silica and Alumina on Petroleum Coke Ash Fusibility." Energy & Fuels 31, no. 12 (2017): 13494–501. http://dx.doi.org/10.1021/acs.energyfuels.7b02843.
Full textNag, Debjani, S. K. Haldar, P. K. Choudhary, and P. K. Banerjee. "Prediction of Coke CSR from Ash Chemistry of Coal Blend." International Journal of Coal Preparation and Utilization 29, no. 5 (2009): 243–50. http://dx.doi.org/10.1080/19392690903218117.
Full textMonaghan, Brian Joseph, Phillip Brian Drain, Michael Wallace Chapman, and Robert John Nightingale. "Reactivity of Coke Ash on Aluminosilicate Blast Furnace Hearth Refractories." ISIJ International 54, no. 4 (2014): 810–19. http://dx.doi.org/10.2355/isijinternational.54.810.
Full textTAKAMARU, Hiroki, Yoshiaki KASHIWAYA, and Kuniyoshi ISHII. "In Situ Observation of Coke Gasification and Behavior of Ash." Tetsu-to-Hagane 90, no. 7 (2004): 472–79. http://dx.doi.org/10.2355/tetsutohagane1955.90.7_472.
Full textMota, O. D. S., and J. B. L. M. Campos. "Combustion of coke with high ash content in fluidised beds." Chemical Engineering Science 50, no. 3 (1995): 433–39. http://dx.doi.org/10.1016/0009-2509(94)00242-j.
Full textWang, Kun, Qiao Wen Yang, Chuan Liu, Hui Zhao, Gan Chen, and Shi Wei Wang. "Study of Deashing and Activation on the Coke Fines and Semi-Cokes Based on Properties of Composite Materials." Advanced Materials Research 600 (November 2012): 178–81. http://dx.doi.org/10.4028/www.scientific.net/amr.600.178.
Full textAnthony, E. J., L. Jia, S. M. Burwell, J. Najman, and E. M. Bulewicz. "Understanding the Behavior of Calcium Compounds in Petroleum Coke Fluidized Bed Combustion (FBC) Ash." Journal of Energy Resources Technology 128, no. 4 (2006): 290–99. http://dx.doi.org/10.1115/1.2358144.
Full textLin, Kae Long, Ta-Wui Cheng, Chih-Hsuan Ho, Yu-Min Chang, and Kang-Wei Lo. "Utilization of Circulating Fluidized Bed Fly Ash as Pozzolanic Material." Open Civil Engineering Journal 11, no. 1 (2017): 176–86. http://dx.doi.org/10.2174/1874149501711010176.
Full textSajdak, Marcin, and Łukasz Smędowski. "Application of multivariate data analysis in the construction of predictive model for the chemical properties of coke." Contemporary Trends in Geoscience 2, no. 1 (2013): 67–74. http://dx.doi.org/10.2478/ctg-2014-0010.
Full textLi, Wei, Ben Wang, Jun Nie, et al. "Effect of the Composition of Additive Ash on the Thermal Behavior of Petroleum Coke Ash during Gasification." Energy & Fuels 34, no. 10 (2020): 12126–34. http://dx.doi.org/10.1021/acs.energyfuels.0c01783.
Full textZhang, Heng, Junguo Li, Xin Yang, et al. "Influence of coal ash on potassium retention and ash melting characteristics during gasification of corn stalk coke." Bioresource Technology 270 (December 2018): 416–21. http://dx.doi.org/10.1016/j.biortech.2018.09.053.
Full textPan, Shu-Yuan, Barry Lai, and Yang Ren. "Mechanistic insight into mineral carbonation and utilization in cement-based materials at solid–liquid interfaces." RSC Advances 9, no. 53 (2019): 31052–61. http://dx.doi.org/10.1039/c9ra06118e.
Full textUlanovskiy, M. L. "Ash basicity and the coke characteristics CRI and CSR: A review." Coke and Chemistry 57, no. 3 (2014): 91–97. http://dx.doi.org/10.3103/s1068364x14030089.
Full textLi, Jiazhou, Jiantao Zhao, Xin Dai, Jin Bai, and Yitian Fang. "Correction to Effect of Vanadium on the Petroleum Coke Ash Fusibility." Energy & Fuels 31, no. 5 (2017): 5710. http://dx.doi.org/10.1021/acs.energyfuels.7b01137.
Full textLiu, Yan, Dongping Duan, and Yong Li. "Binders and the Bonding Mechanism of Fly Ash and Coke Pelletization." International Journal of Coal Preparation and Utilization 39, no. 3 (2017): 159–68. http://dx.doi.org/10.1080/19392699.2017.1310103.
Full textDrain, Phillip Brian, Brian Joseph Monaghan, Michael Wallace Chapman, and Robert John Nightingale. "Reactivity of Coke Ash on Alumina-Carbon Blast Furnace Hearth Refractories." ISIJ International 55, no. 9 (2015): 1849–58. http://dx.doi.org/10.2355/isijinternational.isijint-2014-734.
Full textLi, Jiazhou, Qing'an Xiong, Jie Shan, Jiantao Zhao, and Yitian Fang. "Investigating a high vanadium petroleum coke ash fusibility and its modification." Fuel 211 (January 2018): 767–74. http://dx.doi.org/10.1016/j.fuel.2017.09.110.
Full textXiong, Qing-an, Jiazhou Li, Shuai Guo, Guang Li, Jiantao Zhao, and Yitian Fang. "Ash fusion characteristics during co-gasification of biomass and petroleum coke." Bioresource Technology 257 (June 2018): 1–6. http://dx.doi.org/10.1016/j.biortech.2018.02.037.
Full textMcCarthy, Fiona, Veena Sahajwalla, John Hart, and N. Saha-Chaudhury. "Influence of ash on interfacial reactions between coke and liquid iron." Metallurgical and Materials Transactions B 34, no. 5 (2003): 573–80. http://dx.doi.org/10.1007/s11663-003-0026-9.
Full textMirko, V. A., V. D. Muzychuk, G. L. Tsymbal, and A. I. Onishchenko. "Experience in operating blast furnaces with a predicted coke ash content." Metallurgist 29, no. 6 (1985): 196–98. http://dx.doi.org/10.1007/bf00737601.
Full textKhutoryanskii, F. M., O. V. Alekseev, Yu V. Danchenko, and D. N. Levchenko. "Reduction of coke ash content by better desalting of crude oil." Chemistry and Technology of Fuels and Oils 24, no. 10 (1988): 417–20. http://dx.doi.org/10.1007/bf00727680.
Full textWang, Chang’an, Qinqin Feng, Qiang Lv, et al. "Numerical Investigation on Co-firing Characteristics of Semi-Coke and Lean Coal in a 600 MW Supercritical Wall-Fired Boiler." Applied Sciences 9, no. 5 (2019): 889. http://dx.doi.org/10.3390/app9050889.
Full textFurimsky, E., and A. Palmer. "Catalytic effect of lignite ash on steam gasification of oil sand coke." Applied Catalysis 23, no. 2 (1986): 355–65. http://dx.doi.org/10.1016/s0166-9834(00)81304-4.
Full textKhairil, K., Daisuke Kamihashira, and Ichiro Naruse. "Interaction between molten coal ash and coke in raceway of blast furnace." Proceedings of the Combustion Institute 29, no. 1 (2002): 805–10. http://dx.doi.org/10.1016/s1540-7489(02)80103-1.
Full textBerkutov, N. A., D. A. Koshkarov, and Yu V. Stepanov. "Influence of the batch’s ash content on coke quality (CRI and CSR)." Coke and Chemistry 56, no. 6 (2013): 201–3. http://dx.doi.org/10.3103/s1068364x13060021.
Full textNiewiadomski, Marcin, Jan Hupka, Romuald Bokotko, and Jan D. Miller. "Recovery of coke fines from fly ash by air sparged hydrocyclone flotation." Fuel 78, no. 2 (1999): 161–68. http://dx.doi.org/10.1016/s0016-2361(98)00145-8.
Full textGonzález, A., N. Moreno, and R. Navia. "CO 2 carbonation under aqueous conditions using petroleum coke combustion fly ash." Chemosphere 117 (December 2014): 139–43. http://dx.doi.org/10.1016/j.chemosphere.2014.06.034.
Full textKUO, Y. "Metal behavior during vitrification of incinerator ash in a coke bed furnace." Journal of Hazardous Materials 109, no. 1-3 (2004): 79–84. http://dx.doi.org/10.1016/j.jhazmat.2004.02.053.
Full textKondrasheva, N., V. Rudko, M. Nazarenko, and R. Gabdulkhakov. "Influence of parameters of delayed asphalt coking process on yield and quality of liquid and solid-phase products." Journal of Mining Institute 241 (February 25, 2020): 97. http://dx.doi.org/10.31897/pmi.2020.1.97.
Full text