Academic literature on the topic 'Combinatorial pulsed laser deposition'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Combinatorial pulsed laser deposition.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Combinatorial pulsed laser deposition"

1

Axente, Emanuel, Livia Elena Sima, and Felix Sima. "Biomimetic Coatings Obtained by Combinatorial Laser Technologies." Coatings 10, no. 5 (2020): 463. http://dx.doi.org/10.3390/coatings10050463.

Full text
Abstract:
The modification of implant devices with biocompatible coatings has become necessary as a consequence of premature loosening of prosthesis. This is caused mainly by chronic inflammation or allergies that are triggered by implant wear, production of abrasion particles, and/or release of metallic ions from the implantable device surface. Specific to the implant tissue destination, it could require coatings with specific features in order to provide optimal osseointegration. Pulsed laser deposition (PLD) became a well-known physical vapor deposition technology that has been successfully applied t
APA, Harvard, Vancouver, ISO, and other styles
2

García-García, A., J. A. Pardo, E. Navarro, et al. "Combinatorial pulsed laser deposition of Fe/MgO granular multilayers." Applied Physics A 107, no. 4 (2012): 871–76. http://dx.doi.org/10.1007/s00339-012-6808-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Aimon, Nicolas M., Dong Hun Kim, Hong Kyoon Choi, and C. A. Ross. "Deposition of epitaxial BiFeO3/CoFe2O4nanocomposites on (001) SrTiO3by combinatorial pulsed laser deposition." Applied Physics Letters 100, no. 9 (2012): 092901. http://dx.doi.org/10.1063/1.3690957.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Chen, Yan, Shuchi Ojha, Nikolai Tsvetkov, Dong Hun Kim, Bilge Yildiz, and C. A. Ross. "Spinel/perovskite cobaltite nanocomposites synthesized by combinatorial pulsed laser deposition." CrystEngComm 18, no. 40 (2016): 7745–52. http://dx.doi.org/10.1039/c6ce01445c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wang, Qun Jiao, and Min Xu. "Combinatorial Synthesis and Evaluation on Thermoelectric Films." Materials Science Forum 687 (June 2011): 591–95. http://dx.doi.org/10.4028/www.scientific.net/msf.687.591.

Full text
Abstract:
Combinatorial technology is a powerful tool for new material exploration. Some new combinatorial technologies, such as combinatorial laser molecular beam epitaxy (CLMBE) and combinatorial pulsed laser deposition (CPLD), were introduced in the paper. La1-xCexVO3 (0≤x≤1) composition-spread films were fabricated successfully by CPLD, while their thermoelectric properties and structures were evaluated by the multi-channel thermoelectric measurement system and concurrent X-ray analysis respectively. Combinatorial technologies are proving to be an efficient, low-cost tool in synthesis and characteri
APA, Harvard, Vancouver, ISO, and other styles
6

Chang, K. S., M. A. Aronova, and I. Takeuchi. "Combinatorial pulsed laser deposition using a compact high-throughout thin-film deposition flange." Applied Surface Science 223, no. 1-3 (2004): 224–28. http://dx.doi.org/10.1016/s0169-4332(03)00926-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Yamaguchi, Jun, Kenji Itaka, Tomohiro Hayakawa, et al. "Combinatorial Pulsed Laser Deposition of Pentacene Films for Field Effect Devices." Macromolecular Rapid Communications 25, no. 1 (2004): 334–38. http://dx.doi.org/10.1002/marc.200300238.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Schenck, Peter K., Nabil D. Bassim, Makoto Otani, Hiroyuki Oguchi, and Martin L. Green. "Design and spectroscopic reflectometry characterization of pulsed laser deposition combinatorial libraries." Applied Surface Science 254, no. 3 (2007): 781–84. http://dx.doi.org/10.1016/j.apsusc.2007.05.086.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Stuart, Bryan W., and George E. Stan. "Physical Vapour Deposited Biomedical Coatings." Coatings 11, no. 6 (2021): 619. http://dx.doi.org/10.3390/coatings11060619.

Full text
Abstract:
This Special Issue was devoted to developments made in Physical Vapour Deposited (PVD) biomedical coatings for various healthcare applications. The scrutinized PVD methods were Radio-Frequency Magnetron Sputtering (RF-MS), Cathodic Arc Evaporation, Pulsed Electron Deposition and its variants, Pulsed Laser Deposition, and Matrix Assisted Pulsed Laser Evaporation (MAPLE), due to their great promise especially in the dentistry and orthopaedics. These methods have yet to gain traction for industrialization and large-scale application in biomedicine. A new generation of implant coatings can be made
APA, Harvard, Vancouver, ISO, and other styles
10

Kadhim, Ali, Paul Harrison, Jake Meeth, Alaa Al-Mebir, Guanggen Zeng, and Judy Wu. "Development of Combinatorial Pulsed Laser Deposition for Expedited Device Optimization in CdTe/CdS Thin-Film Solar Cells." International Journal of Optics 2016 (2016): 1–7. http://dx.doi.org/10.1155/2016/1696848.

Full text
Abstract:
A combinatorial pulsed laser deposition system was developed by integrating a computer controlled scanning sample stage in order to rapidly screen processing conditions relevant to CdTe/CdS thin-film solar cells. Using this system, the thickness of the CdTe absorber layer is varied across a single sample from 1.5 μm to 0.75 μm. The effects of thickness on CdTe grain morphology, crystal orientation, and cell efficiency were investigated with respect to different postprocessing conditions. It is shown that the thinner CdTe layer of 0.75 μm obtained the best power conversion efficiency up to 5.3%
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Combinatorial pulsed laser deposition"

1

Snyder, Ryan Daniel. "Combinatorial Analysis of Thermoelectric Materials using Pulsed Laser Deposition." University of Dayton / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1460037906.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Popescu, Andrei. "Laser deposition and characterization of transparent conductive, bioactive, hydrophobic and antiseptic nanostructures." Thesis, Aix-Marseille, 2012. http://www.theses.fr/2012AIXM4016.

Full text
Abstract:
Les applications présentées dans cette thèse valorisent de diverses manières le principe d'ablation laser, c'est à dire l'arrachement de la matière d'une surface solide suite à l'irradiation avec un faisceau laser. Le plasma généré par irradiation laser impulsionnel a été utilisé pour le dépôt de couches minces ou de nanoparticules et pour l'analyse compositionnelle des couches d'épaisseur nanométrique. Nous avons synthétisé par dépôt laser combinatoire des librairies compositionnelles d'un oxyde mixte transparent d'In et Zn. En utilisant le plasma d'ablation pour le diagnostic compositionnel,
APA, Harvard, Vancouver, ISO, and other styles
3

Mavlonov, Abdurashid. "Doping Efficiency and Limits in Wurtzite (Mg,Zn)O Alloys." Doctoral thesis, Universitätsbibliothek Leipzig, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-214372.

Full text
Abstract:
In this thesis, the structural, optical, and electrical properties of wurtzite MgxZn1-xO:Al and MgxZn1-xO:Ga thin films have been investigated in dependence on Mg and dopant concentration. Among the transparent conductive oxides (TCOs), ZnO based compounds have gained renewed interest as a transparent electrode for large scale applications such as defroster windows, at panel displays, touch screens, and thin film solar cells due to low material and processing cost, non-toxicity, and suitable physical properties. In general, these applications require transparent electrodes with lowest possible
APA, Harvard, Vancouver, ISO, and other styles
4

Darby, Mark Stuart Bennett. "Femtosecond pulsed laser deposition." Thesis, University of Southampton, 2009. https://eprints.soton.ac.uk/65796/.

Full text
Abstract:
This thesis investigates two variations of the conventional pulsed laser deposition (PLD) technique. The first technique is femtosecond PLD, whereby the laser used to ablate the target has a significantly higher peak intensity and shorter pulse duration as compared to conventional nanosecond lasers more commonly used for PLD. Experiments have been conducted on the growth of Nd:Gd is presented. Experimental results will show the composition and lattice parameter of a film can be controlled by changing the relative laser fluences on the two targets. Films have been grown with enough extra Ga to
APA, Harvard, Vancouver, ISO, and other styles
5

Rajendiran, Sudha. "Plasma enhanced pulsed laser deposition." Thesis, University of York, 2017. http://etheses.whiterose.ac.uk/20437/.

Full text
Abstract:
This thesis introduces a novel deposition technique, Plasma-Enhanced Pulsed Laser Deposition (PE-PLD) that attempts to overcome limitations in traditional PLD by combining it with a background oxygen RF plasma instead of a neutral gas. Advantages of this novel technique for the deposition of metal-oxide films include, the use of simple, pure metal targets instead of metal-oxide composite targets and the lack of the necessity for substrate heating and post-annealing to obtain high-quality films. The feasibility of this method was studied both numerically and experimentally. Numerical simulation
APA, Harvard, Vancouver, ISO, and other styles
6

Johnson, Shevon. "Pulsed Laser Deposition of Hydroxyapatite Thin Films." Thesis, Georgia Institute of Technology, 2005. http://hdl.handle.net/1853/6839.

Full text
Abstract:
Pulsed laser deposition (PLD) was used to deposit hydroxyapatite (HA) thin films on various substrates, including silicon (100) and titanium (Ti-6Al-4V) alloy. Thin films of amorphous HA were deposited at room temperature and then annealed over a range of temperatures. The microstructure and composition of the films were determined using scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDS), and X-ray diffraction (XRD). The HA films were found to achieve total crystallinity at 350㮠The mechanical properties of the films were studied by means of nanoindentation and scrat
APA, Harvard, Vancouver, ISO, and other styles
7

Stone, Lee Alexander. "Pulsed laser deposition of rare earth compounds." Thesis, University of Hull, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.273606.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Britson, Jason Curtis. "Pulsed laser deposition of AlMgB₁₄ thin films." [Ames, Iowa : Iowa State University], 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Garza, Ezra. "Pulsed Laser Deposition of Thin Film Heterostructures." ScholarWorks@UNO, 2011. http://scholarworks.uno.edu/td/459.

Full text
Abstract:
Thin films of Strontium Ruthenate have been grown on Strontium Titanate and Lanthanum Aluminate (100) substrates by pulsed laser deposition. X-ray diffraction results show that the films grown on the Strontium Titanate are amorphous and polycrystalline on the Lanthanum Aluminate. Resistances versus temperature measurements show that the films exhibit semiconducting characteristics. In addition to the growth of Strontium Ruthenate thin films, multilayer heterostructures of Terfenol-D thin films on polycrystalline Lead Titanate thin films were grown by pulsed laser deposition. By using a novel e
APA, Harvard, Vancouver, ISO, and other styles
10

Nagar, Sandeep. "Multifunctional magnetic materials prepared by Pulsed Laser Deposition." Doctoral thesis, KTH, Teknisk materialfysik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-94852.

Full text
Abstract:
Pulsed LASER deposition (PLD) is widely recognized as excellent deposition technique owing to stoichiometric transfer of target material, easy preparation and high quality. Thin films from few nanometers to micrometer regime can be fabricated with equal ease. Although a batch process is not suitable for mass scale industrial production, PLD is a versatile technique, efficient and convenient for high quality basic research.  This thesis illustrates the use of PLD technique to study the emerging trends in tailoring multifunctional magnetic thin films both from basic nanoscience and device develo
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Combinatorial pulsed laser deposition"

1

Eason, Robert. Pulsed Laser Deposition of Thin Films. John Wiley & Sons, Ltd., 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Eason, Robert, ed. Pulsed Laser Deposition of Thin Films. John Wiley & Sons, Inc., 2006. http://dx.doi.org/10.1002/0470052120.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Recker, Stephanie J. Pulsed laser deposition of YBa2Cu3O7-[delta]/PrBa2Cu3O7-[delta]. Brock University, Dept. of Physics, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Jackson, Brian Douglas. Pulsed-laser deposition of silicon dioxide thin-films using the molecular fluorine laser. National Library of Canada = Bibliothèque nationale du Canada, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Pulsed laser deposition of thin films: Applications-led growth of functional materials. Wiley-Interscience, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Yazdanian, Mohammad Mehdi. Preparation of SrMgx-Ru1-xO3 thin films by pulsed laser deposition. Brock University, Dept. of Physics, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kopecký, Dušan. Deposition of polypyrrole thin films by advanced method: Matrix assisted pulsed laser evaporation. Nova Science Publishers, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Mai chong ji guang chen ji dong li xue yuan li. Ke xue chu ban she, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Mai chong ji guang chen ji dong li xue yu bo li ji bo mo: Pulsed laser deposition dynamics and thin film deposited onto glass. Hu bei ke xue ji shu chu ban she, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Landázuri, Henry Riascos. Síntesis de películas delgadas de nitruro de carbono por ablación láser. Universidad Tecnológica de Pereira, Facultad de Ciencias Básicas, Departamento de Física, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Combinatorial pulsed laser deposition"

1

Takeuchi, Ichiro. "Combinatorial Pulsed Laser Deposition." In Pulsed Laser Deposition of Thin Films. John Wiley & Sons, Inc., 2006. http://dx.doi.org/10.1002/9780470052129.ch7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Winter, Patrick M., Gregory M. Lanza, Samuel A. Wickline, et al. "Pulsed-Laser Deposition (PLD)." In Encyclopedia of Nanotechnology. Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-90-481-9751-4_100689.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Leedy, Kevin D. "Pulsed Laser Deposition 1." In Gallium Oxide. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-37153-1_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

von Wenckstern, Holger, Daniel Splith, and Marius Grundmann. "Pulsed Laser Deposition 2." In Gallium Oxide. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-37153-1_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Krebs, Hans-Ulrich. "Pulsed Laser Deposition of Metals." In Pulsed Laser Deposition of Thin Films. John Wiley & Sons, Inc., 2006. http://dx.doi.org/10.1002/9780470052129.ch16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mihailescu, I. N., and E. György. "Pulsed Laser Deposition: An Overview." In Springer Series in OPTICAL SCIENCES. Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-540-48886-6_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ristoscu, Carmen, and Ion N. Mihailescu. "Biomimetic Coatings by Pulsed Laser Deposition." In Laser Technology in Biomimetics. Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-41341-4_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Boyd, Ian W. "Thin Film Growth by Pulsed Laser Deposition." In Laser in der Technik / Laser in Engineering. Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-662-08251-5_80.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Jordan, R., D. Cole, J. G. Lunney, K. Mackay, and D. Givord. "Pulsed Laser Ablation of Copper." In Laser Processing: Surface Treatment and Film Deposition. Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-0197-1_43.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Donley, M. S., J. S. Zabinski, V. J. Dyhouse, P. J. John, P. T. Murray, and N. T. McDevitt. "Pulsed laser deposition of tribological materials." In Laser Ablation Mechanisms and Applications. Springer New York, 1991. http://dx.doi.org/10.1007/bfb0048381.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Combinatorial pulsed laser deposition"

1

Craciun, Valentin, Doina Craciun, Ion N. Mihailescu, et al. "Combinatorial pulsed laser deposition of thin films." In High-Power Laser Ablation 2008, edited by Claude R. Phipps. SPIE, 2008. http://dx.doi.org/10.1117/12.782589.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zhao, Zhanxiang, Gin Jose, Mehrdad Irannejad, et al. "Er3+-doped glass-polymer composite thin films fabricated using combinatorial pulsed laser deposition." In 12th European Quantum Electronics Conference CLEO EUROPE/EQEC. IEEE, 2011. http://dx.doi.org/10.1109/cleoe.2011.5942854.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Szoerenyi, Tamas, Zoltan Kantor, and Zsolt Toth. "Molten targets in pulsed laser deposition." In ALT '97 International Conference on Laser Surface Processing, edited by Vladimir I. Pustovoy. SPIE, 1998. http://dx.doi.org/10.1117/12.308595.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Pedarnig, Johannes D., I. Vrejoiu, M. Peruzzi, M. P. Delamare, and Dieter Bauerle. "Pulsed laser deposition of advanced materials." In SPIE Proceedings, edited by Heinz P. Weber, Vitali I. Konov, and Thomas Graf. SPIE, 2003. http://dx.doi.org/10.1117/12.543664.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gorbunoff, Andre. "The cross-beam pulsed laser deposition." In Lasers and Applications in Science and Engineering, edited by Tatsuo Okada, Craig B. Arnold, Michel Meunier, et al. SPIE, 2006. http://dx.doi.org/10.1117/12.657108.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zherikhin, Alexander N. "Pulsed laser deposition of thin films." In 10th International School on Quantum Electronics: Lasers--Physics and Applications, edited by Peter A. Atanasov and Dimitar V. Stoyanov. SPIE, 1999. http://dx.doi.org/10.1117/12.347662.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Marcu, Aurelian, Constantin Grigoriu, Weihua Jiang, and Kiyoshi Yatsui. "Plume reflection in pulsed laser deposition." In International Conference on: Advanced Laser Technologies (ALT'01), edited by Dan C. Dumitras, Maria Dinescu, and Vitali I. Konov. SPIE, 2002. http://dx.doi.org/10.1117/12.478638.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Jelinek, Miroslav, V. Olsan, and V. Trtik. "Pulsed laser deposition of multilayered structures." In Advanced Laser Technologies: International Symposium, edited by Vladimir I. Pustovoy and Miroslav Jelinek. SPIE, 1994. http://dx.doi.org/10.1117/12.195892.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kaczmarek, Slawomir M. "Pulsed laser deposition: today and tomorrow." In Laser Technology V: Applications in Materials Sciences and Engineering. SPIE, 1997. http://dx.doi.org/10.1117/12.287828.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lynds, L., J. Cosgrove, Q. Li, et al. "Pulsed-laser deposition of magnetic alloys." In Laser ablation: mechanisms and applications—II. AIP, 1993. http://dx.doi.org/10.1063/1.44859.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Combinatorial pulsed laser deposition"

1

Laube, Samuel J., and Jeffery J. Heyob. Magnetron Sputtered Pulsed Laser Deposition Scale Up. Defense Technical Information Center, 2003. http://dx.doi.org/10.21236/ada422887.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Rubin, M., S. J. Wen, T. Richardson, J. Kerr, K. von Rottkay, and J. Slack. Electrochromic lithium nickel oxide by pulsed laser deposition and sputtering. Office of Scientific and Technical Information (OSTI), 1996. http://dx.doi.org/10.2172/446407.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Fernandez, Felix E. Pulsed Laser Deposition of Thin Film Material for Nonlinear Waveguides. Defense Technical Information Center, 1994. http://dx.doi.org/10.21236/ada290789.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Britson, Jason Curtis. Pulsed laser deposition of AlMgB14 thin films. Office of Scientific and Technical Information (OSTI), 2008. http://dx.doi.org/10.2172/964388.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Peter Pronko. Isotopically Enriched Films and Nanostructures by Ultrafast Pulsed Laser Deposition. Office of Scientific and Technical Information (OSTI), 2004. http://dx.doi.org/10.2172/835030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Siegal, M. P., D. R. Tallant, J. C. Barbour, P. N. Provencio, L. J. Martinez-Miranda, and N. J. DiNardo. Characterization of amorphous carbon films grown by pulsed-laser deposition. Office of Scientific and Technical Information (OSTI), 1998. http://dx.doi.org/10.2172/658461.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kolagani, R., and S. Friedrich. Heteroepitaxial Growth of NSMO on Silicon by Pulsed Laser Deposition. Office of Scientific and Technical Information (OSTI), 2008. http://dx.doi.org/10.2172/945832.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hamblen, David G., David B. Fenner, Peter A. Rosenthal, Joseph Cosgrove, and Pang-Jen Kung. Epitaxial Growth of High Quality SiC of Pulsed Laser Deposition. Defense Technical Information Center, 1995. http://dx.doi.org/10.21236/ada360082.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Norton, D. P., B. C. Chakoumakos, D. H. Lowndes, and J. D. Budai. Formation of artificially-layered thin-film compounds using pulsed-laser deposition. Office of Scientific and Technical Information (OSTI), 1995. http://dx.doi.org/10.2172/102249.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Cook, L. P., P. K. Schenck, C. K. Chiang, M. D. Vaudinl, and W. Wong-Ng. Ferroelectric thin films prepared by pulsed laser deposition processing and characterization. National Institute of Standards and Technology, 1992. http://dx.doi.org/10.6028/nist.ir.4844.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!