Journal articles on the topic 'Collapse of cavitation bubbles'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Collapse of cavitation bubbles.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Luo, Jing, Weilin Xu, Jun Deng, Yanwei Zhai, and Qi Zhang. "Experimental Study on the Impact Characteristics of Cavitation Bubble Collapse on a Wall." Water 10, no. 9 (2018): 1262. http://dx.doi.org/10.3390/w10091262.
Full textWILSON, MILES, JOHN R. BLAKE, and PETER M. HAESE. "CLOUD CAVITATION DYNAMICS." ANZIAM Journal 50, no. 2 (2008): 199–208. http://dx.doi.org/10.1017/s1446181109000133.
Full textLiu, Yang, and Yong Peng. "Study on the Collapse Process of Cavitation Bubbles Near the Concave Wall by Lattice Boltzmann Method Pseudo-Potential Model." Energies 13, no. 17 (2020): 4398. http://dx.doi.org/10.3390/en13174398.
Full textCHOI, JAEHYUG, and STEVEN L. CECCIO. "Dynamics and noise emission of vortex cavitation bubbles." Journal of Fluid Mechanics 575 (March 2007): 1–26. http://dx.doi.org/10.1017/s0022112006003776.
Full textCHOI, JAEHYUG, CHAO-TSUNG HSIAO, GEORGES CHAHINE, and STEVEN CECCIO. "Growth, oscillation and collapse of vortex cavitation bubbles." Journal of Fluid Mechanics 624 (April 10, 2009): 255–79. http://dx.doi.org/10.1017/s0022112008005430.
Full textPHILIPP, A., and W. LAUTERBORN. "Cavitation erosion by single laser-produced bubbles." Journal of Fluid Mechanics 361 (April 25, 1998): 75–116. http://dx.doi.org/10.1017/s0022112098008738.
Full textLu, Tianshi, Roman Samulyak, and James Glimm. "Direct Numerical Simulation of Bubbly Flows and Application to Cavitation Mitigation." Journal of Fluids Engineering 129, no. 5 (2006): 595–604. http://dx.doi.org/10.1115/1.2720477.
Full textDELALE, C. F., G. H. SCHNERR, and J. SAUER. "Quasi-one-dimensional steady-state cavitating nozzle flows." Journal of Fluid Mechanics 427 (January 25, 2001): 167–204. http://dx.doi.org/10.1017/s0022112000002330.
Full textMao, Yunfei, Yong Peng, and Jianmin Zhang. "Study of Cavitation Bubble Collapse near a Wall by the Modified Lattice Boltzmann Method." Water 10, no. 10 (2018): 1439. http://dx.doi.org/10.3390/w10101439.
Full textWang, Yi-Chun, and Christopher E. Brennen. "Numerical Computation of Shock Waves in a Spherical Cloud of Cavitation Bubbles." Journal of Fluids Engineering 121, no. 4 (1999): 872–80. http://dx.doi.org/10.1115/1.2823549.
Full textBRENNER, MICHAEL P. "Cavitation in linear bubbles." Journal of Fluid Mechanics 632 (July 27, 2009): 1–4. http://dx.doi.org/10.1017/s0022112009008167.
Full textCeccio, S. L., and C. E. Brennen. "Observations of the dynamics and acoustics of travelling bubble cavitation." Journal of Fluid Mechanics 233 (December 1991): 633–60. http://dx.doi.org/10.1017/s0022112091000630.
Full textSoyama, H. "Corrosion Behavior of Pressure Vessel Steel Exposed to Residual Bubbles After Cavitation Bubble Collapse." Corrosion 67, no. 2 (2011): 025001–1. http://dx.doi.org/10.5006/1.3548733.
Full textSu, Yanwen, Xuelin Tang, Fujun Wang, Xiaoqin Li, and Xiaoyan Shi. "Three-Dimensional Cavitation Bubble Simulations based on Lattice Boltzmann Model Coupled with Carnahan-Starling Equation of State." Communications in Computational Physics 22, no. 2 (2017): 473–93. http://dx.doi.org/10.4208/cicp.oa-2016-0112.
Full textAganin, A. A., A. I. Davletshin, and T. F. Khalitova. "Numerical simulation of bubble dynamics in central region of streamer." Multiphase Systems 13, no. 3 (2018): 11–22. http://dx.doi.org/10.21662/mfs2018.3.002.
Full textZhai, Yanwei, Weilin Xu, Jing Luo, and Qi Zhang. "Experimental study on the effect of a deformable boundary on the collapse characteristics of a cavitation bubble." Thermal Science 23, no. 4 (2019): 2195–204. http://dx.doi.org/10.2298/tsci1904195z.
Full textGONZALEZ-AVILA, SILVESTRE ROBERTO, EVERT KLASEBOER, BOO CHEONG KHOO, and CLAUS-DIETER OHL. "Cavitation bubble dynamics in a liquid gap of variable height." Journal of Fluid Mechanics 682 (June 21, 2011): 241–60. http://dx.doi.org/10.1017/jfm.2011.212.
Full textLuo, Jing, Wei-lin Xu, and Rui Li. "Collapse of cavitation bubbles near air bubbles." Journal of Hydrodynamics 32, no. 5 (2019): 929–41. http://dx.doi.org/10.1007/s42241-019-0061-x.
Full textKucera, A., and J. R. Blake. "Approximate methods for modelling cavitation bubbles near boundaries." Bulletin of the Australian Mathematical Society 41, no. 1 (1990): 1–44. http://dx.doi.org/10.1017/s0004972700017834.
Full textSchovanec, Petr, Darina Jasikova, Michal Kotek, et al. "Sterilization of Biofilm in Foam Using a Single Cavitation Bubble." MATEC Web of Conferences 328 (2020): 05003. http://dx.doi.org/10.1051/matecconf/202032805003.
Full textZhu, Xi Jing, Ce Guo, Jian Qing Wang, and Guo Dong Liu. "Dynamics Modeling of Cavitation Bubble in the Grinding Area of Power Ultrasonic Honing." Advanced Materials Research 797 (September 2013): 108–11. http://dx.doi.org/10.4028/www.scientific.net/amr.797.108.
Full textZhang, Peng-li, and Shu-yu Lin. "Study on Bubble Cavitation in Liquids for Bubbles Arranged in a Columnar Bubble Group." Applied Sciences 9, no. 24 (2019): 5292. http://dx.doi.org/10.3390/app9245292.
Full textAltay, Rana, Abdolali K. Sadaghiani, M. Ilker Sevgen, Alper Şişman, and Ali Koşar. "Numerical and Experimental Studies on the Effect of Surface Roughness and Ultrasonic Frequency on Bubble Dynamics in Acoustic Cavitation." Energies 13, no. 5 (2020): 1126. http://dx.doi.org/10.3390/en13051126.
Full textWang, Yi-Chun. "Effects of Nuclei Size Distribution on the Dynamics of a Spherical Cloud of Cavitation Bubbles." Journal of Fluids Engineering 121, no. 4 (1999): 881–86. http://dx.doi.org/10.1115/1.2823550.
Full textCheng, Feng, and Weixi Ji. "Numerical and experimental study on dynamic characteristics of cavitation bubbles." Industrial Lubrication and Tribology 70, no. 6 (2018): 1119–26. http://dx.doi.org/10.1108/ilt-11-2016-0291.
Full textMathew, Sunil, Theo G. Keith Theo G. Keith, and Efstratios Nikolaidis. "Numerical simulation of traveling bubble cavitation." International Journal of Numerical Methods for Heat & Fluid Flow 16, no. 4 (2006): 393–416. http://dx.doi.org/10.1108/09615530610653055.
Full textKLASEBOER, EVERT, SIEW WAN FONG, CARY K. TURANGAN, et al. "Interaction of lithotripter shockwaves with single inertial cavitation bubbles." Journal of Fluid Mechanics 593 (November 23, 2007): 33–56. http://dx.doi.org/10.1017/s002211200700852x.
Full textLin, Hsin-Yi, Brian A. Bianccucci, Steven Deutsch, Arnold A. Fontaine, and J. M. Tarbell. "Observation and Quantification of Gas Bubble Formation on a Mechanical Heart Valve." Journal of Biomechanical Engineering 122, no. 4 (2000): 304–9. http://dx.doi.org/10.1115/1.1287171.
Full textZhang, Jing, Lingxin Zhang, and Jian Deng. "Numerical Study of the Collapse of Multiple Bubbles and the Energy Conversion during Bubble Collapse." Water 11, no. 2 (2019): 247. http://dx.doi.org/10.3390/w11020247.
Full textSupponen, Outi, Danail Obreschkow, Marc Tinguely, Philippe Kobel, Nicolas Dorsaz, and Mohamed Farhat. "Scaling laws for jets of single cavitation bubbles." Journal of Fluid Mechanics 802 (August 3, 2016): 263–93. http://dx.doi.org/10.1017/jfm.2016.463.
Full textMa, Chunlong, Dongyan Shi, Chao Li, Dongze He, Guangliang Li, and Keru Lu. "Numerical Study of the Pulsation Process of Spark Bubbles under Three Boundary Conditions." Journal of Marine Science and Engineering 9, no. 6 (2021): 619. http://dx.doi.org/10.3390/jmse9060619.
Full textBrujan, E. A. "Collapse of cavitation bubbles in blood." Europhysics Letters (EPL) 50, no. 2 (2000): 175–81. http://dx.doi.org/10.1209/epl/i2000-00251-7.
Full textaus der Wiesche, S. "The collapse of micro cavitation bubbles." Forschung im Ingenieurwesen 72, no. 3 (2008): 175–82. http://dx.doi.org/10.1007/s10010-008-0080-1.
Full textVogel, A., W. Lauterborn, and R. Timm. "Optical and acoustic investigations of the dynamics of laser-produced cavitation bubbles near a solid boundary." Journal of Fluid Mechanics 206 (September 1989): 299–338. http://dx.doi.org/10.1017/s0022112089002314.
Full textKalumuck, K. M., and G. L. Chahine. "The Use of Cavitating Jets to Oxidize Organic Compounds in Water." Journal of Fluids Engineering 122, no. 3 (2000): 465–70. http://dx.doi.org/10.1115/1.1286993.
Full textDe Chizelle, Y. Kuhn, S. L. Ceccio, and C. E. Brennen. "Observations and scaling of travelling bubble cavitation." Journal of Fluid Mechanics 293 (June 25, 1995): 99–126. http://dx.doi.org/10.1017/s0022112095001650.
Full textDelale, Can F., Kohei Okita, and Yoichiro Matsumoto. "Steady-State Cavitating Nozzle Flows With Nucleation." Journal of Fluids Engineering 127, no. 4 (2005): 770–77. http://dx.doi.org/10.1115/1.1949643.
Full textMa, Chunlong, Dongyan Shi, Yingyu Chen, Xiongwei Cui, and Mengnan Wang. "Experimental Research on the Influence of Different Curved Rigid Boundaries on Electric Spark Bubbles." Materials 13, no. 18 (2020): 3941. http://dx.doi.org/10.3390/ma13183941.
Full textOgloblina, Daria, Steffen J. Schmidt, and Nikolaus A. Adams. "Simulation and analysis of collapsing vapor-bubble clusters with special emphasis on potentially erosive impact loads at walls." EPJ Web of Conferences 180 (2018): 02079. http://dx.doi.org/10.1051/epjconf/201818002079.
Full textGonzalez Avila, Silvestre Roberto, and Claus-Dieter Ohl. "Fragmentation of acoustically levitating droplets by laser-induced cavitation bubbles." Journal of Fluid Mechanics 805 (September 23, 2016): 551–76. http://dx.doi.org/10.1017/jfm.2016.583.
Full textTurangan, C. K., G. J. Ball, A. R. Jamaluddin, and T. G. Leighton. "Numerical studies of cavitation erosion on an elastic–plastic material caused by shock-induced bubble collapse." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 473, no. 2205 (2017): 20170315. http://dx.doi.org/10.1098/rspa.2017.0315.
Full textTOMITA, Y., P. B. ROBINSON, R. P. TONG, and J. R. BLAKE. "Growth and collapse of cavitation bubbles near a curved rigid boundary." Journal of Fluid Mechanics 466 (September 10, 2002): 259–83. http://dx.doi.org/10.1017/s0022112002001209.
Full textGonzalez-Avila, Silvestre Roberto, Dang Minh Nguyen, Sankara Arunachalam, Eddy M. Domingues, Himanshu Mishra, and Claus-Dieter Ohl. "Mitigating cavitation erosion using biomimetic gas-entrapping microtextured surfaces (GEMS)." Science Advances 6, no. 13 (2020): eaax6192. http://dx.doi.org/10.1126/sciadv.aax6192.
Full textNasibullayev, I. Sh, and E. Sh Nasibullaeva. "Investigation of the cavitational stability of an aluminum piston surface based on a three-dimensional model." Proceedings of the Mavlyutov Institute of Mechanics 12, no. 2 (2017): 143–51. http://dx.doi.org/10.21662/uim2017.2.021.
Full textSedlář, Milan, Patrik Zima, and Martin Komárek. "Numerical Prediction of Erosive Potential of Unsteady Cavitating Flow around Hydrofoil." Applied Mechanics and Materials 565 (June 2014): 156–63. http://dx.doi.org/10.4028/www.scientific.net/amm.565.156.
Full textBeig, S. A., B. Aboulhasanzadeh, and E. Johnsen. "Temperatures produced by inertially collapsing bubbles near rigid surfaces." Journal of Fluid Mechanics 852 (August 2, 2018): 105–25. http://dx.doi.org/10.1017/jfm.2018.525.
Full textREISMAN, G. E., Y. C. WANG, and C. E. BRENNEN. "Observations of shock waves in cloud cavitation." Journal of Fluid Mechanics 355 (January 25, 1998): 255–83. http://dx.doi.org/10.1017/s0022112097007830.
Full textCrespo, A., F. Castro, F. Manuel, and J. Herna´ndez. "Dynamics of an Elongated Bubble During Collapse." Journal of Fluids Engineering 112, no. 2 (1990): 232–37. http://dx.doi.org/10.1115/1.2909393.
Full textDABIRI, SADEGH, WILLIAM A. SIRIGNANO, and DANIEL D. JOSEPH. "Interaction between a cavitation bubble and shear flow." Journal of Fluid Mechanics 651 (March 26, 2010): 93–116. http://dx.doi.org/10.1017/s0022112009994058.
Full textZhao, Yuanyuan, Qiang Fu, Rongsheng Zhu, Guoyu Zhang, Chuan Wang, and Xiuli Wang. "Transient Process and Micro-mechanism of Hydrofoil Cavitation Collapse." Processes 8, no. 11 (2020): 1387. http://dx.doi.org/10.3390/pr8111387.
Full text