Academic literature on the topic 'Cold Sensitive Phenotypes'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Cold Sensitive Phenotypes.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Cold Sensitive Phenotypes"

1

Baliga, Chetana, Sandipan Majhi, Kajari Mondal, Antara Bhattacharjee, K. VijayRaghavan, and Raghavan Varadarajan. "Rational elicitation of cold-sensitive phenotypes." Proceedings of the National Academy of Sciences 113, no. 18 (2016): E2506—E2515. http://dx.doi.org/10.1073/pnas.1604190113.

Full text
Abstract:
Cold-sensitive phenotypes have helped us understand macromolecular assembly and biological phenomena, yet few attempts have been made to understand the basis of cold sensitivity or to elicit it by design. We report a method for rational design of cold-sensitive phenotypes. The method involves generation of partial loss-of-function mutants, at either buried or functional sites, coupled with selective overexpression strategies. The only essential input is amino acid sequence, although available structural information can be used as well. The method has been used to elicit cold-sensitive mutants of a variety of proteins, both monomeric and dimeric, and in multiple organisms, namelyEscherichia coli,Saccharomyces cerevisiae, andDrosophila melanogaster. This simple, yet effective technique of inducing cold sensitivity eliminates the need for complex mutations and provides a plausible molecular mechanism for eliciting cold-sensitive phenotypes.
APA, Harvard, Vancouver, ISO, and other styles
2

Novick, P., B. C. Osmond, and D. Botstein. "Suppressors of yeast actin mutations." Genetics 121, no. 4 (1989): 659–74. http://dx.doi.org/10.1093/genetics/121.4.659.

Full text
Abstract:
Abstract Suppressors of a temperature-sensitive mutation (act1-1) in the single actin gene of Saccharomyces cerevisiae were selected that had simultaneously acquired a cold-sensitive growth phenotype. Five genes, called SAC (suppressor of actin) were defined by complementation tests; both suppression and cold-sensitive phenotypes were recessive. Three of the genes (SAC1, SAC2 and SAC3) were subjected to extensive genetic and phenotypic analysis, including molecular cloning. Suppression was found to be allele-specific with respect to actin alleles. The sac mutants, even in ACT1+ genetic backgrounds, displayed phenotypes similar to those of actin mutants, notably aberrant organization of intracellular actin and deposition of chitin at the cell surface. These results are interpreted as being consistent with the idea that the SAC genes encode proteins that interact with actin, presumably as components or controllers of the assembly or stability of the yeast actin cytoskeleton. Two unexpected properties of the SAC1 gene were noted. Disruptions of the gene indicated that its function is essential only at temperatures below about 17 degrees and all sac1 alleles are inviable when combined with act1-2. These properties are interpreted in the context of the evolution of the actin cytoskeleton of yeast.
APA, Harvard, Vancouver, ISO, and other styles
3

Flower, Ann M. "SecG Function and Phospholipid Metabolism inEscherichia coli." Journal of Bacteriology 183, no. 6 (2001): 2006–12. http://dx.doi.org/10.1128/jb.183.6.2006-2012.2001.

Full text
Abstract:
ABSTRACT SecG is an auxiliary protein in the Sec-dependent protein export pathway of Escherichia coli. Although the precise function of SecG is unknown, it stimulates translocation activity and has been postulated to enhance the membrane insertion-deinsertion cycle of SecA. Deletion of secG was initially reported to result in a severe export defect and cold sensitivity. Later results demonstrated that both of these phenotypes were strain dependent, and it was proposed that an additional mutation was required for manifestation of the cold-sensitive phenotype. The results presented here demonstrate that the cold-sensitive secG deletion strain also contains a mutation in glpR that causes constitutive expression of the glp regulon. Introduction of both the glpRmutation and the secG deletion into a wild-type strain background produced a cold-sensitive phenotype, confirming the hypothesis that a second mutation (glpR) contributes to the cold-sensitive phenotype of secG deletion strains. It was speculated that the glpR mutation causes an intracellular depletion of glycerol-3-phosphate due to constitutive synthesis of GlpD and subsequent channeling of glycerol-3-phosphate into metabolic pathways. In support of this hypothesis, it was demonstrated that addition of glycerol-3-phosphate to the growth medium ameliorated the cold sensitivity, as did introduction of a glpD mutation. This depletion of glycerol-3-phosphate is predicted to limit phospholipid biosynthesis, causing an imbalance in the levels of membrane phospholipids. It is hypothesized that this state of phospholipid imbalance imparts a dependence on SecG for proper function or stabilization of the translocation apparatus.
APA, Harvard, Vancouver, ISO, and other styles
4

Nonet, M. L., and R. A. Young. "Intragenic and extragenic suppressors of mutations in the heptapeptide repeat domain of Saccharomyces cerevisiae RNA polymerase II." Genetics 123, no. 4 (1989): 715–24. http://dx.doi.org/10.1093/genetics/123.4.715.

Full text
Abstract:
Abstract The largest subunit of RNA polymerase II contains a repeated heptapeptide sequence at its carboxy terminus. Yeast mutants with certain partial deletions of the carboxy-terminal repeat (CTR) domain are temperature-sensitive, cold-sensitive and are inositol auxotrophs. Intragenic and extragenic suppressors of the cold-sensitive phenotype of CTR domain deletion mutants were isolated and studied to investigate the function of this domain. Two types of intragenic suppressing mutations suppress the temperature-sensitivity, cold-sensitivity and inositol auxotrophy of CTR domain deletion mutants. Most intragenic mutations enlarge the repeat domain by duplicating various portions of the repeat coding sequence. Other intragenic suppressing mutations are point mutations in a conserved segment of the large subunit. An extragenic suppressing mutation (SRB2-1) was isolated that strongly suppresses the conditional and auxotrophic phenotypes of CTR domain mutations. The SRB2 gene was isolated and mapped, and an SRB2 partial deletion mutation (srb2 delta 10) was constructed. The srb2 delta 10 mutants are temperature-sensitive, cold-sensitive and are inositol auxotrophs. These phenotypes are characteristic of mutations in genes encoding components of the transcription apparatus. We propose that the SRB2 gene encodes a factor that is involved in RNA synthesis and may interact with the CTR domain of the large subunit of RNA polymerase II.
APA, Harvard, Vancouver, ISO, and other styles
5

Skiadopoulos, Mario H., Sonja Surman, Joanne M. Tatem, et al. "Identification of Mutations Contributing to the Temperature-Sensitive, Cold-Adapted, and Attenuation Phenotypes of the Live-Attenuated Cold-Passage 45 (cp45) Human Parainfluenza Virus 3 Candidate Vaccine." Journal of Virology 73, no. 2 (1999): 1374–81. http://dx.doi.org/10.1128/jvi.73.2.1374-1381.1999.

Full text
Abstract:
ABSTRACT The live-attenuated human parainfluenza virus 3 (PIV3) cold-passage 45 (cp45) candidate vaccine was shown previously to be safe, immunogenic, and phenotypically stable in seronegative human infants. Previous findings indicated that each of the three amino acid substitutions in the L polymerase protein of cp45 independently confers the temperature-sensitive (ts) and attenuation (att) phenotypes but not the cold-adaptation (ca) phenotype (29).cp45 contains 12 additional potentially important point mutations in other proteins (N, C, M, F, and hemagglutinin-neuraminidase [HN]) or in cis-acting sequences (the leader region and the transcription gene start [GS] signal of the N gene), and their contribution to these phenotypes was undefined. To further characterize the genetic basis for thets, ca, and att phenotypes of this promising vaccine candidate, we constructed, using a reverse genetics system, a recombinant cp45 virus that contained all 15 cp45-specific mutations mentioned above, and found that it was essentially indistinguishable from the biologically derived cp45 on the basis of plaque size, level of temperature sensitivity, cold adaptation, level of replication in the upper and lower respiratory tract of hamsters, and ability to protect hamsters from subsequent wild-type PIV3 challenge. We then constructed recombinant viruses containing the cp45 mutations in individual proteins as well as several combinations of mutations. Analysis of these recombinant viruses revealed that multiple cp45 mutations distributed throughout the genome contribute to the ts, ca, andatt phenotypes. In addition to the mutations in the L gene, at least one other mutation in the 3′ N region (i.e., including the leader, N GS, and N coding changes) contributes to thets phenotype. A recombinant virus containing all thecp45 mutations except those in L was more tsthan cp45, illustrating the complex nature of this phenotype. The ca phenotype of cp45 also is a complex composite phenotype, reflecting contributions of at least three separate genetic elements, namely, mutations within the 3′ N region, the L protein, and the C-M-F-HN region. The att phenotype is a composite of both ts and non-ts mutations. Attenuating ts mutations are located in the L protein, and non-ts attenuating mutations are located in the C and F proteins. The presence of multiple ts and non-ts attenuating mutations in cp45 likely contributes to the high level of attenuation and phenotypic stability of this promising vaccine candidate.
APA, Harvard, Vancouver, ISO, and other styles
6

Kuchka, Michael R., and Jonathan W. Jarvik. "Short-Flagella Mutants of Chlamydomonas reinhardtii." Genetics 115, no. 4 (1987): 685–91. http://dx.doi.org/10.1093/genetics/115.4.685.

Full text
Abstract:
ABSTRACT Six short-flagella mutants were isolated by screening clones of mutagenized Chlamydomonas for slow swimmers. The six mutants identify three unlinked Mendelian genes, with three mutations in gene shf-1, two in shf-2 and one in shf-3. shf-1 and shf-2 have been mapped to chromosomes VI and I, respectively. Two of the shf-1 mutations have temperature-sensitive flagellar-assembly phenotypes, and one shf-2 mutant has a cold-sensitive phenotype. shf shf double mutants were constructed; depending on the alleles present they showed either flagellaless or short-flagella phenotypes. Phenotypic revertants of shf-1 and shf-2 mutants were isolated, and certain of them were found to carry extragenic suppressors, some dominant and some recessive. We suspect that the shf mutations affect components of a specific flagellar size-control system, the existence of which has been suggested by a variety of physiological experiments.
APA, Harvard, Vancouver, ISO, and other styles
7

Puziss, J. W., T. A. Hardy, R. B. Johnson, P. J. Roach, and P. Hieter. "MDS1, a dosage suppressor of an mck1 mutant, encodes a putative yeast homolog of glycogen synthase kinase 3." Molecular and Cellular Biology 14, no. 1 (1994): 831–39. http://dx.doi.org/10.1128/mcb.14.1.831-839.1994.

Full text
Abstract:
The yeast gene MCK1 encodes a serine/threonine protein kinase that is thought to function in regulating kinetochore activity and entry into meiosis. Disruption of MCK1 confers a cold-sensitive phenotype, a temperature-sensitive phenotype, and sensitivity to the microtubule-destabilizing drug benomyl and leads to loss of chromosomes during growth on benomyl. A dosage suppression selection was used to identify genes that, when present at high copy number, could suppress the cold-sensitive phenotype of mck1::HIS3 mutant cells. Several unique classes of clones were identified, and one of these, designated MDS1, has been characterized in some detail. Nucleotide sequence data reveal that MDS1 encodes a serine/threonine protein kinase that is highly homologous to the shaggy/zw3 kinase in Drosophila melanogaster and its functional homolog, glycogen synthase kinase 3, in rats. The presence of MDS1 in high copy number rescues both the cold-sensitive and the temperature-sensitive phenotypes, but not the benomyl-sensitive phenotype, associated with the disruption of MCK1. Analysis of strains harboring an mds1 null mutation demonstrates that MDS1 is not essential during normal vegetative growth but appears to be required for meiosis. Finally, in vitro experiments indicate that the proteins encoded by both MCK1 and MDS1 possess protein kinase activity with substrate specificity similar to that of mammalian glycogen synthase kinase 3.
APA, Harvard, Vancouver, ISO, and other styles
8

Puziss, J. W., T. A. Hardy, R. B. Johnson, P. J. Roach, and P. Hieter. "MDS1, a dosage suppressor of an mck1 mutant, encodes a putative yeast homolog of glycogen synthase kinase 3." Molecular and Cellular Biology 14, no. 1 (1994): 831–39. http://dx.doi.org/10.1128/mcb.14.1.831.

Full text
Abstract:
The yeast gene MCK1 encodes a serine/threonine protein kinase that is thought to function in regulating kinetochore activity and entry into meiosis. Disruption of MCK1 confers a cold-sensitive phenotype, a temperature-sensitive phenotype, and sensitivity to the microtubule-destabilizing drug benomyl and leads to loss of chromosomes during growth on benomyl. A dosage suppression selection was used to identify genes that, when present at high copy number, could suppress the cold-sensitive phenotype of mck1::HIS3 mutant cells. Several unique classes of clones were identified, and one of these, designated MDS1, has been characterized in some detail. Nucleotide sequence data reveal that MDS1 encodes a serine/threonine protein kinase that is highly homologous to the shaggy/zw3 kinase in Drosophila melanogaster and its functional homolog, glycogen synthase kinase 3, in rats. The presence of MDS1 in high copy number rescues both the cold-sensitive and the temperature-sensitive phenotypes, but not the benomyl-sensitive phenotype, associated with the disruption of MCK1. Analysis of strains harboring an mds1 null mutation demonstrates that MDS1 is not essential during normal vegetative growth but appears to be required for meiosis. Finally, in vitro experiments indicate that the proteins encoded by both MCK1 and MDS1 possess protein kinase activity with substrate specificity similar to that of mammalian glycogen synthase kinase 3.
APA, Harvard, Vancouver, ISO, and other styles
9

Fane, B. A., and M. Hayashi. "Second-site suppressors of a cold-sensitive prohead accessory protein of bacteriophage phi X174." Genetics 128, no. 4 (1991): 663–71. http://dx.doi.org/10.1093/genetics/128.4.663.

Full text
Abstract:
Abstract This study describes the isolation of second-site suppressors which correct for the defects associated with cold-sensitive (cs) prohead accessory proteins of bacteriophage phi X174. Five phenotypically different suppressors were isolated. Three of these suppressors confer novel temperature-sensitive (ts) phenotypes. They were unable to complement a ts mutation in gene F which encodes the major coat protein of the phage. All five suppressor mutations confer nucleotide changes in the gene F DNA sequence. These changes define four amino acid sites in the gene F protein. Three suppressor mutations placed into an otherwise wild-type background display a cold resistant phenotype in liquid culture infections when compared to a wild-type phi X174 control.
APA, Harvard, Vancouver, ISO, and other styles
10

Hecht, Ralph M., Mary A. Norman, Tammy Vu, and William Jones. "A novel set of uncoordinated mutants inCaenorhabditis elegansuncovered by cold-sensitive mutations." Genome 39, no. 2 (1996): 459–64. http://dx.doi.org/10.1139/g96-058.

Full text
Abstract:
A set of uncoordinated (Unc) cold-sensitive (cs) mutants was isolated at a stringent condition of 11 °C. About half of the 13 independently isolated cs-Unc mutants were alleles of three X-linked Unc mutants that exhibited the "kinker" phenotype. The remaining four isolates identified new mutants that exhibited "kinker," "coiler," or severe paralytic phenotypes. The temperature-sensitive period (TSP) for each gene was determined. As a homozygous or heterozygous dominant, unc-125 exhibited a TSP throughout all stages of development. Its severe paralysis was immediately observed upon a shift down to 11 °C and reversed upon a shift up to 23 °C. The reversible thermolability of the unc-125 gene product indicated that it may function in a multicomponent process involved in neuro-excitation. Key words : Caenorhabditis elegans, cold-sensitive uncoordinated mutants, cs-Unc.
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography