To see the other types of publications on this topic, follow the link: Colossal permittivity materials.

Journal articles on the topic 'Colossal permittivity materials'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Colossal permittivity materials.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Taylor, Ned T., Francis H. Davies, Shane G. Davies, Conor J. Price, and Steven P. Hepplestone. "Colossal Permittivity: The Fundamental Mechanism Behind Colossal Permittivity in Oxides (Adv. Mater. 51/2019)." Advanced Materials 31, no. 51 (December 2019): 1970359. http://dx.doi.org/10.1002/adma.201970359.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wang, Zhentao, Liang Zhang, Juan Liu, Zhi Jiang, Lei Zhang, Yongtao Jiu, Bin Tang, and Dong Xu. "Colossal Permittivity Characteristics and Origin of (Sr, Sb) Co-Doped TiO2 Ceramics." ECS Journal of Solid State Science and Technology 11, no. 9 (September 1, 2022): 093002. http://dx.doi.org/10.1149/2162-8777/ac8dc0.

Full text
Abstract:
With the continuous development of electronic technology, the application of dielectric materials is also becoming more and more abstractive. It is also a great challenge to find a new type of colossal permittivity material with high dielectric permittivity, lower dielectric loss and excellent temperature and frequency stability. In this work, the (Sr1/3Sb2/3) x Ti1−x O2 (SSTO) colossal permittivity ceramics for x = 0, 0.5%, 1.0%, 1.5%, 2.0%, 4.0% were prepared by conventional solid state reaction method. The crystal structure, microstructure, dielectric properties, varistor properties were analyzed, and the formation mechanism of colossal dielectric was revealed. When the doping amount is 2%, SSTO has the optimal dielectric performance with dielectric constant of approximately 2.2 × 104, dielectric loss of about 0.03 at 1 kHz. X-ray photoelectron spectroscopy (XPS) and Impedance spectra (IS) results showed that defect clusters and interface polarization are the main reasons for the improvement of dielectric properties of (Sr, Sb) co-doped TiO2 ceramics. Therefore, this work is of great significance for the development and application of TiO2-based new colossal dielectric materials.
APA, Harvard, Vancouver, ISO, and other styles
3

Cheng, Xiaojing, Zhenwei Li, and Jiagang Wu. "Colossal permittivity in ceramics of TiO2Co-doped with niobium and trivalent cation." Journal of Materials Chemistry A 3, no. 11 (2015): 5805–10. http://dx.doi.org/10.1039/c5ta00141b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Tse, Mei-Yan, Xianhua Wei, Chi-Man Wong, Long-Biao Huang, Kwok-ho Lam, Jiyan Dai, and Jianhua Hao. "Enhanced dielectric properties of colossal permittivity co-doped TiO2/polymer composite films." RSC Advances 8, no. 57 (2018): 32972–78. http://dx.doi.org/10.1039/c8ra07401a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hu, Wanbiao, Yun Liu, Ray L. Withers, Terry J. Frankcombe, Lasse Norén, Amanda Snashall, Melanie Kitchin, et al. "Electron-pinned defect-dipoles for high-performance colossal permittivity materials." Nature Materials 12, no. 9 (June 30, 2013): 821–26. http://dx.doi.org/10.1038/nmat3691.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Yang, Chao, Mei-Yan Tse, Xianhua Wei, and Jianhua Hao. "Colossal permittivity of (Mg + Nb) co-doped TiO2 ceramics with low dielectric loss." Journal of Materials Chemistry C 5, no. 21 (2017): 5170–75. http://dx.doi.org/10.1039/c7tc01020f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Taylor, Ned T., Francis H. Davies, Shane G. Davies, Conor J. Price, and Steven P. Hepplestone. "The Fundamental Mechanism Behind Colossal Permittivity in Oxides." Advanced Materials 31, no. 51 (October 21, 2019): 1904746. http://dx.doi.org/10.1002/adma.201904746.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Yan-Qing, Tan, Yan Meng, and Hao Yong-Mei. "Structure and colossal dielectric permittivity of Ca2TiCrO6ceramics." Journal of Physics D: Applied Physics 46, no. 1 (November 27, 2012): 015303. http://dx.doi.org/10.1088/0022-3727/46/1/015303.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zhang, Xiaohua, Jie Zhang, Yuanyuan Zhou, Zhenxing Yue, and Longtu Li. "Colossal permittivity and defect-dipoles contribution for Ho0.02Sr0.97TiO3 ceramics." Journal of Alloys and Compounds 767 (October 2018): 424–31. http://dx.doi.org/10.1016/j.jallcom.2018.07.118.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

De Almeida-Didry, Sonia, Cécile Autret, Christophe Honstettre, Anthony Lucas, François Pacreau, and François Gervais. "Capacitance scaling of grain boundaries with colossal permittivity of CaCu3Ti4O12-based materials." Solid State Sciences 42 (April 2015): 25–29. http://dx.doi.org/10.1016/j.solidstatesciences.2015.03.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Guillemet-Fritsch, S., Z. Valdez-Nava, C. Tenailleau, T. Lebey, B. Durand, and J. Y. Chane-Ching. "Colossal Permittivity in Ultrafine Grain Size BaTiO3–x and Ba0.95La0.05TiO3–x Materials." Advanced Materials 20, no. 3 (February 4, 2008): 551–55. http://dx.doi.org/10.1002/adma.200700245.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Fei, Y. M., Q. Q. Wang, J. Sun, S. T. Wang, T. Y. Li, J. Wang, and C. C. Wang. "Colossal permittivity in (Li + Nb) co-doped Fe2O3 ceramics." Current Applied Physics 20, no. 7 (July 2020): 866–70. http://dx.doi.org/10.1016/j.cap.2020.04.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Kotb, Hicham Mahfoz, Adil Alshoaibi, Javed Mazher, Nagih M. Shaalan, and Mohamad M. Ahmad. "Colossal Permittivity Characteristics of (Nb, Si) Co-Doped TiO2 Ceramics." Materials 15, no. 13 (July 5, 2022): 4701. http://dx.doi.org/10.3390/ma15134701.

Full text
Abstract:
(Nb5+, Si4+) co-doped TiO2 (NSTO) ceramics with the compositions (Nb0.5Si0.5)xTi1−xO2, x = 0, 0.025, 0.050 and 0.1 were prepared with a solid-state reaction technique. X-ray diffraction (XRD) patterns and Raman spectra confirmed that the tetragonal rutile is the main phase in all the ceramics. Additionally, XRD revealed the presence of a secondary phase of SiO2 in the co-doped ceramics. Impedance spectroscopy analysis showed two contributions, which correspond to the responses of grain and grain-boundary. All the (Nb, Si) co-doped TiO2 showed improved dielectric performance in the high frequency range (>103 Hz). The sample (Nb0.5Si0.5)0.025Ti0.975O2 showed the best dielectric performance in terms of higher relative permittivity (5.5 × 104) and lower dielectric loss (0.18), at 10 kHz and 300 K, compared to pure TiO2 (1.1 × 103, 0.34). The colossal permittivity of NSTO ceramics is attributed to an internal barrier layer capacitance (IBLC) effect, formed by insulating grain-boundaries and semiconductor grains in the ceramics.
APA, Harvard, Vancouver, ISO, and other styles
14

Peng, Zhanhui, Jitong Wang, Fudong Zhang, Shudong Xu, Xiaoping Lei, Pengfei Liang, Lingling Wei, Di Wu, Xiaolian Chao, and Zupei Yang. "High energy storage and colossal permittivity CdCu3Ti4O12 oxide ceramics." Ceramics International 48, no. 3 (February 2022): 4255–60. http://dx.doi.org/10.1016/j.ceramint.2021.10.217.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Li, Wenlong, Zhifu Liu, Faqiang Zhang, Qingbo Sun, Yun Liu, and Yongxiang Li. "Colossal permittivity of (Li, Nb) co-doped TiO2 ceramics." Ceramics International 45, no. 9 (June 2019): 11920–26. http://dx.doi.org/10.1016/j.ceramint.2019.03.080.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Song, Yuechan, Peng Liu, Xiaogang Zhao, Baochun Guo, and Xiulei Cui. "Dielectric properties of (Bi0.5Nb0.5) Ti1-O2 ceramics with colossal permittivity." Journal of Alloys and Compounds 722 (October 2017): 676–82. http://dx.doi.org/10.1016/j.jallcom.2017.06.177.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Wang, Wenbo, Lingxia Li, Te Lu, Ning Zhang, and Weijia Luo. "Multifarious polarizations in high-performance colossal permittivity titanium dioxide ceramics." Journal of Alloys and Compounds 806 (October 2019): 89–98. http://dx.doi.org/10.1016/j.jallcom.2019.07.278.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Ren, Pengrong, Jiaojiao He, Xin Wang, Mingqiang Sun, Hu Zhang, and Gaoyang Zhao. "Colossal permittivity in niobium doped BaTiO3 ceramics annealed in N2." Scripta Materialia 146 (March 2018): 110–14. http://dx.doi.org/10.1016/j.scriptamat.2017.11.026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Thongyong, Nateeporn, Pornjuk Srepusharawoot, Wattana Tuichai, Narong Chanlek, Vittaya Amornkitbamrung, and Prasit Thongbai. "Electronic structure of colossal permittivity (Mg1/3Nb2/3)0.05Ti0.95O2 ceramics." Ceramics International 44 (November 2018): S145—S147. http://dx.doi.org/10.1016/j.ceramint.2018.08.129.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Qiu, Rong, Yuanyuan Ni, Jun Li, Zhengwei Xiong, Zhen Yang, Leiming Fang, Yuanhua Xia, et al. "Ni nanocrystals tuning low-frequency colossal permittivity of epitaxial BaTiO3 matrix." Journal of Alloys and Compounds 801 (September 2019): 460–64. http://dx.doi.org/10.1016/j.jallcom.2019.06.154.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Zhang, Kai, Lingxia Li, Menglong Wang, Weijia Luo, and Wenbo Wang. "The self-compensation mechanism in barium titanate ceramics with colossal permittivity." Journal of Alloys and Compounds 851 (January 2021): 156856. http://dx.doi.org/10.1016/j.jallcom.2020.156856.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Wang, Xinghui, Chengguo Wang, Zhongyang Wang, Yanxiang Wang, Ruijiao Lu, and Jianjie Qin. "Colossal permittivity of carbon nanotubes grafted carbon fiber-reinforced epoxy composites." Materials Letters 211 (January 2018): 273–76. http://dx.doi.org/10.1016/j.matlet.2017.10.026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Konchus, Boris, Oleg Yanchevskiy, Anatolii Belous, and Oleg V'yunov. "SYNTHESIS, PROPERTIES CaCu3Ti4O12 WITH COLOSSAL VALUE OF THE DIELECTRIC PERMITTIVITY." Ukrainian Chemistry Journal 85, no. 6 (July 31, 2019): 77–86. http://dx.doi.org/10.33609/0041-6045.85.6.2019.77-86.

Full text
Abstract:
Ceramic materials CaCu3Ti4O12 were synthesized by solid-phase reactions technique. The sequence of chemical reactions during the synthesis has been determined. Phase CaCu3Ti4O12 appears at 700 °C. At 800 – 900 °C, the intermediate phases CaTiO3, CuTiO3 and Ca3Ti2O7 are formed. Calcium and copper titanates, CaTiO3 and CuTiO3 interact to form CaCu3Ti4O12. Ca3Ti2O7 phase with pyrochlore structure is stable and prevent the formation of final product, CaCu3Ti4O12. A method for the synthesis of CaCu3Ti4O12 by solid-state reactions technique from previously synthesized CaTiO3 (at 1050 °С) and CuTiO3 (at 950 °С), taken in a molar ratio of 1:3, is proposed. This method give the possibility to avoid the appearance of an undesirable Ca3Ti2O7 phase with the pyrochlore structure and to reduce the content of free copper oxide to value less than 0.5 mol.%. In addition, instead of the copper oxide, which is usually used in solid-state reaction technique, the chemically more active form of the copper-containing reagent, CuCO3∙Cu(OН)2 were used. This reduce the synthesis time of the intermediate CuTiO3. The crystal structure, chemical composition, microstructure and electrophysical parameters of ceramics have been analyzed. The synthesized ceramics CaCu3Ti4O12 is cubic body-centered (space group Im-3) with the unit cell parameter a = 7.3932 Å, which agreed with the literature data. The calculated tolerance factor of CaCu3Ti4O12, t = 0.7626 is not sufficient for a stabilization of peroskite ABO3 structure; that is why the crystal structure of this compound contains 3 different cation sites: dodecahedral (Ca2+), octahedral (Ti4+), tetrahedral (Cu2+). At 1150 °C, the density of CaCu3Ti4O12 ceramic sintered has a maximum (90% of the theoretical density). At infra-low frequencies (10-3 Hz), the dielectric constant (e) reaches record values of 107, however, dielectric losses (tg d) up to 10 were observed. In the frequency range 10-3 - 105 Hz the value of ɛ exceeds 104; and at 105 Hz minimum of the dielectric losses (tg δ ~ 0.1) is observed. A comparative analysis of methods for the synthesis of CaCu3Ti4O12 shows that the synthesis conditions of material of the same chemical composition can be crucial in creating high dense ceramic with uniform grains, high dielectric constant and low dielectric losses in a wide frequency range.
APA, Harvard, Vancouver, ISO, and other styles
24

Dupuis, Sébastien, Soumitra Sulekar, Ji Hyun Kim, Hyuksu Han, Pascal Dufour, Christophe Tenailleau, Juan Claudio Nino, and Sophie Guillemet-Fritsch. "Colossal permittivity and low losses in Ba1–Sr TiO3– reduced nanoceramics." Journal of the European Ceramic Society 36, no. 3 (February 2016): 567–75. http://dx.doi.org/10.1016/j.jeurceramsoc.2015.10.017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Han, HyukSu, Calvin Davis, and Juan C. Nino. "Variable Range Hopping Conduction in BaTiO3 Ceramics Exhibiting Colossal Permittivity." Journal of Physical Chemistry C 118, no. 17 (April 21, 2014): 9137–42. http://dx.doi.org/10.1021/jp502314r.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Liu, Jianmei, Lilit Jacob, Julien Langley, Zhenxiao Fu, Xiuhua Cao, Shiwo Ta, Hua Chen, et al. "Microwave Dielectric Materials with Defect-Dipole Clusters Induced Colossal Permittivity and Ultra-low Loss." ACS Applied Electronic Materials 3, no. 11 (November 4, 2021): 5015–22. http://dx.doi.org/10.1021/acsaelm.1c00236.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Bourguiba, M., Z. Raddaoui, S. El Kossi, Thamraa Al-shahrani, A. Dhahri, M. Chafra, J. Dhahri, and H. Belmabrouk. "Colossal permittivity, impedance analysis, and optical properties in La0.67Ba0.25Ca0.08Mn0.90Ti0.10O3 manganite." Journal of Materials Science: Materials in Electronics 32, no. 5 (February 8, 2021): 6520–37. http://dx.doi.org/10.1007/s10854-021-05370-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Xu, Zhenpeng, Lingxia Li, Wenbo Wang, and Te Lu. "Colossal permittivity and ultralow dielectric loss in (Nd0.5Ta0.5)xTi1-xO2 ceramics." Ceramics International 45, no. 14 (October 2019): 17318–24. http://dx.doi.org/10.1016/j.ceramint.2019.05.290.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Wang, Jian, Dandan Gao, Huan Liu, Jiyang Xie, and Wanbiao Hu. "Effect of cation arrangement on polaron formation and colossal permittivity in NiNb2O6." Journal of Materials Chemistry C 8, no. 45 (2020): 16107–12. http://dx.doi.org/10.1039/d0tc03698f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Huang, Dong, Wen-Long Li, Zhi-Fu Liu, Yong-Xiang Li, Cuong Ton-That, Jiaqi Cheng, Wallace C. H. Choy, and Francis Chi-Chung Ling. "Electron-pinned defect dipoles in (Li, Al) co-doped ZnO ceramics with colossal dielectric permittivity." Journal of Materials Chemistry A 8, no. 9 (2020): 4764–74. http://dx.doi.org/10.1039/c9ta12808e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Peng, Zhanhui, Jitong Wang, Pengfei Liang, Jie Zhu, Xiaobin Zhou, Xiaolian Chao, and Zupei Yang. "A new perovskite-related ceramic with colossal permittivity and low dielectric loss." Journal of the European Ceramic Society 40, no. 12 (September 2020): 4010–15. http://dx.doi.org/10.1016/j.jeurceramsoc.2020.04.030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Vasconcelos, S. J. T., M. A. S. Silva, R. G. M. de Oliveira, M. H. Bezerra Junior, H. D. de Andrade, I. S. Queiroz Junior, C. Singh, and A. S. B. Sombra. "High thermal stability and colossal permittivity of novel solid solution LaFeO3/CaTiO3." Materials Chemistry and Physics 257 (January 2021): 123239. http://dx.doi.org/10.1016/j.matchemphys.2020.123239.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Wang, Juanjuan, Xiaolian Chao, Guangzhao Li, Lajun Feng, Kang Zhao, and Tiantian Ning. "Dielectric Properties of Tungsten Copper Barium Ceramic as Promising Colossal-Permittivity Material." Journal of Electronic Materials 46, no. 8 (April 20, 2017): 4697–700. http://dx.doi.org/10.1007/s11664-017-5504-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Qin, Mengjie, Feng Gao, Jakub Cizek, Shengjie Yang, Xiaoli Fan, Lili Zhao, Jie Xu, Gaogao Dong, Mike Reece, and Haixue Yan. "Point defect structure of La-doped SrTiO3 ceramics with colossal permittivity." Acta Materialia 164 (February 2019): 76–89. http://dx.doi.org/10.1016/j.actamat.2018.10.025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Zhao, Jingchang, Miao Chen, and Qiyuan Tan. "Embedding nanostructure and colossal permittivity of TiO2-covered CCTO perovskite materials by a hydrothermal route." Journal of Alloys and Compounds 885 (December 2021): 160948. http://dx.doi.org/10.1016/j.jallcom.2021.160948.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Yang, Chao, Xianhua Wei, and Jianhua Hao. "Disappearance and recovery of colossal permittivity in (Nb+Mn) co-doped TiO2." Ceramics International 44, no. 11 (August 2018): 12395–400. http://dx.doi.org/10.1016/j.ceramint.2018.04.028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Zhong, Bingjie, Zhongmin Long, Chao Yang, Yun Li, and Xianhua Wei. "Colossal dielectric permittivity in co-doping SrTiO3 ceramics by Nb and Mg." Ceramics International 46, no. 12 (August 2020): 20565–69. http://dx.doi.org/10.1016/j.ceramint.2020.05.174.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Guo, Baochun, Peng Liu, Xiulei Cui, and Yuechan Song. "Colossal permittivity and dielectric relaxations in Tl + Nb co-doped TiO2 ceramics." Ceramics International 44, no. 11 (August 2018): 12137–43. http://dx.doi.org/10.1016/j.ceramint.2018.03.255.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Dang, N. T., D. P. Kozlenko, N. Tran, B. W. Lee, T. L. Phan, R. P. Madhogaria, V. Kalappattil, et al. "Structural, magnetic and electronic properties of Ti-doped BaFeO3- exhibiting colossal dielectric permittivity." Journal of Alloys and Compounds 808 (November 2019): 151760. http://dx.doi.org/10.1016/j.jallcom.2019.151760.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Chung, D. D. L., and Xiang Xi. "A review of the colossal permittivity of electronic conductors, specifically metals and carbons." Materials Research Bulletin 148 (April 2022): 111654. http://dx.doi.org/10.1016/j.materresbull.2021.111654.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Peng, Zhanhui, Pengfei Liang, Xing Wang, Hui Peng, Xiaofang Chen, Zupei Yang, and Xiaolian Chao. "Fabrication and characterization of CdCu3Ti4O12 ceramics with colossal permittivity and low dielectric loss." Materials Letters 210 (January 2018): 301–4. http://dx.doi.org/10.1016/j.matlet.2017.09.041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

De Almeida-Didry, Sonia, Cécile Autret, Anthony Lucas, Christophe Honstettre, François Pacreau, and François Gervais. "Leading role of grain boundaries in colossal permittivity of doped and undoped CCTO." Journal of the European Ceramic Society 34, no. 15 (December 2014): 3649–54. http://dx.doi.org/10.1016/j.jeurceramsoc.2014.06.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Tkach, Alexander, and Olena Okhay. "Comment on “Point defect structure of La-doped SrTiO3 ceramics with colossal permittivity”." Scripta Materialia 190 (January 2021): 38–39. http://dx.doi.org/10.1016/j.scriptamat.2020.08.032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Youssef, A. M., and S. M. Yakout. "Colossal permittivity, electrical conductivity and ferromagnetic properties of pure TiO2: Mono and binary doping." Materialia 21 (March 2022): 101277. http://dx.doi.org/10.1016/j.mtla.2021.101277.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Zhao, Chunlin, and Jiagang Wu. "Effects of Secondary Phases on the High-Performance Colossal Permittivity in Titanium Dioxide Ceramics." ACS Applied Materials & Interfaces 10, no. 4 (January 22, 2018): 3680–88. http://dx.doi.org/10.1021/acsami.7b18356.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Zheng, Hui, Wenjian Weng, Gaorong Han, and Piyi Du. "Colossal Permittivity and Variable-Range-Hopping Conduction of Polarons in Ni0.5Zn0.5Fe2O4 Ceramic." Journal of Physical Chemistry C 117, no. 25 (June 18, 2013): 12966–72. http://dx.doi.org/10.1021/jp402320b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Wang, Lei, Xudong Liu, Xiaoguo Bi, Zhixin Ma, Jinsheng Li, and Xudong Sun. "Origin of Colossal Dielectric Permittivity in (Nb + Ga) Co-Doped TiO2 Single Crystals." Crystal Growth & Design 21, no. 9 (August 3, 2021): 5283–91. http://dx.doi.org/10.1021/acs.cgd.1c00611.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Mamin, R. F., T. Egami, Z. Marton, and S. A. Migachev. "Giant Dielectric Permittivity and Colossal Magnetocapacitance Effect in Complex Manganites with High Conductivity." Ferroelectrics 348, no. 1 (March 20, 2007): 7–12. http://dx.doi.org/10.1080/00150190701195973.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

De Almeida-Didry, Sonia, Cécile Autret, Anthony Lucas, François Pacreau, and François Gervais. "Comparison of colossal permittivity of CaCu3Ti4O12 with commercial grain boundary barrier layer capacitor." Solid State Sciences 96 (October 2019): 105943. http://dx.doi.org/10.1016/j.solidstatesciences.2019.105943.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Cui, Xiulei, Baochun Guo, Peng Liu, and Yuechan Song. "Low dielectric loss induced by annealing in (La0.5Nb0.5)0.005Ti0.995O2 colossal permittivity ceramics." Journal of Materials Science: Materials in Electronics 31, no. 4 (January 6, 2020): 2895–903. http://dx.doi.org/10.1007/s10854-019-02834-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography