Journal articles on the topic 'Coke – Combustion'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Coke – Combustion.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Nyakuma, Bemgba, Olagoke Oladokun, and Aliyu Bello. "Combustion Kinetics of Petroleum Coke by Isoconversional Modelling." Chemistry & Chemical Technology 12, no. 4 (December 10, 2018): 505–10. http://dx.doi.org/10.23939/chcht12.04.505.
Full textCheng, C. L. "Coke oven gas combustion systems." Fuel and Energy Abstracts 37, no. 3 (May 1996): 204. http://dx.doi.org/10.1016/0140-6701(96)88856-4.
Full textWang, Ziming, Ko-ichiro Ohno, Shunsuke Nonaka, Takayuki Maeda, and Kazuya Kunitomo. "Temperature Distribution Estimation in a Dwight–Lloyd Sinter Machine Based on the Combustion Rate of Charcoal Quasi-Particles." Processes 8, no. 4 (March 31, 2020): 406. http://dx.doi.org/10.3390/pr8040406.
Full textYang, Guisheng, Zhihong Yang, Jinliang Zhang, Zhanhai Yang, and Jiugang Shao. "Combustion Characteristics and Kinetics Study of Pulverized Coal and Semi-Coke." High Temperature Materials and Processes 38, no. 2019 (February 25, 2019): 783–91. http://dx.doi.org/10.1515/htmp-2019-0034.
Full textBrandauer, M., A. Schulz, and S. Wittig. "Mechanisms of Coke Formation in Gas Turbine Combustion Chambers." Journal of Engineering for Gas Turbines and Power 118, no. 2 (April 1, 1996): 265–70. http://dx.doi.org/10.1115/1.2816587.
Full textKou, Luyao, Junjing Tang, Tu Hu, Baocheng Zhou, and Li Yang. "Effect of CaO on catalytic combustion of semi-coke." Green Processing and Synthesis 10, no. 1 (January 1, 2021): 011–20. http://dx.doi.org/10.1515/gps-2021-0002.
Full textKONG, Dejuan, Yong WANG, Qulan ZHOU, Na LI, Yuhua LI, Tongmo XU, and Shien HUI. "B210 COMPARATIVE STUDY ON COMBUSTION PERFORMANCE OF PETROLEUM COKE, HEJIN COAL AND SHENMU COAL(Combustion-6)." Proceedings of the International Conference on Power Engineering (ICOPE) 2009.2 (2009): _2–135_—_2–139_. http://dx.doi.org/10.1299/jsmeicope.2009.2._2-135_.
Full textVossoughi, Shapour, and Youssef El-Shoubary. "Kinetics of Crude-Oil Coke Combustion." SPE Reservoir Engineering 4, no. 02 (May 1, 1989): 201–6. http://dx.doi.org/10.2118/16268-pa.
Full textMiroshnichenko, I. V., D. V. Miroshnichenko, I. V. Shulga, and Y. S. Balaev. "THE FORECAST OF COKE COMBUSTION HEAT." Journal of Coal Chemistry 2 (February 2020): 11–21. http://dx.doi.org/10.31081/1681-309x-2020-0-2-11-21.
Full textOKSANEN, A., and R. KARVINEN. "Combustion-Generated NOxand Coke in Heavy Residual Fuel Oil Combustion." Combustion Science and Technology 108, no. 4-6 (January 1995): 345–61. http://dx.doi.org/10.1080/00102209508960406.
Full textKong, Xianglu, Song Yang, Shoujun Liu, Kaixia Zhang, Tingting Jiao, and Ju Shangguan. "Study on Coupling Effect of Additives on NOx Control in Coal Pyrolysis-Combustion." E3S Web of Conferences 290 (2021): 03029. http://dx.doi.org/10.1051/e3sconf/202129003029.
Full textHan, Hong Jing, Yan Guang Chen, Cong Hao Xie, Dan Dan Yuan, Ying Chen, and Bao Hui Wang. "Influence of La2O3 on NOx Emission in Iron Ore Sintering." Advanced Materials Research 781-784 (September 2013): 2594–97. http://dx.doi.org/10.4028/www.scientific.net/amr.781-784.2594.
Full textKou, Luyao, Junjing Tang, Tu Hu, Baocheng Zhou, and Li Yang. "Effect of KMnO4 on catalytic combustion performance of semi-coke." Green Processing and Synthesis 9, no. 1 (October 27, 2020): 559–66. http://dx.doi.org/10.1515/gps-2020-0057.
Full textLiu, Hong Peng, Wei Yi Li, Xu Dong Wang, Hao Xu, Guan Yi Chen, and Qing Wang. "Study on Co-Combustion of Oil Shale Semi-Coke and Corn Stalk." Advanced Materials Research 614-615 (December 2012): 103–6. http://dx.doi.org/10.4028/www.scientific.net/amr.614-615.103.
Full textSultanguzin, I. A. "Combustion of heating gases in coke battery." Coke and Chemistry 50, no. 3 (March 2007): 55–62. http://dx.doi.org/10.3103/s1068364x07030039.
Full textGoldobin, Yu M. "Kinetics of combustion of polydispersed coke dust." Journal of Engineering Physics 50, no. 1 (January 1986): 95–101. http://dx.doi.org/10.1007/bf00871420.
Full textStanmore, B. R. "Modeling the combustion behavior of petroleum coke." Combustion and Flame 83, no. 3-4 (February 1991): 221–27. http://dx.doi.org/10.1016/0010-2180(91)90070-r.
Full textMartynova, A. Yu, O. S. Malysh, V. A. Saraeva, and I. N. Palval. "ORGANOSULFUR COMPOUNDS OF COKE OVEN GAS AND THEIR CONTRIBUTION TO EMISSIONS OF SULFUR DIOXIDE FROM THE SMOKESTACKS OF COKE BATTERIES." Journal of Coal Chemistry 6 (2020): 12–17. http://dx.doi.org/10.31081/1681-309x-2020-0-6-12-17.
Full textLu, Wei Qun, Ding Ye Fang, and Zhi Yong Yang. "Study on Burnout and so2 Emission Characteristics during Co-Combustion of Petroleum Coke and Oil Shale in a Fluidized Bed." Applied Mechanics and Materials 55-57 (May 2011): 1547–53. http://dx.doi.org/10.4028/www.scientific.net/amm.55-57.1547.
Full textHou, C. G., S. Wu, G. L. Zhang, B. Su, and Z. G. Que. "Unreacted-core model applied on the NOx emission of coke combustion." Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 40, no. 4 (January 19, 2018): 388–93. http://dx.doi.org/10.1080/15567036.2014.957424.
Full textWang, Chang’an, Qinqin Feng, Qiang Lv, Lin Zhao, Yongbo Du, Pengqian Wang, Jingwen Zhang, and Defu Che. "Numerical Investigation on Co-firing Characteristics of Semi-Coke and Lean Coal in a 600 MW Supercritical Wall-Fired Boiler." Applied Sciences 9, no. 5 (March 1, 2019): 889. http://dx.doi.org/10.3390/app9050889.
Full textRen, Li Xia, Hong Wei Lu, and Peng Du. "Numerical Simulation Research on Coal Combustion." Advanced Materials Research 742 (August 2013): 501–5. http://dx.doi.org/10.4028/www.scientific.net/amr.742.501.
Full textLiu, Hong Peng, Xu Dong Wang, Chun Xia Jia, Wei Zhen Zhao, and Qing Wang. "Co-Combustion Characteristics of Oil Shale Semi-Coke and Corn Stalk." Advanced Materials Research 614-615 (December 2012): 107–10. http://dx.doi.org/10.4028/www.scientific.net/amr.614-615.107.
Full textLi, Qiu Yi, Ping Zhang, Song Gao, and Hui Du. "Experimental Research on Making Aerated Concrete by Petroleum Coke Desulfuration Residue." Materials Science Forum 675-677 (February 2011): 799–802. http://dx.doi.org/10.4028/www.scientific.net/msf.675-677.799.
Full textMehta, S., and G. A. Karim. "An Experimental Investigation of the Transport and Combustion Processes Within Fractured Oil Sand Beds." Journal of Energy Resources Technology 114, no. 4 (December 1, 1992): 274–80. http://dx.doi.org/10.1115/1.2905953.
Full textChen, Yan Guang, Jia Lu, Hong Jing Han, Jin Lian Li, Jiao Jing Zhang, and Ting Ting Xu. "Influence of Iron Oxides on NOx Emission in Coke Combustion." Advanced Materials Research 781-784 (September 2013): 2586–89. http://dx.doi.org/10.4028/www.scientific.net/amr.781-784.2586.
Full textBerna, Hascakir, Cynthia M. Ross, Louis M. Castanier, and Anthony R. Kovscek. "Fuel Formation and Conversion During In-Situ Combustion of Crude Oil." SPE Journal 18, no. 06 (November 28, 2013): 1217–28. http://dx.doi.org/10.2118/146867-pa.
Full textSharipov, A. A., Y. V. Vankov, K. G. Sadikov, and E. R. Saifullin. "The influence of catalysts on the combustion of petroleum coke in the stationary fluidized bed mode." E3S Web of Conferences 124 (2019): 05047. http://dx.doi.org/10.1051/e3sconf/201912405047.
Full textOgi, Hiroshi, Takayuki Maeda, Ko-ichiro Ohno, and Kazuya Kunitomo. "Effect of Coke Breeze Distribution on Coke Combustion Rate of the Quasi-particle." ISIJ International 55, no. 12 (2015): 2550–55. http://dx.doi.org/10.2355/isijinternational.isijint-2015-089.
Full textZha, Meiqin, Wei Xia, and Qiang Niu. "Gasification reactivity and combustion characteristics of semi-coke." Carbon Letters 29, no. 6 (September 12, 2019): 579–84. http://dx.doi.org/10.1007/s42823-019-00043-x.
Full textHOLMES CEGB, R., M. R. I. PURVIS, and P. J. STREET. "The Kinetics of Combustion of Oil Coke Particles." Combustion Science and Technology 70, no. 4-6 (April 1990): 135–50. http://dx.doi.org/10.1080/00102209008951617.
Full textDavidy, Alon. "Multiphysics Design of Pet-Coke Burner and Hydrogen Production by Applying Methane Steam Reforming System." Clean Technologies 3, no. 1 (March 17, 2021): 260–87. http://dx.doi.org/10.3390/cleantechnol3010015.
Full textPark, Myung Ho, and Dae Yong Shin. "The Combustion Characteristics of Refuse Derived Fuels Using Coke/Waste Tire." Materials Science Forum 486-487 (June 2005): 265–68. http://dx.doi.org/10.4028/www.scientific.net/msf.486-487.265.
Full textWang, Qing, Xu Dong Wang, Hong Peng Liu, and Chun Xia Jia. "Co-Combustion Mechanism Analysis of Oil Shale Semi-Coke and Rice Straws Blends." Advanced Materials Research 614-615 (December 2012): 45–48. http://dx.doi.org/10.4028/www.scientific.net/amr.614-615.45.
Full textLiu, Jihui, Yaqiang Yuan, Junhong Zhang, Zhijun He, and Yaowei Yu. "Combustion Kinetics Characteristics of Solid Fuel in the Sintering Process." Processes 8, no. 4 (April 17, 2020): 475. http://dx.doi.org/10.3390/pr8040475.
Full textChen, Yan Guang, Hong Jing Han, Jia Lu, Jin Lian Li, Ying Chen, and Bao Hui Wang. "NOx Reduction by In Situ Catalytic Reduction in the Combustion Process of Coke." Advanced Materials Research 610-613 (December 2012): 2104–8. http://dx.doi.org/10.4028/www.scientific.net/amr.610-613.2104.
Full textLiu, Shoujun, Ju Shangguan, Song Yang, Wenguang Du, Xudong Yan, and Kaixia Zhang. "Producing Effective and Clean Coke for Household Combustion Activities to Reduce Gaseous Pollutant Emissions." Journal of Chemistry 2019 (November 13, 2019): 1–12. http://dx.doi.org/10.1155/2019/7142804.
Full textKASAI, Eiki, Shengli WU, Takeshi SUGIYAMA, Shinichi INABA, and Yasuo OMORI. "Combustion Rate and NO Emission during Combustion of Coke Granules in Packed Beds." Tetsu-to-Hagane 78, no. 7 (1992): 1005–12. http://dx.doi.org/10.2355/tetsutohagane1955.78.7_1005.
Full textHu, Zhongjie, Heng Zhou, Weili Zhang, and Shengli Wu. "The Influence of the Porous Structure of Activated Coke for the Treatment of Gases from Coal Combustion on Its Mechanical Strength." Processes 8, no. 8 (July 28, 2020): 900. http://dx.doi.org/10.3390/pr8080900.
Full textShvydkii, V. S., S. P. Kudelin, I. A. Gurin, and V. Yu Noskov. "Development of information modeling system of coal-dust fuel injection into tuyeres of blast furnace." Izvestiya. Ferrous Metallurgy 62, no. 12 (January 15, 2020): 979–86. http://dx.doi.org/10.17073/0368-0797-2019-12-979-986.
Full textHan, Juntao, Guofeng Lou, Sizong Zhang, Zhi Wen, Xunliang Liu, and Jiada Liu. "The Effects of Coke Parameters and Circulating Flue Gas Characteristics on NOx Emission during Flue Gas Recirculation Sintering Process." Energies 12, no. 20 (October 10, 2019): 3828. http://dx.doi.org/10.3390/en12203828.
Full textSu, Gui Qiu, Jian Yang, and Hong Bo Lu. "Experimental Study on Combustion Characteristics of Three Biomass Components." Advanced Materials Research 953-954 (June 2014): 309–12. http://dx.doi.org/10.4028/www.scientific.net/amr.953-954.309.
Full textLarionov, Kirill, Konstantin Slyusarskiy, Svyatoslav Tsibulskiy, Anton Tolokolnikov, Ilya Mishakov, Yury Bauman, Aleksey Vedyagin, and Alexander Gromov. "Effect of Cu(NO3)2 and Cu(CH3COO)2 Activating Additives on Combustion Characteristics of Anthracite and Its Semi-Coke." Energies 13, no. 22 (November 13, 2020): 5926. http://dx.doi.org/10.3390/en13225926.
Full textHu, Chang Sheng, Yun Bo Wang, Ping Wang, and Jian Quan Bi. "Prediction of the Flow, Reaction and Heat Transfer for Glass Furnace Firing Petroleum Coke." Advanced Materials Research 690-693 (May 2013): 3090–96. http://dx.doi.org/10.4028/www.scientific.net/amr.690-693.3090.
Full textYang, Shuang Ping, Jie Dong, and Miao Wang. "Experiment on Combustion-Supporting Agent on PCI for Combustibility of Coal Powder." Materials Science Forum 658 (July 2010): 248–51. http://dx.doi.org/10.4028/www.scientific.net/msf.658.248.
Full textDu, Yongbo, Chang’an Wang, Pengqian Wang, Yi Meng, Zhichao Wang, Wei Yao, and Defu Che. "Computational fluid dynamics investigation on the effect of co-firing semi-coke and bituminous coal in a 300 MW tangentially fired boiler." Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 233, no. 2 (June 22, 2018): 221–31. http://dx.doi.org/10.1177/0957650918783923.
Full textLei, Qi, and Fengmei Guo. "Assessment of Coke Oven Operating State Using Trend Analysis and Information Entropy." Journal of Advanced Computational Intelligence and Intelligent Informatics 24, no. 2 (March 20, 2020): 221–31. http://dx.doi.org/10.20965/jaciii.2020.p0221.
Full textMatyukhin, V. I., S. Ya Zhuravlev, and A. V. Khandoshka. "Particular Oxydation Features of Various Mechanical Strength Cokes." Materials Science Forum 946 (February 2019): 486–92. http://dx.doi.org/10.4028/www.scientific.net/msf.946.486.
Full textLi, Gong Fa, Yuan He, Guo Zhang Jiang, Jian Yi Kong, and Liang Xi Xie. "Research on the Air-Fuel Ratio Intelligent Control Method for Coke Oven Combustion Energy Saving." Applied Mechanics and Materials 121-126 (October 2011): 2873–77. http://dx.doi.org/10.4028/www.scientific.net/amm.121-126.2873.
Full textUeki, Yasuaki, Koki Teshima, Ryo Yoshiie, and Ichiro Naruse. "Ash Particle Behaviors during Combustion and Gasification of Coke." ISIJ International 60, no. 7 (July 15, 2020): 1427–33. http://dx.doi.org/10.2355/isijinternational.isijint-2019-692.
Full text