Academic literature on the topic 'Collagen self-assembly'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Collagen self-assembly.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Collagen self-assembly"

1

Cui, Fu-Zhai, Yan Li, and Jun Ge. "Self-assembly of mineralized collagen composites." Materials Science and Engineering: R: Reports 57, no. 1-6 (August 2007): 1–27. http://dx.doi.org/10.1016/j.mser.2007.04.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lisitza, Natalia, Xudong Huang, Hiroto Hatabu, and Samuel Patz. "Exploring collagen self-assembly by NMR." Physical Chemistry Chemical Physics 12, no. 42 (2010): 14169. http://dx.doi.org/10.1039/c0cp00651c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Saeidi, Nima, Edward A. Sander, and Jeffrey W. Ruberti. "Dynamic shear-influenced collagen self-assembly." Biomaterials 30, no. 34 (December 2009): 6581–92. http://dx.doi.org/10.1016/j.biomaterials.2009.07.070.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Papi, Massimiliano, Valentina Palmieri, Giuseppe Maulucci, Giuseppe Arcovito, Emanuela Greco, Gianluca Quintiliani, Maurizio Fraziano, and Marco De Spirito. "Controlled self assembly of collagen nanoparticle." Journal of Nanoparticle Research 13, no. 11 (March 23, 2011): 6141–47. http://dx.doi.org/10.1007/s11051-011-0327-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Huang, Zhao Long, Gui Yang Liu, Ying He, Zhong Zhou Yi, and Jun Ming Guo. "Interaction between Hydroxyapatite and Collagen." Advanced Materials Research 412 (November 2011): 384–87. http://dx.doi.org/10.4028/www.scientific.net/amr.412.384.

Full text
Abstract:
To study the interaction between hydroxyapatite (HAP) and collagen in bone, we researched the phenomenon of collagen biomineralization and self-assembly in viro by uv-vis spectra and circular dichroism (CD) spectra. The materials prepared by self-assembly collagen and collagen-HAP showed layer structures. And the product prepared by collagen-HAP had better and more compact appearance. The decrease of speed of collagen self-assembly was caused by calcium ion or strontium ion added. The trough of CD spectra moved down in calcium-containing solution and moved up when forming precipitation of calcium phosphate from the solution. It indicated that the effect of collagen self-assembly was caused by calcium ions, strontium ions etc. in the solution. The IR spectrum proved that a coordinate bond formed between calcium ion and amide groups on collagen.
APA, Harvard, Vancouver, ISO, and other styles
6

Zhang, Ju Cheng, He Ping Yan, Guo Wei Zhang, and Li Zhang. "The Spectrum Properties of Type Ι Collagen Self-Assembly Film." Advanced Materials Research 690-693 (May 2013): 1414–17. http://dx.doi.org/10.4028/www.scientific.net/amr.690-693.1414.

Full text
Abstract:
The type I collagen was used to prepare self-assembly film, the UV-vis spectrophotometer and Fluorescence spectrophotometer were employed to characterize those self-assembly films. The Fe (NO3)3 and CuSO4 were used as the additive to investigate the effect of the type I collagen film. It was found that the character spectra of collagen solution and self-assembly film were different, the Fe (NO3)3 enhanced the 408nm fluorescence emission peak, and CuSO4 caused a new emission peak at 399nm. The changes in the fluorescence of films suggest that the metal salt could affect the type I collagen self-assembly.
APA, Harvard, Vancouver, ISO, and other styles
7

Kotch, F. W., and R. T. Raines. "Self-assembly of synthetic collagen triple helices." Proceedings of the National Academy of Sciences 103, no. 9 (February 17, 2006): 3028–33. http://dx.doi.org/10.1073/pnas.0508783103.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Gore, Tushar, Yoav Dori, Yeshayahu Talmon, Matthew Tirrell, and Havazelet Bianco-Peled. "Self-Assembly of Model Collagen Peptide Amphiphiles." Langmuir 17, no. 17 (August 2001): 5352–60. http://dx.doi.org/10.1021/la010223i.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

NOITUP, PAWEENA, MICHAEL T. MORRISSEY, and WUNWIBOON GARNJANAGOONCHORN. "IN VITRO SELF-ASSEMBLY OF SILVER-LINE GRUNT TYPE I COLLAGEN: EFFECTS OF COLLAGEN CONCENTRATIONS, pH AND TEMPERATURES ON COLLAGEN SELF-ASSEMBLY." Journal of Food Biochemistry 30, no. 5 (October 2006): 547–55. http://dx.doi.org/10.1111/j.1745-4514.2006.00081.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Yurchenco, P. D., E. C. Tsilibary, A. S. Charonis, and H. Furthmayr. "Models for the self-assembly of basement membrane." Journal of Histochemistry & Cytochemistry 34, no. 1 (January 1986): 93–102. http://dx.doi.org/10.1177/34.1.3510247.

Full text
Abstract:
Basement membranes contain a number of intrinsic macromolecular components which are unique to these structures and which cooperatively assemble into specific heteropolymeric matrices. Type IV collagen triple helical monomers bind together at their amino-terminal, carboxy-terminal, and lateral domains to form a lattice-like array. Laminin, in a two-step process, binds to itself at its terminal globular domains to form polymers and also binds collagen at two distinct sites along the collagen chain. Heparan sulfate proteoglycan has been found to bind both collagen and laminin, suggesting a reversible crosslinking function. On the basis of the data derived from self-association studies, it is possible to begin considering models for the assembly and structure of these ubiquitous matrices.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Collagen self-assembly"

1

Mayuram, Ravikumar Krishnakumar. "Region-specific role of water in collagen unwinding and assembly." Texas A&M University, 2008. http://hdl.handle.net/1969.1/85997.

Full text
Abstract:
Conformational stability of the collagen triple helix affects its turnover and determines tissue homeostasis. Although it is known that the presence of imino acids (prolines or hydroxyprolines) confer stability to the molecule, little is known regarding the stability of the imino-poor region lacking imino acids, which plays a key role in collagen cleavage. In particular, there have been continuing debates about the role of water in collagen stability. We addressed these issues using molecular dynamics simulations on 30-residue long collagen triple helices, including a structure that has a biologically relevant 9-residue imino-poor region from type III collagen (Protein Data Bank ID: 1BKV). We characterized the conformational motion of the molecule that differs between imino-rich and imino-poor regions using a torsional map approach. At temperatures of 300 K and above, unwinding initiates at a common cleavage site, the glycine-isoleucine bond in the imino-poor region. This provides a linkage between previous observations that unwinding of the imino-poor region is a requirement for collagenase cleavage, and that isolated collagen molecules are unstable at body temperature. Unwinding of the imino-poor region is controlled by dynamic water bridges between backbone atoms with average lifetimes on the order of a few picoseconds, as the degree of unwinding strongly correlated with the loss of water bridges, and unwinding could be either prevented or enhanced, respectively by enforcing or forbidding water bridge formation. While individual water bridges were short-lived in the imino-poor region, the hydration shell surrounding the entire molecule was stable even at 330 K. The diameter of the hydrated collagen including the first hydration shell was about 14 Â, in good agreement with the experimentally measured inter-collagen distances. These results elucidate the general role of water in collagen turnover: water not only affects collagen cleavage by controlling its torsional motion, but it also forms a larger-scale lubrication layer mediating collagen self-assembly.
APA, Harvard, Vancouver, ISO, and other styles
2

Sun, Pei. "Ultrathin films of biomolecules with well-controlled nanostructures." Connect to this title online, 2005. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1109605487.

Full text
Abstract:
Thesis (Ph. D.)--Ohio State University, 2005.
Title from first page of PDF file. Document formatted into pages; contains xvi, 192 p.; also includes graphics Includes bibliographical references (p. 178-192). Available online via OhioLINK's ETD Center
APA, Harvard, Vancouver, ISO, and other styles
3

Archer, Jared Rausch. "Synthesis, characterization, and application of thin films and mesostructured materials using self-assembled surfactant templates." The Ohio State University, 2005. http://rave.ohiolink.edu/etdc/view?acc_num=osu1111694248.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Shen, Lirui, Songcheng Xu, Kun Wu, and Guoying Li. "Novel method for preparing fish collagen gels with excellent physicochemical properties via the dehydration of ethanol - 122." Verein für Gerberei-Chemie und -Technik e. V, 2019. https://slub.qucosa.de/id/qucosa%3A34167.

Full text
Abstract:
Content: Fish collagen has been considered to be an alternative for mammalian collagen, however, physicochemical properties of fish collagen-based materials such as gels are so far not adequate for actual application. In the present study, we prepared two types of fish collagen gels with sufficient elasticity: i) dehydrated fibrillogenesis collagen gels (DFCG), which were fabricated via collagen self-assembly followed by immersion in different concentrations of ethanol solutions, and ii) dehydrated cross-linking collagen gels (DCCG), which were fabricated via collagen self-assembly and simultaneous cross-linking followed by immersion in ethanol solution. Furthermore, the physicochemical properties of DFCG and DCCG were analyzed by atomic force microscopy, differential scanning calorimetry, enzymatic degradation and dynamic viscoelastic measurements. The microstructure of DFCG was consisted of characteristic Dperiodic collagen fibrils and insusceptible of ethanol concentrations (20-100% (v/v)). However, the thermal stability, remaining weight after enzymatic degradation and mechanical properties of DFCG distinctly increased with the increase of ethanol dose, possiblely ascribing that ethanol with higher polarity might dehydrate partial free water of DFCG and strengthen the interactions of hydrogen bond. Especially, for the gel treated by 100% (v/v) enthanol, Td increased by 32.7 °C and G′ was 55-folds than those of undehydrated gel (43.1 °C and 239.2 Pa). In the case of DCCG, the formation of collagen fibrils was depended on the concentrations of N-hydroxysuccinimide adipic acid derivative (NHS-AA), which was converted to [NHS-AA]/[NH2] ratios (calculated by the [active ester group] of NHS-AA and [ε-NH2] of lysine and hydroxylysine residues of collagen). As the ratio= 0.05, the characteristic D-periodic fibrils were still formed and the treatment of 60% (v/v) ethanol increased the Td (52.5 °C) and G′ (7388 Pa) values of the gel compared with those of uncross-linked gel (49 °C and 2064.32 Pa, respectively), majorly resulting from the effects of covalent cross-linking bonds and hydrogen bonds. However, when the ratio= 0.2, the collagen self-assembly was intensively inhibited and the dehydration of free water within gel structure in the absence of thick fibrils led to the shrinkage of the gel and an obvious decrease in Td (42 °C) and G′ (432 Pa). Although the [NHS-AA]/[NH2] ratio further increased to 0.8, the thermal stability and elasticity of the gel enhanced mildly suggesting that the presence of thick fibrils formed via the self-assembly was significantly crucial for reinforcing the gels. Take-Away: The fish collagen gels with excellent elasticity were prepared via the treatment of ethanol. The physicochemical properties of the dehydrated gels were depended on the concentrations of ethanol. The presence of characteristic D-periodic fibrils was significantly crucial for reinforcing the gels.
APA, Harvard, Vancouver, ISO, and other styles
5

Voldánová, Michaela. "Studium kinetiky samouspořádávacího procesu kolagenu I." Master's thesis, Vysoké učení technické v Brně. Fakulta chemická, 2016. http://www.nusl.cz/ntk/nusl-240522.

Full text
Abstract:
Collagen, the most abundant protein of connective tissues, in various forms has a wide applications due to their diverse biological and chemical properties. One of the forms are collagen hydrogels, which are considered very suitable material for applications in tissue engineering, because they are able to provide biodegradable scaffolds that its properties correspond with living tissues. These systems are used for example as scaffold for targeted drug delivery with controlled release, in combination with cells can be used for the regeneration and reconstruction of tissues and organs. Heating the aqueous solution of collagen leads to spontaneous self-assembly process to variously distributed fibrillar structures, which are at a later stage of fibrillogenesis prerequisite for creating a three-dimensional supporting network, which is the basic building block of the gel. The resulting properties of the hydrogel depend not only on its structure, but also on the conditions which cause self-assembly process. Hydrogels were performed at 37 ° C and physiological pH. Studied structural variable was the concentration of collagen. So far, for the research of self-assembly were used spectrometric methods, which only provide information about kinetics of morphogenesis. In this work to study the kinetics of collagen I self-assembly were used rheological methods, which additionally give information about viscoelastic properties of the resulting material. The obtained experimental data confirmed two-step process of collagen I fibrillogenesis consisting of nucleation and growth process. Rheological hydrogels collagen behaved as a nonlinear yield-pseudoplastic. An attempt was made to molecular interpretation of the results. Using two-parametric Avrami equation was determined the rate of self-assembly for each concentration of collagen and the value of Avrami exponent determining the shape of produced units. The prepared hydrogels were subjected to increasing shear stresses (strain amplitude, shear rate). Larger amplitudes leads to collapse of the hydrogel structure, which is able to again partially regenerated.
APA, Harvard, Vancouver, ISO, and other styles
6

Kopuletá, Ema. "Struktura a vlastnosti nanokompozitních sítí kolagen/HAP." Doctoral thesis, Vysoké učení technické v Brně. Fakulta chemická, 2014. http://www.nusl.cz/ntk/nusl-233390.

Full text
Abstract:
Polymerní biomateriály jsou jedním ze současných populárních témat vzhledem k možnosti potenciální aplikace v tkáňovém inženýrství a řízeného dávkování léčiv v organismech. Kolagen je jako jeden z nejčastěji se vyskytujících proteinů zvláště zajímavý díky svým rozmanitým vlastnostem bez imunoreakce organismu příjemce. Tato práce je zaměřena na samouspořádávací procesy, kinetiku, obecné zákonitosti řídící proces samouspořádání a mechanické vlastnosti kolagenních roztoků. Dále je zkoumán efekt hydroxyapatitových nanočástic na samouspořádávání kolagenu a mechanické vlastnosti výsledných nanokompozitních hydrogelů. Jsou objasněny možné mechanismy interakcí mezi kolagenem I a hydroxyapatitem spolu s popisem vývoje struktury a vlastností na různých úrovních struktury. Byly měřeny a molekulárně interpretovány závislosti viskoelastických veličin na smykové rychlosti spolu s viskoelastickým chováním. Dále byla studována struktura kolagenních scaffoldů a určen vliv HAP a síťování. Závěrem byly diskutovány výsledky v souvislosti s jejich aplikovatelností v tkáňovém inženýrství chrupavek tvrdých tkání a v regenerativní medicíně.
APA, Harvard, Vancouver, ISO, and other styles
7

Zubal, Lukáš. "Zpracování, gelace a charakterizace atelokolagenu." Doctoral thesis, Vysoké učení technické v Brně. CEITEC VUT, 2018. http://www.nusl.cz/ntk/nusl-385280.

Full text
Abstract:
Předkládaná disertační práce se zabývá charakterizací, zpracováním a gelací rozpustného kolagenu. Literární rešerše shrnuje postavení kolagenu na trhu s transplantáty, jeho aplikace a jednotlivé typy kolagenu. Detailně jsou rozebrány jednotlivé metody charakterizace rozpustného kolagenu a způsoby jeho gelace. Experimentální část je rozdělena na dvě podkapitoly. První podkapitola experimentální části se zabývá rozpouštěním a gelací rozpustného kolagenu v natlakované CO2 atmosféře. Proti jiným podobným metodám, metoda pracuje na poměrně nízkém tlaku (do 0.9MPa) a je bezpečná z pohledu denaturace kolagenu neboť funguje za nízké teploty blízké 0°C. Tímto způsobem mohou být průhledné gely, obsahující velmi tenká vlákna kolagenu, vytvořeny mnohem rychleji než za použití konvenčních metod. Rychlost gelace a transparentnost dává konceptu potenciál v oblasti oftalmologie a měla by přinést podstatné výhody pro injektovatelné produkty, vytváření mikro kuliček a 3D tisk. Druhá část popisuje unikátní charakterizaci rozpustného kolagenu v nativním stavu pomocí metody průtokové frakcionace s víceúhlovým rozptylem světla (AF4-MALS). Získaná molekulová hmotnost (při nejvyšší detekované koncentraci) odpovídá předpovězené hmotnosti a nativní i denaturovaný kolagen lze snadno rozeznat v konformačním grafu. Tato nová metoda poskytuje konzistentní a stabilní výsledky ve srovnání s ostatními zavedenými metodami. Metoda může být použita pro optimalizaci kvality výtěžků během výroby rozpustného kolagenu, nebo pro citlivou detekci denaturace během zpracování kolagenu.
APA, Harvard, Vancouver, ISO, and other styles
8

Mermoz, Sebastien. "Auto-assemblage assisté par capillarité et collage direct." Thesis, Université Grenoble Alpes (ComUE), 2015. http://www.theses.fr/2015GREAI114/document.

Full text
Abstract:
Parmi les différentes techniques permettant d'assembler à la fois mécaniquement et électriquement les puces empilées, le collage direct de surfaces mixtes Cu-SiO2 représente l'option la plus prometteuse à ce jour. En effet, cette méthode permet d'atteindre la densité d'interconnexions de 10^6/cm² visée par l'industrie, tout en offrant une faible résistivité de contact et une excellente fiabilité. Les méthodes d’assemblages actuelles reposent sur l’utilisation d’outils de Pick&place par l’intermédiaire desquels les puces sont positionnées mécaniquement. Cette technique rencontre néanmoins de plus en plus de difficultés à concilier précision d’alignement et cadence d’assemblage. Cette thèse propose d’adresser cette problématique au travers de la mise au point d’un procédé d’auto-assemblage assisté par capillarité et collage direct. Grâce à l’utilisation des forces de capillarités, il est possible de réaliser l’alignement des puces de façon spontanée : on parle alors d’auto-assemblage. La première partie de ce manuscrit présente une analyse synthétique des méthodes d’assemblages et d’interconnexions existantes et statue sur l’état de maturité de chaque procédé. Cette partie permet par la même occasion d’introduire les mécanismes de collages SiO2-SiO2 sur lesquels repose la méthode d’assemblage développée dans ce manuscrit. Un design de puce permettant la mise en œuvre du procédé d’auto-assemblage est ensuite établit dans la seconde partie. La capacité de la puce à confiner le film de liquide apparait comme l’élément moteur du processus d’auto-alignement. Des auto-assemblages présentant des valeurs d’alignement inférieur au micromètre sont ainsi obtenus, tout en conservant un procédé répétable. La mise en place de simulations numériques permettant de modéliser l’effet d’auto-alignement est présenté dans la troisième partie. Ce modèle a ensuite été généralisé a des puces de formes polygonales. Enfin la dernière partie présente le transfert du procédé d’auto-assemblage a des puces présentant des surfaces de cuivre et d’oxyde de silicium. L’utilisation de ce type de puce a notamment permis de valider la viabilité électrique du processus d’auto-assemblage
Among the various techniques allowing to assemble both mechanically and electrically stacked chips, the direct bonding of Cu-SiO2 mixed surfaces is the most promising option to date. Thanks to this method, the interconnection density of 106/cm² aimed by the industry is achievable, while providing a low contact resistivity and excellent reliability.Current assemblies’ processes are based on Pick&place tools thanks to which the dies are mechanically placed.Nevertheless, these tools have difficulties to council high throughput and high alignment accuracy. This thesis proposes to address this issue through the development of a process of self-assembly assisted by capillary forces and direct bonding.Through the use of capillaries forces, it is possible to achieve spontaneously chips alignment: it is called self-assembly. The first part of this manuscript presents a synthetic analysis of the different assemblies and interconnections technics and decides on the maturity of each process.As the same time, this section allows to introduce the SiO2 -SiO2 bonding mechanisms underlying the assembly method developed in this manuscript.A specific chip design is then established in a second part allowing deploying self-assemblies with SiO2 full sheet chips.The ability of the chip to confine the liquid film appears as the driving element of the self- alignment process. Self- assemblies with alignment values lower than one micrometer are obtained while maintaining a repeatable process. The introduction of numerical simulations to model the self-alignment effect is presented in the third part. This model was then generalized has polygonal shaped chips. Finally the last part presents the transfer of the self- assembly process on SiO2-Cu patterned chips.The use of this kind of chip has enabled to validate the electrical viability of the self-assembly process
APA, Harvard, Vancouver, ISO, and other styles
9

Spitzner, Eike-Christian. "Subsurface and MUSIC-Mode Atomic Force Microscopy." Doctoral thesis, Universitätsbibliothek Chemnitz, 2012. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-94864.

Full text
Abstract:
Ziel dieser Arbeit war die Entwicklung neuer Methoden in der Rasterkraftmikroskopie, um die Qualität und Interpretierbarkeit von Oberflächenabbildungen auf der Nanometerskala, vor allem jener sehr weicher Proben, entscheidend zu verbessern. Der für polymere und biologische Materialien standardmäßig verwendete intermittierende Kontaktmodus führt auf weichen Oberflächen zu verfälschten Abbildungen der Topographie und der mechanischen Eigenschaften. In dieser Arbeit wurden Techniken entwickelt, die einerseits zerstörungsfreie, tiefenaufgelöste Rasterkraftmikroskopie und andererseits Einzelmessungen mit variabler Dämpfung im intermittierenden Kontaktmodus ermöglichen. Die laterale Auflösung beider Methoden liegt dabei im Rahmen herkömmlicher Techniken (< 10 nm). Die Tiefenauflösung konnte im Vergleich zu anderen Methoden um eine Größenordnung auf unter 1 nm verbessert werden. Die neuen Methoden wurden auf einer breiten Palette polymerer Materialien angewandt. Die räumliche Struktur oberflächennaher Bereiche eines Blockcopolymerfilms konnte im Vergleich zu herkömmlichen Methoden deutlich genauer abgebildet werden. Gleiches wurde auf elastomerem Polypropylen erreicht. Es konnten weiche, amorphe Deckschichten auf teilkristallinen Polymeren nachgewiesen und vermessen werden, was in der organischen Elektronik eine wichtige Rolle spielen kann. Die innere Struktur selbstangeordneter Nanodrähte aus Oligothiophen-Aggregaten konnte aufgelöst werden und es wurde die Selbstanordnung von Kollagenfibrillen im gequollenen Zustand beobachtet.
APA, Harvard, Vancouver, ISO, and other styles
10

Su, Pao-chuan, and 蘇堡銓. "Light-controlled self-assembly of collagen." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/zgu9n8.

Full text
Abstract:
碩士
國立中央大學
生物物理研究所
103
Collagen represents the major structural protein of the extracellular matrix. Elucidating the mechanism of its assembly is important for understanding many cell biological and medical processes as well as for tissue engineering and biotechnological approaches. In this work, conditions for the self-assembly of collagen type I molecules on a supporting surface were characterized. By applying deposition dynamics deposition of collagen on a substrate at room temperature using an appropriate solvent, collagen assembled into ultrathin ( 4nm) highly anisotropic ribbon-like structures coating the entire support. We use stimulated Raman scattering system enables absorption of specific functional groups to allow local resonance absorption, causing local heating of the material, and applying a ponderomotive force to the collagen fibers, in order to achieve a stable directional control.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Collagen self-assembly"

1

Anderson, Darren James. Collagen self-assembly: A complementary experimental and theoretical perspective. 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Anderson, Darren. Collagen self-assembly: A complementary experimental and theoretical perspective. 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Atomic force microscopy studies of fibrous long spacing type collagen aggregates formed in-vitro: Self-assembly, structure and stability. Ottawa: National Library of Canada, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wen, Chuck Kaung. Atomic force microscopy studies of fibrous long spacing type collagen aggregates formed in-vitro: Self-assembly, structure and stability. 2003, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Collagen self-assembly"

1

Joshi, Rucha. "Creating Tunable Collagen Matrices – An Approach Inspired by In Vivo Collagen Synthesis and Self-Assembly." In Collagen Biografts for Tunable Drug Delivery, 29–51. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-63817-7_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Sohutskay, David O., Theodore J. Puls, and Sherry L. Voytik-Harbin. "Collagen Self-assembly: Biophysics and Biosignaling for Advanced Tissue Generation." In Multi-scale Extracellular Matrix Mechanics and Mechanobiology, 203–45. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-20182-1_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Franz, Clemens M., and Daniel J. Muller. "Studying Collagen Self-Assembly by Time-Lapse High-Resolution Atomic Force Microscopy." In Methods in Molecular Biology, 97–107. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61779-105-5_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Prockop, Darwin J., Bruce E. Vogel, Reinhard Doelz, Jurgen Engel, Yoshio Hojima, and Karl E. Kadler. "Effects of Mutations that Change Primary Structure of Collagen on the Self-Assembly of the Protein into Fibrils." In Springer Series in Biophysics, 81–89. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-73925-5_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bahrami, Narges, Saied Nouri Khorasani, and Hamid Mahdavi. "Surface Modification of Polyurethane Films with Chitosan and Collagen Biomolecules, Using Layer by Layer Self-Assembly Method to Improve Biocompatibility Properties." In Eco-friendly and Smart Polymer Systems, 117–21. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-45085-4_29.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Némethy, George. "Energetics and Thermodynamics of Collagen Self-Assembly." In Collagen, 79–94. CRC Press, 2018. http://dx.doi.org/10.1201/9781351070799-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Veis, Arthur, and Anne George. "Fundamentals of Interstitial Collagen Self-Assembly." In Extracellular Matrix Assembly and Structure, 15–45. Elsevier, 1994. http://dx.doi.org/10.1016/b978-0-12-775170-2.50007-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Collagen self-assembly"

1

Drzewiecki, Kathryn, Ian Gaudet, Douglas Pike, Jonathan Branch, Vikas Nanda, and David Shreiber. "Temperature Dependent Reversible Self Assembly of Methacrylated Collagen Gels." In ASME 2013 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/sbc2013-14705.

Full text
Abstract:
Hydrogel-based tissue engineering scaffolds can allow tissues to repair and regenerate by providing a 3D environment similar to soft tissue. Type I collagen has the ability to assemble into a fibrillar gel at physiological temperature and pH, while promoting cell adhesion and growth. Our lab has modified type I collagen by covalently adding methacrylate groups to lysine residues to create collagen methacrylamide (CMA). This biomaterial, like collagen, maintains the ability to self-assemble, and can then be photocrosslinked with long-wave UV light and a water-soluble photoinitiator, which allows extensive spatiotemporal control of mechanical and biochemical properties [1]. In characterizing CMA and developing it for other applications, we discovered an interesting property. Unlike type I collagen hydrogels, which maintain a stable fibrillar network during cooling and freezing, CMA will spontaneously disassemble at temperatures less than 10°C. In this paper, we discuss the temperature-dependent rheological properties of CMA as well as the nature of its molecular and supramolecular structure in comparison to collagen.
APA, Harvard, Vancouver, ISO, and other styles
2

Saeidi, Nima, Edward Sander, and Jeffrey Ruberti. "Real Time Observation and Quantification of Shear-Induced Collagen Self-Assembly." In ASME 2009 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2009. http://dx.doi.org/10.1115/sbc2009-206773.

Full text
Abstract:
Collagen is the most abundant protein in the extracellular matrix (ECM) of vertebrates and is distributed widely throughout connective tissues. Fibrillar collagen is the principal load-bearing molecule in vertebrates (e.g. type I in tendon and ligament and type II in cartilage). Its inherent biocompatibility makes collagen an attractive scaffolding material candidate for tissue engineering. Although use of 2-D or 3-D collagen networks as a substrate for cell culturing have provided invaluable information about cell-ECM interactions, it has not been very successful in producing load-bearing tissue-engineered constructs. We attribute the fundamental problem to the use of disorganized collagen which may interfere with the ability of cells to generate organization. Several research groups have developed methods to produce organized layer(s) of collagen fibrils de novo (often with the intention of using them for guiding cell culture systems). Methods employed to influence collagen fibril organization during self-assembly include, electro-spinning [1], the use of strong magnetic fields [2–4], electrical gradients [5], flows through a microfluidic channel [6, 7], a combination of fluid flow and magnetic field [8], dip-pen nanolithography [9], cholesteric methods [10], and even freezing and thawing [11]. Although there has been some progress in controlling the alignment of collagen fibrils in vitro, there are many unknown factors which govern directed collagen self-assembly.
APA, Harvard, Vancouver, ISO, and other styles
3

Layton, Bradley E. "Self-Assembly Limits in Structural Proteins." In ASME 2004 3rd Integrated Nanosystems Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/nano2004-46019.

Full text
Abstract:
A mechanics-based model is presented which predicts a “neutral annulus” for quasi-crystalline self-assembling nanostructure such as collagen fibrils, wherein transcript length, torsional and axial stiffness along with primary and quaternary protein structure limit the size to which these structures may aggregate. In the present treatment, a neutral annulus is predicted at 0.625 of the fibril radius, wherein portions of the fibril interior to the neutral annulus are in compression, balanced by portions exterior to the neutral annulus which are in tension.
APA, Harvard, Vancouver, ISO, and other styles
4

Green, Emily, Yiying Zhang, and Marilyn Minus. "Collagen self-assembly in the presence of nano-carbons: A structure-property relationship." In 2014 40th Annual Northeast Bioengineering Conference (NEBEC). IEEE, 2014. http://dx.doi.org/10.1109/nebec.2014.6972803.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ravikumar, Krishnakumar M., and Wonmuk Hwang. "Structure of Water Hydration Around Collagen." In ASME 2010 First Global Congress on NanoEngineering for Medicine and Biology. ASMEDC, 2010. http://dx.doi.org/10.1115/nemb2010-13108.

Full text
Abstract:
We investigate the hydration structure of collagen using molecular dynamics simulations. The water density maximum, and orientation near the surface of collagen and their specificity to the proximal collagen sequence are clearly visible in our analysis. These results provide insights into the effect of hydration in collagen self-assembly, and more generally, the anomalous behavior of water near protein surfaces.
APA, Harvard, Vancouver, ISO, and other styles
6

Yeelack, Watanyou, and Jirut Meesane. "Preparation and characterization of coated silk fibroin films with mimicked re-self assembly type I collagen." In 2013 6th Biomedical Engineering International Conference (BMEiCON). IEEE, 2013. http://dx.doi.org/10.1109/bmeicon.2013.6687711.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

M. Ravikumar, Krishnakumar, and Wonmuk Hwang. "Sequence Specific Role of Water in Spontaneous Local Unwinding of Collagen." In ASME 2007 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2007. http://dx.doi.org/10.1115/sbc2007-175435.

Full text
Abstract:
Collagen is one of the most abundant proteins in the human body. Due to its biological significance and omnipresence, it has been intensely studied for several decades both at the molecular and at the tissue level. A single collagen molecule is a rope like super helix of three α-chains. Collagen molecules self assemble in an orderly fashion to form different suprastructures such as fibrils and networks, providing mechanical strength to the tissue. Collagen density and suprastructural organization determines the local mechanical tension in a particular region of the tissue. Cells sense the tension and in turn trigger a controlled process of growth and remodeling of tissues through secretion or degradation of extracellular components including collagen. Tissue homeostasis is a complex process and adding to such complexity, a single collagen molecule is unstable at body temperature [1], but its stability increases after self-assembly and cross-linking.
APA, Harvard, Vancouver, ISO, and other styles
8

Zareian, Ramin, Kelli P. Church, and Jeffrey W. Ruberti. "Influence of Mechanical Load on the Degradation of Corneal Collagen." In ASME 2008 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2008. http://dx.doi.org/10.1115/sbc2008-193036.

Full text
Abstract:
Collagen is one of the most important structural proteins in vertebrate animals. Over 25 different types of collagen have been identified, but type I collagen is the most abundant fibril forming collagen and contributes to the structural performance numerous connective tissues including ligaments, tendons and cornea [1]. In addition to collagen self-assembly, collagen degradation is an important step in the development, remodeling, homeostasis and pathology of load-bearing ECM. Matrix Metalloproteinase (MMP) types I and VIII, bacterial collagenase and cathepsin are the best known enzymes capable of directly degrading the collagen triple helix [2, 3]. Several researchers have hypothesized that straining collagen fibrils makes them less susceptible to enzymatic degradation [4, 5]. This concept, which we refer to as “strain-stabilization” has important implications for our understanding of collagen as an engineering material.
APA, Harvard, Vancouver, ISO, and other styles
9

Makris, Eleftherios A., Donald J. Responte, Jerry Hu, and Kyriacos A. Athanasiou. "Exogenous Temporal Assessment of Lysyl Oxidase on Engineered Articular Cartilage as a Method for Promoting Collagen Crosslinking." In ASME 2012 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/sbc2012-80318.

Full text
Abstract:
The poor ability of articular cartilage (AC) to repair following disease and/or injury makes the tissue a key target for cell-based regenerative strategies. Progress made in the development of tissue engineered AC, using a 3-dimensional, scaffoldless, self-assembly method, has yielded neotissues with compressive properties on par with native tissue [1]. However, the tensile properties of these engineered tissues remain to be improved. This is particularly important because, while the tissue functions mainly in compression, the tensile strains within the joint nonetheless present a mechanically challenging environment.
APA, Harvard, Vancouver, ISO, and other styles
10

Devaprakasam, D. "Nature Nanocomposite Versus Man-Made Nanocomposites: Studies of Nanoscale Structural, Chemical and Mechanical Hierarchy of a Fish Scale in Contrast With Man-Made Polymer Nanocomposites." In ASME 2013 2nd Global Congress on NanoEngineering for Medicine and Biology. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/nemb2013-93085.

Full text
Abstract:
Hierarchical designs of biological structures have remarkable physical, chemical mechanical and biological properties and functionalities over the wide range of length scales [1–4]. Man-made nanocomposites have dramatic improvement of the structural and mechanical properties but however they have very limited hierarchy [5]. Fish scales are bone-like tissues, which form a protective layer on the body of the fish and enable the fish to swim efficiently. Bones and bone-like parts in living organism are formed as tissues by self-assembly of bio-minerals and protein matrix. These tissues are bio-nanocomposites and have hierarchical structure ranging from nanoscale to macroscale [2–4]. Bio-hierarchy contains different bio-macromolecules, bio-minerals, interfacial bonds and porosity which result in gradient mechanical properties at multiple length scales [1–6]. Fish scale consists of inorganic bio-minerals and organic collagens [3,4]. Multilevel hierarchy influences elasticity, hardness and fracture toughness of fish scale. They have additional functions related to movement including reduction or increase of drag [7] and rapid manoeuvre while they are hunting or avoiding predators. In this article we report comparison studies of hierarchical nanocomposite of sardina pilchardus(sp) fish scale and man-made SiO2 nanoparticles filled nanocomposites.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography