Dissertations / Theses on the topic 'Combinatorial identities'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 24 dissertations / theses for your research on the topic 'Combinatorial identities.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Reiland, Elizabeth. "Combinatorial Interpretations of Fibonomial Identities." Scholarship @ Claremont, 2011. http://scholarship.claremont.edu/hmc_theses/10.
Full textPreston, Greg. "Combinatorial Explanations of Known Harmonic Identities." Scholarship @ Claremont, 2001. https://scholarship.claremont.edu/hmc_theses/134.
Full textDohmen, Klaus. "Improved Bonferroni inequalities via abstract tubes : inequalities and identities of inclusion-exclusion type /." Berlin [u.a.] : Springer, 2003. http://www.loc.gov/catdir/enhancements/fy0818/2003066695-d.html.
Full textHeberle, Curtis. "A Combinatorial Approach to $r$-Fibonacci Numbers." Scholarship @ Claremont, 2012. https://scholarship.claremont.edu/hmc_theses/34.
Full textRyoo, Ji Hoon. "Identities for the Multiple Polylogarithm Using the Shuffle Operation." Fogler Library, University of Maine, 2001. http://www.library.umaine.edu/theses/pdf/RyooJH2001.pdf.
Full textSilva, Robson da. "Provas bijetivas atraves de nova representação matricial para partições." [s.n.], 2009. http://repositorio.unicamp.br/jspui/handle/REPOSIP/307496.
Full textTese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica
Made available in DSpace on 2018-08-14T00:20:04Z (GMT). No. of bitstreams: 1 Silva_Robsonda_D.pdf: 897208 bytes, checksum: 5d17d33a20271484f3f7853e008443db (MD5) Previous issue date: 2009
Resumo: No presente trabalho, apresentamos provas bijetivas para algumas identidades. A principal ferramenta utilizada _e a representação para partições como matrizes de duas linhas introduzida em [9] e [10]. Também apresentamos algumas conseqüências desta representação e a extendemos a outros casos. Uma prova bijetiva para uma identidade envolvendo os Números Triangulares e apresentada ao final.
Abstract: In this work, we show bijective proofs for some identities. The main tool is the two-line matrix representation for partitions introduced in [9] and [10]. We also present some consequences of this representation and we also extend it to other cases. A bijective proof for an identity involving the Triangular Numbers is given at the end.
Doutorado
Matematica Discreta
Doutor em Matemática Aplicada
Ribeiro, Andreia Cristina. "Aspectos combinatorios de identidades do tipo Rogers-Ramanujan." [s.n.], 2006. http://repositorio.unicamp.br/jspui/handle/REPOSIP/307502.
Full textTese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica
Made available in DSpace on 2018-08-07T19:25:43Z (GMT). No. of bitstreams: 1 Ribeiro_AndreiaCristina_D.pdf: 576297 bytes, checksum: 445154b7e26e801e909854c976d31c45 (MD5) Previous issue date: 2006
Resumo: Neste trabalho são estudadas varias das identidades do tipo Rogers-Ramanujan dadas por Slater. Em 1985, Andrews, introduziram um método geral para se estender para duas variáveis identidades desse tipo de modo a se obter, como casos especiais, certas importantes funções de Ramanujan. Santos, em 1991, forneceu conjecturas para varias das famílias de polinômios que surgem nestas extensões tendo provado algumas delas. Sills, em sua tese de doutorado, em 2002, implementou procedimentos que permitem a demonstra¸c¿ao das conjecturas dadas por Santos. No presente trabalho, de forma diferente daquela dada por Andrews, s¿ao introduzidos parâmetros nas somas que aparecem nestas identidades, de modo a se obter, em cada caso, funções geradoras que fornecem interpretações combinatórias para partições onde ¿números¿s¿ao vistos como ¿vetores¿e que fornecem, para especiais valores dos parâmetros, interpretações novas para muitas das identidades de Slater
Abstract: In this work many of the identities of the Rogers-Ramanujan type given by Slater are considered. In 1985, Andrews, introduced a general method in other to extend to two variables identities of this type in order to get, as special cases, some important functions of Ramanujan. Santos, in 1991, gave conjectures for many of the family of polynomials that appears in those extensions providing the proofs for some of them. Sills, in his Ph.D. thesis in 2002 ,has implemented procedures allowing the proofs of the conjectures given by Santos. In the present work, in a form different from the one given by Andrews, parameters are introduced in the sums of the identities in such a way to get, in each case, generating functions giving combinatorial interpretations for partitions where ¿numbers¿are represented as ¿vectors¿and that can give, as special cases, combinatorial interpretations for many of the identities given by Slater
Doutorado
Matematica Aplicada
Doutor em Matemática Aplicada
Alegri, Mateus. "Interpretações combinatórias para identidades envolvendo sobrepartições e partições planas." [s.n.], 2010. http://repositorio.unicamp.br/jspui/handle/REPOSIP/307516.
Full textTese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatisitca e Computação Cientifica
Made available in DSpace on 2018-08-16T01:34:00Z (GMT). No. of bitstreams: 1 Alegri_Mateus_D.pdf: 32503931 bytes, checksum: fb4329080c2c9c80896a52e4442b1b86 (MD5) Previous issue date: 2010
Resumo: Neste trabalho apresentaremos novas provas bijetivas para identidades relacionadas a partições em partes pares e distintas, generalizações das identidades de Rogers-Ramanujan entre outras. Porém o objetivo principal será trabalhar com sobrepartições de inteiros, dando a estes uma nova interpretação em termos de matrizes de três linhas. Exibiremos provas bijetivas para algumas classes de sobrepartições, apresentaremos um novo resultado que basicamente é identificar uma sobrepartição com partições planas; sendo este o principal resultado deste trabalho. No final apresentaremos algumas aplicações da representação de partição via matrizes de duas linhas: fórmulas fechadas para algumas classes destas partições.
Abstract: In this work, we present new bijective proofs for identities related to partitions into distinct even parts, generalizations of Rogers-Ramanujan identities, among others. The basic aim is to work with overpartitions of integers, give a new interpretation in terms of three-line matrices. We will show bijective proofs for some classes of overpartitions. We will present a new result that is how to identify an overpartition (with some particularities) with plane partitions; which is one of the most important results. At the end we will present some applications of the representation of a partition as a two-line array: closed formulaes for some classes of these partitions.
Doutorado
Análise Combinatória
Doutor em Matemática Aplicada
Cruz, Carla Maria. "Numerical and combinatorial applications of generalized Appell polynomials." Doctoral thesis, Universidade de Aveiro, 2014. http://hdl.handle.net/10773/13962.
Full textThis thesis studies properties and applications of different generalized Appell polynomials in the framework of Clifford analysis. As an example of 3D-quasi-conformal mappings realized by generalized Appell polynomials, an analogue of the complex Joukowski transformation of order two is introduced. The consideration of a Pascal n-simplex with hypercomplex entries allows stressing the combinatorial relevance of hypercomplex Appell polynomials. The concept of totally regular variables and its relation to generalized Appell polynomials leads to the construction of new bases for the space of homogeneous holomorphic polynomials whose elements are all isomorphic to the integer powers of the complex variable. For this reason, such polynomials are called pseudo-complex powers (PCP). Different variants of them are subject of a detailed investigation. Special attention is paid to the numerical aspects of PCP. An efficient algorithm based on complex arithmetic is proposed for their implementation. In this context a brief survey on numerical methods for inverting Vandermonde matrices is presented and a modified algorithm is proposed which illustrates advantages of a special type of PCP. Finally, combinatorial applications of generalized Appell polynomials are emphasized. The explicit expression of the coefficients of a particular type of Appell polynomials and their relation to a Pascal simplex with hypercomplex entries are derived. The comparison of two types of 3D Appell polynomials leads to the detection of new trigonometric summation formulas and combinatorial identities of Riordan-Sofo type characterized by their expression in terms of central binomial coefficients.
Esta tese estuda propriedades e aplicações de diferentes polinómios de Appell generalizados no contexto da análise de Clifford. Exemplificando uma transformação realizada por polinómios de Appell generalizados, é introduzida uma transformação análoga à transformação de Joukowski complexa de ordem dois. A análise de um n- simplex de Pascal com entradas hipercomplexas permite sublinhar a relevância combinatória de polinómios hipercomplexos de Appell. O conceito de variáveis totalmente regulares e a sua relação com polinómios de Appell generalizados conduz à construção de novas bases para o espaço dos polinómios homogéneos holomorfos cujos elementos são todos isomorfos às potências inteiras da variável complexa. Por este motivo, tais polinómios são chamados de potências pseudo-complexas (PCP). Diferentes variantes de PCP são objeto de uma investigação detalhada. É dada especial atenção aos aspectos numéricos de PCP. Um algoritmo eficiente baseado em aritmética complexa é proposto para a sua implementação. Neste contexto, é apresentado um breve resumo de métodos numéricos para inverter matrizes de Vandermonde e é proposto um algoritmo modificado para ilustrar as vantagens de um tipo especial de PCP. Finalmente, são enfatizadas aplicações combinatórias de polinómios de Appell generalizados. A expressão explícita dos coeficientes de um tipo particular de polinómios de Appell e a sua relação com um simplex de Pascal com entradas hipercomplexas são obtidas. A comparação de dois tipos de polinómios de Appell tridimensionais leva à deteção de novas fórmulas envolvendo somas trigonométricas e de identidades combinatórias do tipo de Riordan – Sofo, caracterizadas pela sua expressão em termos de coeficientes binomiais centrais.
Shibalovich, Paul. "Fundamental theorem of algebra." CSUSB ScholarWorks, 2002. https://scholarworks.lib.csusb.edu/etd-project/2203.
Full textGioev, Dimitri. "Generalizations of Szego Limit Theorem : Higher Order Terms and Discontinuous Symbols." Doctoral thesis, KTH, Mathematics, 2001. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3123.
Full textKonvalinka, Matjaž. "Combinatorics of determinantal identities." Thesis, Massachusetts Institute of Technology, 2008. http://hdl.handle.net/1721.1/43790.
Full textThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Includes bibliographical references (p. 125-129).
In this thesis, we apply combinatorial means for proving and generalizing classical determinantal identities. In Chapter 1, we present some historical background and discuss the algebraic framework we employ throughout the thesis. In Chapter 2, we construct a fundamental bijection between certain monomials that proves crucial for most of the results that follow. Chapter 3 studies the first, and possibly the best-known, determinantal identity, the matrix inverse formula, both in the commutative case and in some non-commutative settings (Cartier-Foata variables, right-quantum variables, and their weighted generalizations). We give linear-algebraic and (new) bijective proofs; the latter also give an extension of the Jacobi ratio theorem. Chapter 4 is dedicated to the celebrated MacMahon master theorem. We present numerous generalizations and applications. In Chapter 5, we study another important result, Sylvester's determinantal identity. We not only generalize it to non-commutative cases, we also find a surprising extension that also generalizes the master theorem. Chapter 6 has a slightly different, representation theory flavor; it involves representations of the symmetric group, and also Hecke algebras and their characters. We extend a result on immanants due to Goulden and Jackson to a quantum setting, and reprove certain combinatorial interpretations of the characters of Hecke algebras due to Ram and Remmel.
by Matjaž Konvalinka.
Ph.D.
Spreafico, Elen Viviani Pereira 1986. "Novas identidades envolvendo os números de Fibonacci, Lucas e Jacobsthal via ladrilhamentos." [s.n.], 2014. http://repositorio.unicamp.br/jspui/handle/REPOSIP/307509.
Full textTese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica
Made available in DSpace on 2018-08-26T02:14:38Z (GMT). No. of bitstreams: 1 Spreafico_ElenVivianiPereira_D.pdf: 1192138 bytes, checksum: 2b12cd351b94a0f2f7ec24fc172305c9 (MD5) Previous issue date: 2014
Resumo: Neste trabalho, colaboramos com provas combinatórias que utilizam a contagem e a q-contagem de elementos em conjuntos de ladrilhamentos com restrições. Na primeira parte do trabalho utilizamos os ladrilhamentos para demonstrar algumas identidades da teoria das partições, dentre elas, o Teorema dos Números Triangulares e o Teorema q-análogo da Série q-Binomial. Na segunda parte do trabalho apresentamos interpretações combinatórias, via ladrilhamento, para algumas identidades envolvendo os números de Jacobsthal e os números generalizados de Jacobsthal . Na terceira parte do trabalho são dadas novas identidades envolvendo os números q-análogos de Jacobsthal e encontramos generalizações para essas novas identidades. Por fim, definimos duas novas sequências: números de Fibonacci generalizados e números de Lucas generalizados e, utilizando ladrilhamentos, estabelecemos e demonstramos novas identidades envolvendo esses números
Abstract: In this work we present combinatorial proofs by making use of tilings. In the first part we use tilings to prove some identities on Partitions Theory, including Triangular Numbers' Theorem and q-analogue of q-Binomial Theorem. In the second part we present combinatorial interpretations, using tilings, for some identities involving Jacobsthal numbers and generalized Jacobsthal numbers. Next we find new identities involving an q-analogue of Jacobsthal numbers and generalizations for these new identities. Finally, we define two new sequences: generalized Fibonacci numbers and generalized Lucas numbers, and using tilings, we prove new identities involving these numbers
Doutorado
Matematica Aplicada
Doutora em Matemática Aplicada
Mucelin, Cláudio. "Demonstrações bijetivas em partições." [s.n.], 2011. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306031.
Full textDissertação (mestrado profissional) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica
Made available in DSpace on 2018-08-17T16:44:00Z (GMT). No. of bitstreams: 1 Mucelin_Claudio_M.pdf: 744549 bytes, checksum: 062211ac0a3abf9bcf171fe9881dcafa (MD5) Previous issue date: 2011
Resumo: Este trabalho apresenta alguns resultados sobre partições de números inteiros e a importância deles na história da Matemática e da Teoria dos Números. Encontrar demonstrações bijetivas em partições não é nada fácil. Mas, depois de encontradas, tornam-se uma maneira agradável e fácil de entender e provar algumas Identidades de Partições. Este trabalho pretende ser didático e de fácil entendimento para futuras pesquisas de estudantes que se interessem pelo assunto. Ele traz definições básicas e importantes sobre partições, os Gráficos de Ferrers, demonstrações de resultados interessantes como a Bijeção de Bressoud e o Teorema Pentagonal de Euler. Destaca também a importância das funções geradoras e alguns resultados devidos a Sylvester, Dyson, Fine, Schur e Rogers-Ramanujan
Abstract: This work presents some results about partitions of integers numbers and their importance in the history of Mathematics and in the Theory of the Numbers. To find bijective demonstrations in partitions it is not easy. But, after finding them, to understand and to prove some Identities of Partitions becomes agreeable and easy. This work intends to be didatic and of easy understanding for future researches made by students interested in this subject. It contains basic and important definitions about partitions, the Ferrers' Graphics, demonstrations of interesting results as the Bressond's Bijection and the Euler's Pentagonal Theorem. It also details the importance of the generating functions and some results due to Sylvester, Dyson, Fine, Schur and Rogers-Ramanujan
Mestrado
Teoria dos Numeros
Mestre em Matemática
Afsharijoo, Pooneh. "Looking for a new version of Gordon's identities : from algebraic geometry to combinatorics through partitions." Thesis, Sorbonne Paris Cité, 2019. https://theses.md.univ-paris-diderot.fr/AFSHARIJOO_Pooneh_2_complete_20190510.pdf.
Full textA partition of a positive integer n is a decreasing sequence of positive integers such that their sum is equal to n. The integers which appear in this sequence are called the parts of this partition. My thesis studies the partitions of integers and the identities between them. A partition identity is an equality between the number of partitions of an integer n satisfying a certain condition A and the number of partitions of n satisfying another condition B. They play an important role in many areas: number theory, combinatorics, Lie theory, particle physics and statistical mechanics. One of these identities is as follows: Theorem. (The first Rogers-Ramanujan identity) The number of partitions of a positive integer n with no equal or consecutive parts is equal to the number of partitions of n into parts 1 or 4(mod.5). In this work, we study partition identities using the relation between the combinatorics of partitions and the combinatorics of graded algebras associated to an important object of algebraic geometry: arc spaces. Given a field k of characteristic zero and polynomials f1,…,fm in k[x1,…, xn], the associated arc space is the space corresponds to the ideal I of S:=k[x1j,…, xnj|j>-1], generated by the coefficients of some developments associated to the above polynomials and the variables xij. For focussed arcs, which is when we take xi0 = 0 for i=1,…,n, the Hilbert-Poincaré series of the graded algebra S\I is closely related to partitions of integers satisfying conditions depending on I. In the case where f(x) = x^r in k[x], the ideal I of k[x1, x2,… ] is a differential ideal for the derivation D(xi) = xi+1, in the sens that DI is included in I. In fact it is generated by x1^r and all its iterated derivatives. We show that when r = 2 the computation of a Gröbner basis of I with respect to the weighted lexicographical monomial order is related with an identity involving the partitions that appear in the first Rogers-Ramanujan identity. We then prove that a Gröbner basis of this ideal is not differentially finite in contrary with the case of the weighted reverse lexicographical order. We give a prove from this point of view of Gordon’s identities which is a family of important partitions identities. Using differential ideals we state a conjecture which could add a new member to Gordon’s identities. we prove then this conjecture for a special case. At the end, we give a simple and direct proof of a theorem of Nguyen Duc Tam about the Gröbner basis of the differential ideal [x1y1]; we then obtain identities involving partitions with 2 colors
Bennett, Robert. "Fibonomial Tilings and Other Up-Down Tilings." Scholarship @ Claremont, 2016. https://scholarship.claremont.edu/hmc_theses/84.
Full textHuang, Yen-Jung, and 黃嬿蓉. "Combinatorial Identities from Lagrange's Interpolation Polynomial." Thesis, 2015. http://ndltd.ncl.edu.tw/handle/30250069414157573515.
Full text國立交通大學
應用數學系所
103
For a given real polynomial g(x) and infinite sequence a=(a_0,a_1,...) of distinct real numbers, we define the sequence L_a(g(x),n). We find that L_a(x^k,n) appears in coefficient of a term of some Lagrange's interpolation polynomial, and is also a generalization of the Stirling number of the second kind. Further properties of L_a(g(x),n) related to identities and combinatorial structure are given.
Chung, Chan-Liang, and 鍾展良. "On Generalized Combinatorial Identities among Multiple Zeta Values." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/40844420096722366223.
Full text國立中正大學
數學研究所
101
A multiple zeta value is defined for a string s=(s_1, s_2,..., s_q) of positive integers with s_q≧2 by ζ(s_1, s_2, ...,s_q)= Σ_{1≦n_1
Yen, Miau-Hua, and 顏妙樺. "Combinatorial Identities of Convolution Type through Shuffle Products." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/26112638583487325303.
Full text國立中正大學
應用數學研究所
102
For an $r$-tuple of positive integers $\alpha_1, \alpha_2, \ldots , \alpha_r$ with $\alpha_r \geq 2$ ,the multiple zeta value or $r$-fold Euler sum $\zeta(\boldsymbol{\alpha})$ is defined as \[ \zeta(\boldsymbol{\alpha}) = \sum_{1 \leq n_1 < n_2 < \cdots
Cook, William J. "Affine lie algebras, vertex operator algebras and combinatorial identities." 2005. http://www.lib.ncsu.edu/theses/available/etd-03232005-234709/unrestricted/etd.pdf.
Full textTsai, Shing-Jing, and 蔡幸靜. "Combinatorial Identities from the Generating Functions of Two Binomial Coefficients." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/7uh3gp.
Full text國立中正大學
數學研究所
102
In recent years, it is interesting to know more about the multiple zeta values. In this thesis, we shall take a look at some histories about the multiple zeta values in Section 1. In Section 2, we focus on the Drinfel’d integral and its applications. Drinfel’d integral is a very useful representation for a multiple zeta value, so that we can express a multiple zeta value as an integral of a string of differential forms of two simple types instead of summation forms. In particular, the number of variables in the integral can be reduced. Also, there are many ways to express a multiple zeta value of height one. Nevertheless, each of the expressional forms has its own specific viewpoint. In Section 3, we concentrate our attention on the combinatorial identities obtained from shuffle relations. By counting the number of the multiple zeta values, we also obtain new combinatorial identities. Especially interesting are those integrals obtained from shuffle products of two sets of multiple zeta values; the resulting combinatorial identities are very interesting but hard to prove as usual. In Section 4, we shall discuss some specific combinatorial identities from the generating functions of two binomial coefficients. More interestingly, we found that if we focus on the same multiple zeta value ζ(j+β−i+2) and ζ(α−j+i+2) (for integers α,β,i,j with 0 ≤ j ≤ α and 0 ≤ i ≤ β), but consider two different integral expressions, then we get two combinatorial identities from the generating functions of two binomial coefficients among the two multiple zeta values, which are our Main Theorems A and B.
Campbell, Geoffrey Bruce. "Combinatorial identities in number theory related to q-series and arithmetical functions." Phd thesis, 1997. http://hdl.handle.net/1885/145356.
Full textHong, Yi-Hui, and 洪宜慧. "Some Combinatorial Identities Produced from Shuffle Products of Two Sums of Multiple Zeta Values." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/38125669081032208248.
Full text國立中正大學
數學研究所
101
Abstract A multiple zeta value of depth r and weight j with a multi-index = (1; 2; : : : ; r) of positive integers with r 2. After the shuffle process product of a particular multiple zeta value of weight w1 and the sum of the multiple zeta value of weight w2. It will produce some combinatorial identities of convolution type.
Nyirenda, Darlison. "Analytic and combinatorial explorations of partitions associated with the Rogers-Ramanujan identities and partitions with initial repetitions." Thesis, 2016. http://hdl.handle.net/10539/21040.
Full textIn this thesis, various partition functions with respect to Rogers-Ramanujan identities and George Andrews' partitions with initial repetitions are studied. Agarwal and Goyal gave a three-way partition theoretic interpretation of the Rogers- Ramanujan identities. We generalise their result and establish certain connections with some work of Connor. Further combinatorial consequences and related partition identities are presented. Furthermore, we re ne one of the theorems of George Andrews on partitions with initial repetitions. In the same pursuit, we construct a non-diagram version of the Keith's bijection that not only proves the theorem, but also provides a clear proof of the re nement. Various directions in the spirit of partitions with initial repetitions are discussed and results enumerated. In one case, an identity of the Euler-Pentagonal type is presented and its analytic proof given.
M T 2016