Dissertations / Theses on the topic 'Coloriage de graphe'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Coloriage de graphe.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Legay, Sylvain. "Quelques problèmes d'algorithmique et combinatoires en théorie des grapphes." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS030/document.
Full textThis thesis is about graph theory. Formally, a graph is a set of vertices and a set of edges, which are pair of vertices, linking vertices. This thesis deals with various decision problem linked to the notion of graph, and, for each of these problem, try to find its complexity class, or to give an algorithm. The first chapter is about the problem of finding the smallest connected tropical subgraph of a vertex-colored graph, which is the smallest connecter subgraph containing every colors. The second chapter is about problems of tropical homomorphism, a generalization of coloring problem. A link between these problems and several other class of homomorphism problems can be found in this chapter, especially with the class of Constraint Satisfaction Problem. The third chapter is about two variant of the domination problem, namely the global alliance problems in a weighted graph and the safe set problem. The fourth chapter is about the problem of finding a star tree-decomposition, which is a tree-decomposition where the radius of bags is 1. Finally, the fifth chapter is about a variant of the problem of deciding the asymptotic behavior of the iterated biclique graph
Xu, Renyu. "Quelques problèmes de coloration du graphe." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS104/document.
Full textA k-total-coloring of a graph G is a coloring of V(G)cup E(G) using (1,2,…,k) colors such that no two adjacent or incident elements receive the same color.The total chromatic number chi''(G) is the smallest integer k such that G has a k-total-coloring. In chapter 2, we study total coloring of planar graphs and obtain three results: (1) Let G be a planar graph with maximum degree Deltageq8. If every two chordal 6-cycles are not adjacent in G, then chi''(G)=Delta+1. (2) Let G be a planar graph G with maximum degree Deltageq8. If any 7-cycle of G contains at most two chords, then chi''(G)=Delta+1. (3) Let G be a planar graph without intersecting chordal 5-cycles, that is, every vertex is incident with at most one chordal 5-cycle. If Deltageq7, then chi''(G)=Delta+1.A mapping L is said to be an assignment for a graph G if it assigns a list L(x) of colors to each xin V(G)cup E(G). If it is possible to color G so that every vertex gets a color from its list and no two adjacent vertices receive the same color, then we say that G is L-colorable. A graph G is k-choosable if G is an L-colorable for any assignment L for G satisfying |L(x)|geq k for every vertex xin V(G)cup E(G). We prove that if every 5-cycle of G is not simultaneously adjacent to 3-cycles and 4-cycles, then G is 4-choosable. In chapter 3, if every 5-cycles of G is not adjacent to 4-cycles, we prove that chi'_l(G)=Delta, chi''_l(G)=Delta+1 if Delta(G)geq8, and chi'_l(G)leqDelta+1, chi''_l(G)leqDelta+2 if Delta(G)geq6.In chapter 4, we will give the definition of neighbor sum distinguishing total coloring. Let f(v) denote the sum of the colors of a vertex v and the colors of all incident edges of v. A total k-neighbor sum distinguishing-coloring of G is a total k-coloring of G such that for each edge uvin E(G), f(u)eq f(v). The smallestnumber k is called the neighbor sum distinguishing total chromatic number, denoted by chi''_{sum} (G). Pilsniak and Wozniak conjectured that for any graph G with maximum degree Delta(G) holds that chi''_{sum} (G)leqDelta(G)+3. We prove for a graph G with maximum degree Delta(G) which can be embedded in a surface Sigma of Euler characteristic chi(Sigma)geq0, then chi_{sum}^{''}(G)leq max{Delta(G)+2, 16}.Lastly, we study the linear L-choosable arboricity of graph. A linear forest is a graph in which each component is a path. The linear arboricity la(G) of a graph G is the minimum number of linear forests in G, whose union is the set of all edges of G. A list assignment L to the edges of G is the assignment of a set L(e)subseteq N of colors to every edge e of G, where N is the set of positive integers. If G has a coloring varphi (e) such that varphi (e)in L(e) for every edge e and (V(G),varphi^{-1}(i)) is a linear forest for any iin C_{varphi}, where C_{varphi }=left { varphi (e)|ein E(G)ight }, then we say that G is linear L-colorable and varphi is a linear L-coloring of G. We say that G is linear k-choosable if it is linear L-colorable for every list assignment L satisfying |L(e)| geq k for all edges e. The list linear arboricity la_{list}(G) of a graph G is the minimum number k for which G is linear k-list colorable. It is obvious that la(G)leq la_{list}(G). In chapter 5, we prove that if G is a planar graph such that every 7-cycle of G contains at most two chords, then G is linear left lceil frac{Delta+1}{2}ightceil-choosable if Delta(G)geq6, and G is linear left lceil frac{Delta}{2}ightceil-choosable if Delta(G)geq 11
Pastor, Lucas. "Coloration, ensemble indépendant et structure de graphe." Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAM071/document.
Full textThis thesis deals with graph coloring, list-coloring, maximum weightstable set (shortened as MWSS) and structural graph theory.First, we provide polynomial-time algorithms for the 4-coloring problem insubclasses of $P_6$-free graphs. These algorithms rely on a preciseunderstanding of the structure of these classes of graphs for which we give afull description.Secondly, we study the list-coloring conjecture and prove that for anyclaw-free perfect graph with clique number bounded by 4, the chromatic numberand the choice number are equal. This result is obtained by using adecomposition theorem for claw-free perfect graphs, a structural description ofthe basic graphs of this decomposition and by using Galvin's famous theorem.Next by using the structural description given in the first chapter andstrengthening other aspects of this structure, we provide polynomial-timealgorithms for the MWSS problem in subclasses of $P_6$-free and $P_7$-freegraphs.In the last chapter of the manuscript, we disprove a conjecture of De Simoneand K"orner made in 1999 related to normal graphs. Our proof is probabilisticand is obtained by the use of random graphs
Lecat, Clément. "Réduction de l'espace de recherche du Problème de la Somme Coloration Minimum d'un graphe." Thesis, Amiens, 2017. http://www.theses.fr/2017AMIE0033/document.
Full textThe Minimum Sum Coloring Problem (MSCP) of a graph is an optimization problem whose the aim is to find a valid coloring such that the sum of weights associated to the used color is minimum. The minimum number of colors needed in an optimal solution is called the strength of the graph, and the sum of weights of the colors used in an optimal solution is called the chromatic sum of the graph. The aim of this thesis was to study the MSCP in order to propose new approaches for its resolution. The contribution of the thesis is twofold. First, we have introduced two upper bounds of the strength and one lower bound of the chromatic sum of a graph, based on a notion called motif adapted from the literature. These bounds allow to reduce significantly the search space of the MSCP. Second, we have proposed several exact resolution methods for the MSCP. The first method consists in modelling the MSCP to a weighted partial MaxSAT or a weighted partial MinSAT and solves the MSCP using state-of-the-art MaxSAT/MinSAT solvers. We have showed that our upper bound of the strength allows to improve substantially the MaxSAT/MinSAT encodings, and consequently, the MaxSAT solvers are competitive to solve the MSCP. The two other resolution methods are based on the Branch-and-Bound scheme and are called BBMSCP and 3LMSCP respectively. The difference between BBMSCP and 3LMSCP is that BBMSCP explores many symmetric colorings but 3LMSCP exploits the partitions of the graph into stables to avoid symmetric colorings
Pierron, Théo. "Induction Schemes : From Language Separation to Graph Colorings." Thesis, Bordeaux, 2019. http://www.theses.fr/2019BORD0119/document.
Full textIn this thesis, we present results obtained in two fields: formal language theory and graph theory. In formal language theory, we consider some problems of characterization of classes of regular languages. The generic problem consists in determining whether a given regular language can be defined in a fixed formalism. The current approaches use a more general problem called separation. We present here two types of contributions: a generalization of a decidability result to the setting of infinite words, together with lower bounds for the complexity of the separation problem. In graph theory, we consider the classical problem of graph coloring, where we assign colors to vertices of a graph in such a way that two adjacent vertices receive different colors. The goal is to use the fewest colors. When the graphs are sparse, a crucial tool for this is the discharging method. It is most notably decisive in the proof of the Four-Color Theorem. This method can be seen as an unconventional construction of an inductive proof scheme, specific to the considered problem and graph class, where arguing the validity of the scheme is rarely immediate. We use variants of the discharging method to study two types of coloring problems
Gardi, Frédéric. "Ordonnancement avec exclusion mutuelle par un graphe d'intervalles ou d'une classe apparentée : complexité et algorithmes." Aix-Marseille 2, 2005. http://theses.univ-amu.fr.lama.univ-amu.fr/2005AIX22014.pdf.
Full textMortada, Maidoun. "The b-chromatic number of regular graphs." Thesis, Lyon 1, 2013. http://www.theses.fr/2013LYO10116.
Full textTwo problems are considered in this thesis: the b-coloring problem and the graph packing problem. 1. The b-Coloring Problem : A b-coloring of a graph G is a proper coloring of the vertices of G such that there exists a vertex in each color class joined to at least a vertex in each other color class. The b-chromatic number of a graph G, denoted by b(G), is the maximum number t such that G admits a b-coloring with t colors. El Sahili and Kouider asked whether it is true that every d-regular graph G with girth at least 5 satisfies b(G) = d + 1. Blidia, Maffray and Zemir proved that the conjecture is true for d ≤ 6. Also, the question was solved for d-regular graphs with supplementary conditions. We study El Sahili and Kouider conjecture by determining when it is possible and under what supplementary conditions it is true. We prove that b(G) = d+1 if G is a d-regular graph containing neither a cycle of order 4 nor of order 6. Then, we provide specific conditions on the vertices of a d-regular graph G with no cycle of order 4 so that b(G) = d + 1. Cabello and Jakovac proved that if v(G) ≥ 2d3 - d2 + d, then b(G) = d + 1, where G is a d-regular graph. We improve this bound by proving that if v(G) ≥ 2d3 - 2d2 + 2d, then b(G) = d+1 for a d-regular graph G. 2. Graph Packing Problem : Graph packing problem is a classical problem in graph theory and has been extensively studied since the early 70's. Consider a permutation σ : V (G) → V (Kn), the function σ* : E(G) → E(Kn) such that σ *(xy) = σ *(x) σ *(y) is the function induced by σ. We say that there is a packing of k copies of G into the complete graph Kn if there exist k permutations σ i : V (G) → V (Kn), where i = 1,…, k, such that σ*i (E(G)) ∩ σ*j (E(G)) = ɸ for I ≠ j. A packing of k copies of a graph G will be called a k-placement of G. The kth power Gk of a graph G is the supergraph of G formed by adding an edge between all pairs of vertices of G with distance at most k. Kheddouci et al. proved that for any non-star tree T there exists a 2-placement σ on V (T). We introduce a new variant of graph packing problem, called the labeled packing of a graph into its power graph
Chen, Min. "Vertex coloring of graphs via the discharging method." Thesis, Bordeaux 1, 2010. http://www.theses.fr/2010BOR14090/document.
Full textIn this thesis, we are interested in various vertex coloring and homomorphism problems of graphs with special emphasis on planar graphs and sparsegraphs. We consider proper vertex coloring, acyclic coloring, star coloring, forestcoloring, fractional coloring and the list version of most of these concepts.In Chapter 2, we consider the problem of finding sufficient conditions for a planargraph to be 3-choosable. These conditions are expressed in terms of forbiddensubgraphs and our results extend several known results.The notion of acyclic list coloring of planar graphs was introduced by Borodin,Fon-Der Flaass, Kostochka, Raspaud, and Sopena. They conjectured that everyplanar graph is acyclically 5-choosable. In Chapter 3, we obtain some sufficientconditions for planar graphs to be acyclically k-choosable with k 2 f3; 4; 5g.In Chapter 4, we prove that every subcubic graph is 6-star-colorable. On theother hand, Fertin, Raspaud and Reed showed that the Wagner graph cannot be5-star-colorable. This fact implies that our result is best possible. Moreover, weobtain new upper bounds on star choosability of planar subcubic graphs with givengirth.A k-forest-coloring of a graph G is a mapping ¼ from V (G) to the set f1; ¢ ¢ ¢ ; kgsuch that each color class induces a forest. The vertex-arboricity of G is the smallestinteger k such that G has a k-forest-coloring. In Chapter 5, we prove a conjecture ofRaspaud and Wang asserting that every planar graph without intersecting triangleshas vertex-arboricity at most 2.Finally, in Chapter 6, we focus on the homomorphism problems of sparse graphsto the Petersen graph. More precisely, we prove that every triangle-free graph withmaximum average degree less than 5=2 admits a homomorphism to the Petersengraph. Moreover, we show that the bound on the maximum average degree in ourresult is best possible
Weinberg, Benjamin Talbi El-Ghazali. "Analyse et résolution approchée de problèmes d'optimisation combinatoire application au problème de coloration de graphe /." Villeneuve d'Ascq : Université des sciences et technologies de Lille, 2007. https://iris.univ-lille1.fr/dspace/handle/1908/973.
Full textN° d'ordre (Lille 1) : 3467. Résumé en français et en anglais. Titre provenant de la page de titre du document numérisé. Bibliogr. 9 p.
Weinberg, Benjamin. "Analyse et résolution approchée de problèmes d'optimisation combinatoire : application au problème de coloration de graphe." Lille 1, 2004. https://pepite-depot.univ-lille.fr/LIBRE/Th_Num/2004/50376-2004-Weinberg.pdf.
Full textLagoutte, Aurélie. "Interactions entre les Cliques et les Stables dans un Graphe." Thesis, Lyon, École normale supérieure, 2015. http://www.theses.fr/2015ENSL1012/document.
Full textThis thesis is concerned with different types of interactions between cliques and stable sets, two very important objects in graph theory, as well as with the connections between these interactions. At first, we study the classical problem of graph coloring, which can be stated in terms of partioning the vertices of the graph into stable sets. We present a coloring result for graphs with no triangle and no induced cycle of even length at least six. Secondly, we study the Erdös-Hajnal property, which asserts that the maximum size of a clique or a stable set is polynomial (instead of logarithmic in random graphs). We prove that the property holds for graphs with no induced path on k vertices and its complement.Then, we study the Clique-Stable Set Separation, which is a less known problem. The question is about the order of magnitude of the number of cuts needed to separate all the cliques from all the stable sets. This notion was introduced by Yannakakis when he studied extended formulations of the stable set polytope in perfect graphs. He proved that a quasi-polynomial number of cuts is always enough, and he asked if a polynomial number of cuts could suffice. Göös has just given a negative answer, but the question is open for restricted classes of graphs, in particular for perfect graphs. We prove that a polynomial number of cuts is enough for random graphs, and in several hereditary classes. To this end, some tools developed in the study of the Erdös-Hajnal property appear to be very helpful. We also establish the equivalence between the Clique-Stable set Separation problem and two other statements: the generalized Alon-Saks-Seymour conjecture and the Stubborn Problem, a Constraint Satisfaction Problem
Gastineau, Nicolas. "Partitionnement, recouvrement et colorabilité dans les graphes." Thesis, Dijon, 2014. http://www.theses.fr/2014DIJOS014/document.
Full textOur research are about graph coloring with distance constraints (packing coloring) or neighborhood constraints (Grundy coloring). Let S={si| i in N*} be a non decreasing sequence of integers. An S-packing coloring is a proper coloring such that every set of color i is an si-packing (a set of vertices at pairwise distance greater than si). A graph G is (s1,... ,sk)-colorable if there exists a packing coloring of G with colors 1,... ,k. A Grundy coloring is a proper vertex coloring such that for every vertex of color i, u is adjacent to a vertex of color j, for each ji. These results allow us to determine S-packing coloring of these lattices for several sequences of integers. We examine a class of graph that has never been studied for S-packing coloring: the subcubic graphs. We determine that every subcubic graph is (1,2,2,2,2,2,2)-colorable and (1,1,2,2,3)-colorable. Few results are proven about some subclasses. Finally, we study the Grundy number of regular graphs. We determine a characterization of the cubic graphs with Grundy number 4. Moreover, we prove that every r-regular graph without induced square has Grundy number r+1, for r<5
Le, Ngoc Khang. "Detecting and Coloring some Graph Classes." Thesis, Lyon, 2018. http://www.theses.fr/2018LYSEN021/document.
Full textGraphs are mathematical structures used to model pairwise relations between objects. Despite their simple structures, graphs have applications in various areas like computer science, physics, biology and sociology. The main focus of this work is to continue the study of the coloring and detecting problems in the setting of graph classes closed under taking induced subgraphs (which we call hereditary graph classes). The first class we consider is ISK4-free graphs - the graphs that do not contain any subdivision of K4 as an induced subgraph. We prove that the chromatic number of this class is bounded by 24, a huge improvement compared to the best-known bound. We also give a much better bound in the triangle-free case. Furthermore, we prove that there exists an O(n 9) algorithm for detecting this class, which answers a question by Chudnovsky et al. and Lévêque et al. The second class we study is even-hole-free graphs with no star cutset. This was motivated by the use of decomposition technique in solving some optimization problems. We prove the optimal χ -bounding function for this class and show that it has bounded rank-width, which implies the existence of a polynomial-time coloring algorithm.Finally, the connected greedy coloring in claw-free graphs is considered. A natural way to color a graph is to have an order of its vertices and assign for each vertex the first available color. A lot of researches have been done for general orders. However, we know very little about the characterization of good graphs with respect to connected orders. A graph G is good if for every connected induced subgraph H of G, every connected order gives H an optimal coloring. We give the complete characterization of good claw-free graphs in terms of minimal forbidden induced subgraphs
Ternier, Ian-Christopher. "Résolution exacte du Problème de Coloration de Graphe et ses variantes." Thesis, Paris Sciences et Lettres (ComUE), 2017. http://www.theses.fr/2017PSLED060/document.
Full textGiven an undirected graph, the Vertex Coloring Problem (VCP) consists of assigning a color to each vertex of the graph such that two adjacent vertices do not share the same color and the total number of colors is minimized. DSATUR is an effective exact algorithm for the VCP. We introduce new lower bounding techniques enabling the computing of a lower bound at each node of the branching scheme. Our new DSATUR outperforms the state of the art for random VCP instances with high density, significantly increasing the size of solvable instances. Similar results can be achieved for a subset of high density DIMACS instances. We study three ILP formulations for the Minimum Sum Coloring Problem (MSCP). The problem is an extension of the classical Vertex Coloring Problem in which each color is represented by a positive natural number. The MSCP asks to minimize the sum of the cardinality of subsets of vertices receiving the same color, weighted by the index of the color, while ensuring that vertices linked by an edge receive different colors. We focus on studying an extended formulation and devise a complete Branch-and-Price algorithm
Sun, Pak Kiu. "Incidence coloring : origins, developments and relation with other colorings." HKBU Institutional Repository, 2007. http://repository.hkbu.edu.hk/etd_ra/826.
Full textCharpentier, Clément. "Coloration, jeux et marquages dans les graphes." Thesis, Bordeaux, 2014. http://www.theses.fr/2014BORD0023/document.
Full textWe study several problems of graph coloring, some of them with a game component.A 2-distance coloring of a graph is a vertex coloring where two vertices at distanceat most two have different colors. A L(p; q)-labeling is a generalisation of the distance-2coloring where constraints are different at distance 1 and 2. We give results for thesetwo problems in several classes of sparse graphs (with a low maximal average degree).The coloring game on a graph is a game where two players, Alice and Bob, taketurns coloring an uncolored vertex of the graph, constructing together a proper partialcoloring of the graph extending as time moves on. Alice try to extend the coloringto the whole graph, and Bob try to prevent her to win. We study a graph invariant,the minmax degree, who has consequences on the coloring game through the notion of(1; k)-decomposition of a graph, which is the partition of its edge set into a forest and asubgraph of degree bounded by k.We finally study a variant of the coloring game named incidence coloring game, whereAlice and Bob are coloring the incidences of a graph, and for which we give an efficientstrategy for Alice.Finally, during our thesis, we study the connections between coloring and marking,which is an order on the vertices of a graph (or its edges, or its incidences) havingproperties usefull for its coloring. For our problems, we try to determine the utility andthe limits of a marking-based approach of coloring problems
Duffy, Christopher. "Homomorphisms of (j, k)-mixed graphs." Thesis, Bordeaux, 2015. http://hdl.handle.net/1828/6601.
Full textGraduate
Sen, Sagnik. "A contribution to the theory of graph homomorphisms and colorings." Phd thesis, Bordeaux, 2014. http://tel.archives-ouvertes.fr/tel-00960893.
Full textTahraoui, Mohammed Amin. "Coloring, packing and embedding of graphs." Phd thesis, Université Claude Bernard - Lyon I, 2012. http://tel.archives-ouvertes.fr/tel-00995041.
Full textMacon, Lisa. "ALMOST REGULAR GRAPHS AND EDGE FACE COLORINGS OF PLANE GRAPHS." Doctoral diss., University of Central Florida, 2009. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/2480.
Full textPh.D.
Department of Mathematics
Sciences
Mathematics PhD
Yerger, Carl Roger Jr. "Color-critical graphs on surfaces." Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/37197.
Full textRoussel, Nicolas. "Circular coloring and acyclic choosability of graphs." Thesis, Bordeaux 1, 2009. http://www.theses.fr/2009BOR13889/document.
Full textIn this thesis, we study the circular coloring of planar graphs. Upper bounds have been given for graphs with bounded maximum degree, with bounded girth, that is the length of its smallest cycle, with missing cycles, and so on. It has also been studied for graphs with bounded maximum average degree. Here we give new upper bounds for that latter case. We also study the total coloring and ($d,1$)-total labeling of a few infinite families of graphs and describe the new concept of circular ($d,1$)-total labeling of graphs. In the last part, we will discuss conditions for a planar graph to be acyclically $4$-choosable
Heinrich, Marc. "Reconfiguration and combinatorial games." Thesis, Lyon, 2019. http://www.theses.fr/2019LYSE1102/document.
Full textThis thesis explores problems related to games. The games that we consider in this study are games for which there is no hidden information: all the players have access to all the information related to the game; there is also no randomness and everything is deterministic. A few well-known board games (such as chess or go) fall in this category and are representative of the kinds of games that we consider here. Central to the study of these games is the notion of strategy, which roughly speaking, is a way of playing which ensures a certain objective. The main question of interest, when both playing and studying a game, is the problem of finding the 'best' strategy, which secures the victory for the player following it. In this thesis, we consider both one-player games, also called combinatorial puzzles, and two-player games. Examples of combinatorial puzzles include Rubik's cube, Rush-Hour, Sokoban, the 15 puzzle, or peg solitaire. Recently, some types of one-player games in particular have received a strong regain of interest as part of the larger area of reconfiguration problems. The puzzles we described above can all be described in the following way: there is a set of configurations, which represents all the possible states of the game; and the player is allowed to transform a configuration using a prescribed set of moves. Starting from an initial configuration, the goal is to reach a target configuration by a succession of valid moves. Reconfiguration extends this definition to any search problem: the set of configuration becomes the set of solutions to an instance of a given problem, and we ask whether we can transform one given solution to another using only a prescribed set of moves. Hence, in addition to the combinatorial puzzles, reconfiguration problems also include many `games' which are not played by humans anymore but are instead mathematical problems sharing a lot of similarities with combinatorial puzzles. The study of reconfiguration problems has been driven by many different motivations. It has algorithmic applications: it can be seen as a way to adapt a current solution already in place to reach a new one by only making small local changes. It is also connected to other problems such as random sampling, approximate counting or problems coming from statistical physics. It can also be used as a tool for understanding the performance of some heuristic algorithms based on local modifications of solutions such as local search. Two-player games, which are also called combinatorial games, have been studied since the beginning of the twentieth century, with the works of Bouton which were continued with the development of a nice theory by Berlekamp, Conway, and Guy, unifying a certain number of classical games. We focus in this study on perfect strategies (i.e., players always choosing the best possible move), and try to characterize who wins under perfect play for various games. This approach is at the heart of what is called Combinatorial Game Theory. Most of the research in this area is focused on `math games' which are games invented by mathematicians, often with simple rules and almost never played by humans. The main motivation for studying these games comes from the nice, and sometimes unexpected connections these games have with other areas of mathematics, such as for example number theory, automatons, or dynamical systems. In this thesis, we study one- and two-player games. The questions we consider are often related to complexity. Complexity theory consists in trying to classify problems depending on their hardness. By hardness we mean to quantify how much time it would take for a computer to solve the problem. An other aspect of this research consists in investigating structural properties that these games can satisfy. Finally, one of our main tools is the notion of graph, and we use in particular methods and techniques from graph theory to answer the different questions we just mentioned
Gajewar, Amita Surendra. "Approximate edge 3-coloring of cubic graphs." Thesis, Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/29735.
Full textCommittee Chair: Prof. Richard Lipton; Committee Member: Prof. Dana Randall; Committee Member: Prof. H. Venkateswaran. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Bonamy, Marthe. "Global discharging methods for coloring problems in graphs." Thesis, Montpellier, 2015. http://www.theses.fr/2015MONTS261.
Full textThis thesis falls within graph theory, and deals more precisely with graph coloring problems. In this thesis, we use and develop the discharging method, a counting argument that makes strong advantage of the graph structure. This method is decisive in the proof of the Four Color Theorem. We first give an illustrated overview of the discharging tools that are used for this work: nice methods that we apply, and handy tricks that we develop. In the realm of list edge coloring, we most notably prove that the weak List Coloring Conjecture is true for planar graphs of maximum degree 8 (i.e. that they are edge 9-choosable), thus improving over a result of Borodin from 1990. We finally present our results about square coloring, where the goal is to color the vertices in such a way that two vertices that are adjacent or have a common neighbor receive different colors. We look in particular into sufficient conditions on the density of a graph (i.e. the maximum average degree of a subgraph) for its square to be colorable with few colo
Normann, Per. "Parallel graph coloring : Parallel graph coloring on multi-core CPUs." Thesis, Uppsala universitet, Avdelningen för beräkningsvetenskap, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-227656.
Full textAraujo, Julio. "Graph coloring and graph convexity." Nice, 2012. http://www.theses.fr/2012NICE4032.
Full textIn this thesis, we study several problems of Graph Theory concerning Graph Coloring and Graph Convexity. Most of the results contained here are related to the computational complexity of these problems for particular graph classes. In the first and main part of this thesis, we deal with Graph Coloring which is one of the most studied areas of Graph Theory. We first consider three graph coloring problems called Greedy Coloring, Weighted Coloring and Weighted Improper Coloring. Then, we deal with a decision problem, called Good Edge-Labelling, whose definition was motivated by the Wavelength Assignment problem in optical networks. The second part of this thesis is devoted to a graph optimization parameter called (geodetic) hull number. The definition of this parameter is motivated by an extension to graphs of the notions of convex sets and convex hulls in the Euclidean space. Finally, we present in the appendix other works developed during this thesis, one about Eulerian and Hamiltonian directed hypergraphs and the other concerning distributed storage systems
He, Weihua. "Cycles in graphs and arc colorings in digraphs." Thesis, Paris 11, 2014. http://www.theses.fr/2014PA112352.
Full textIn this thesis, we study four problems in graph theory, the Hamiltonian cycle problem in line graphs, the edge-fault-tolerant bipancyclicity of Cayley graphs generated by transposition trees, the vertex-distinguishing arc colorings in digraph- s and the acyclic arc coloring in digraphs. The first two problems are the classic problem on the cycles in graphs. And the other two arc coloring problems are related to the modern graph theory, in which we use some probabilistic methods. In particular,We first study the Hamiltonian cycle problem in line graphs and find the Hamiltonian cycles in some spanning subgraphs of line graphs SL(G). We prove that: if L(G) is Hamiltonian, then SL(G) is Hamiltonian. Due to this, we propose a conjecture, which is equivalent to some well-known conjectures. And we get two results about the edge-disjoint Hamiltonian cycles in line graphs.Then, we consider the edge-fault-tolerant bipancyclicity of Cayley graphs generated by transposition trees. And we prove that the Cayley graph generated by transposition tree is (n − 3)-edge-fault-tolerant bipancyclic if it is not a star graph.Later, we introduce the vertex-distinguishing arc coloring in digraphs. We study the relationship between the vertex-distinguishing edge coloring in undirected graphs and the vertex-distinguishing arc coloring in digraphs. And we get some results on the (semi-) vertex-distinguishing arc chromatic number for digraphs and also propose a conjecture about it. To verify the conjecture we study the vertex-distinguishing arc coloring for regular digraphs.Finally, we introduce the acyclic arc coloring in digraphs. We calculate the acyclic arc chromatic number for some digraph families and propose a conjecture on the acyclic arc chromatic number. Then we consider the digraphs with high girth by using the Lovász Local Lemma and we also consider the random regular digraphs. And the results of the digraphs with high girth and the random regular digraphs verify the conjecture
Modrzejewski, Remigiusz. "Distribution et Stockage de Contenus dans les Réseaux." Phd thesis, Université Nice Sophia Antipolis, 2013. http://tel.archives-ouvertes.fr/tel-00917032.
Full textLoeb, Sarah. "Extending List Colorings of Planar Graphs." Scholarship @ Claremont, 2011. http://scholarship.claremont.edu/hmc_theses/6.
Full textEsperet, Louis. "Distance-two colorings of graphs." Bordeaux 1, 2008. http://www.theses.fr/2008BOR13591.
Full textLabelle, François. "Graph embeddings and approximate graph coloring." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape3/PQDD_0031/MQ64386.pdf.
Full textMontgomery, Bruce Lee. "Dynamic coloring of graphs." Morgantown, W. Va. : [West Virginia University Libraries], 2001. http://etd.wvu.edu/templates/showETD.cfm?recnum=2109.
Full textTitle from document title page. Document formatted into pages; contains viii, 52 p. : ill. Vita. Includes abstract. Includes bibliographical references (p. 51).
Berke, Robert. "Colorings and transversals of graphs." Zürich : ETH, 2008. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=17797.
Full textHarney, Isaiah H. "Colorings of Hamming-Distance Graphs." UKnowledge, 2017. http://uknowledge.uky.edu/math_etds/49.
Full textYahiaoui, Said. "Algorithmes et applications pour la coloration et les alliances dans les graphes." Thesis, Lyon 1, 2013. http://www.theses.fr/2013LYO10274.
Full textThis thesis investigates the algorithmic aspects and applications of two graph problems, namely, colorings and alliances. In the first part, we focus on two variants of the proper vertex coloring, the Grundy coloring and the strict strong coloring. We start by the study of Grundy number for regular graphs. We give a sufficient condition for d-regular graphs with sufficiently large girth to have Grundy number equals d + 1. Then, using graph homomorphism, we obtain a necessary and sufficient condition for d-regular graphs to have Grundy number at least k. Moreover, we characterize cubic graphs (3-regular) for which the Grundy number is d + 1, and present a linear-time algorithm to determine the Grundy number of any arbitrary cubic graph. Subsequently, based on the strict strong coloring, we present an approach for the problem of matching labeled trees. Using this coloring, we propose a new algorithm to deterministically decompose a tree into small components. This leads to an efficient algorithm to measure an accurate distance between unrooted unordered labeled trees. The second part is devoted to the alliances in graphs. We first propose a linear-time self-stabilizing algorithm for the minimal global offensive alliance set problem, under the synchronous distributed scheduler. Then, we give the first self-stabilizing algorithm for the minimal global powerful alliance set problem in arbitrary graphs. Moreover, we show how this algorithm can be adapted to find the minimal global powerful k-alliance and the minimal weighted global powerful alliance sets. We prove that all these algorithms converge in polynomial-time under the unfair distributed scheduler. Finally, based on the structural properties of the offensive alliance, we propose a solution to decentralize the signaling protocol SIP. This enables SIP applications in mobile ad hoc networks
Sahili, Amine El. "Colorations et orientations des graphes." Lyon 1, 1996. http://www.theses.fr/1996LYO10141.
Full textMoura, Phablo Fernando Soares. "Graph colorings and digraph subdivisions." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/45/45134/tde-23052017-100619/.
Full textO problema de coloração de grafos é um problema clássico em teoria dos grafos cujo objetivo é particionar o conjunto de vértices em um número mínimo de conjuntos estáveis. Nesta tese apresentamos nossas contribuições sobre três problemas de coloração de grafos e um problema relacionado a uma antiga conjectura sobre subdivisão de digrafos. Primeiramente, abordamos o problema de recoloração convexa no qual é dado um grafo arbitrariamente colorido G e deseja-se encontrar uma recoloração de peso mínimo tal que cada classe de cor induza um subgrafo conexo de G. Mostramos resultados sobre inaproximabilidade, introduzimos uma formulação linear inteira que modela esse problema, e apresentamos alguns resultados computacionais usando uma abordagem de geração de colunas. O problema de k-upla coloração é uma generalização do problema clássico de coloração de vértices e consiste em cobrir o conjunto de vértices de um grafo com uma quantidade mínima de conjuntos estáveis de tal forma que cada vértice seja coberto por pelo menos k conjuntos estáveis (possivelmente idênticos). Apresentamos uma formulação linear inteira para esse problema e fazemos um estudo detalhado do politopo associado a essa formulação. O último problema de coloração estudado nesta tese é o problema de orientação própria. Ele consiste em orientar o conjunto de arestas de um dado grafo de tal forma que vértices adjacentes possuam graus de entrada distintos e o maior grau de entrada seja minimizado. Claramente, os graus de entrada induzem uma partição do conjunto de vértices em conjuntos estáveis, ou seja, induzem uma coloração (no sentido convencional) dos vértices. Nossas contribuições nesse problema são em complexidade computacional e limitantes superiores para grafos bipartidos. Finalmente, estudamos um problema relacionado a uma conjectura de Mader, dos anos oitenta, sobre subdivisão de digrafos. Esta conjectura afirma que, para cada digrafo acíclico H, existe um inteiro f(H) tal que todo digrafo com grau mínimo de saída pelo menos f(H) contém uma subdivisão de H como subdigrafo. Damos evidências para essa conjectura mostrando que ela é válida para classes particulares de digrafos acíclicos.
Mihalas, Stelian. "Graph dimension and related colorings /." The Ohio State University, 1999. http://rave.ohiolink.edu/etdc/view?acc_num=osu1488190109867877.
Full textJin, Yan. "Hybrid metaheuristic algorithms for sum coloring and bandwidth coloring." Thesis, Angers, 2015. http://www.theses.fr/2015ANGE0062/document.
Full textThe minimum sum coloring problem (MSCP) and the bandwidth coloring problem (BCP) are two important generalizations of the classical vertex coloring problem with numerous applications in diverse domains, including VLSI design, scheduling, resource allocation and frequency assignment in mobile networks, etc. Since the MSCP and BCP are NP-hard problems, heuristics and metaheuristics are practical solution methods to obtain high quality solutions in an acceptable computing time. This thesis is dedicated to developing effective hybrid metaheuristic algorithms for the MSCP and BCP. For the MSCP, we present two memetic algorithms which combine population-based evolutionary search and local search. An effective algorithm for maximum independent set is devised for generating initial solutions. For the BCP, we propose a learning-based hybrid search algorithm which follows a cooperative framework between an informed construction procedure and a local search heuristic. The proposed algorithms are evaluated on well-known benchmark instances and show highly competitive performances compared to the current state-of-the-art algorithms from the literature. Furthermore, the key issues of these algorithms are investigated and analyzed
Fowler, Thomas George. "Unique coloring of planar graphs." Diss., Georgia Institute of Technology, 1998. http://hdl.handle.net/1853/30358.
Full textSalavatipour, Mohammadreza. "On sum coloring of graphs." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape3/PQDD_0023/MQ50369.pdf.
Full textSengupta, Rik. "List coloring in general graphs." Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/112878.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 30-31).
In this thesis we explore some of the relatively new approaches to the problem of list-coloring graphs. This is a problem that has its roots in classical graph theory, but has developed an entire theory of its own, that uses tools from structural graph theory, probabilistic approaches, as well as heuristic and algorithmic approaches. This thesis details two approaches one can take to understand list-coloring and prove results for several classes of graphs; one of them is to use the idea of graph kernels, and the other is to look at list-edge-coloring. In this thesis we present the state-of-the-art research on these two problems. We begin by setting up definitions and preliminaries, and then go into each of these two topics in turn. Along the way we briefly mention some of the very new research on the topics, including some new approaches developed for the purpose of writing this thesis. We finish with a survey of some of the major open problems that still remain in the area.
by Rik Sengupta.
S.M.
Kurt, Oguz. "On The Coloring of Graphs." The Ohio State University, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=osu1262287401.
Full textSong, Zengmin. "Cycles and coloring in graphs." HKBU Institutional Repository, 2001. http://repository.hkbu.edu.hk/etd_ra/285.
Full textBazzaro, Fabrice. "Etiquetage de graphes : codage et coloration." Bordeaux 1, 2005. http://www.theses.fr/2005BOR12954.
Full textPoon, Hoifung. "Coloring clique hypergraphs." Morgantown, W. Va. : [West Virginia University Libraries], 2000. http://etd.wvu.edu/templates/showETD.cfm?recnum=1494.
Full textMcClain, Christopher. "Edge colorings of graphs and multigraphs." Columbus, Ohio : Ohio State University, 2008. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1211904033.
Full textCasselgren, Carl Johan. "On some graph coloring problems." Doctoral thesis, Umeå universitet, Institutionen för matematik och matematisk statistik, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-43389.
Full textBacak, Gökşen Ufuktepe Ünal. "Vertex Coloring of A Graph/." [s.l.] : [s.n.], 2004. http://library.iyte.edu.tr/tezler/master/matematik/T000416.pdf.
Full text