To see the other types of publications on this topic, follow the link: Combinatorics – Graph theory – Graph theory.

Dissertations / Theses on the topic 'Combinatorics – Graph theory – Graph theory'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Combinatorics – Graph theory – Graph theory.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Narayanan, Bhargav. "Problems in Ramsey theory, probabilistic combinatorics and extremal graph theory." Thesis, University of Cambridge, 2015. https://www.repository.cam.ac.uk/handle/1810/252850.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Krohne, Edward. "Continuous Combinatorics of a Lattice Graph in the Cantor Space." Thesis, University of North Texas, 2016. https://digital.library.unt.edu/ark:/67531/metadc849680/.

Full text
Abstract:
We present a novel theorem of Borel Combinatorics that sheds light on the types of continuous functions that can be defined on the Cantor space. We specifically consider the part X=F(2ᴳ) from the Cantor space, where the group G is the additive group of integer pairs ℤ². That is, X is the set of aperiodic {0,1} labelings of the two-dimensional infinite lattice graph. We give X the Bernoulli shift action, and this action induces a graph on X in which each connected component is again a two-dimensional lattice graph. It is folklore that no continuous (indeed, Borel) function provides a two-coloring of the graph on X, despite the fact that any finite subgraph of X is bipartite. Our main result offers a much more complete analysis of continuous functions on this space. We construct a countable collection of finite graphs, each consisting of twelve "tiles", such that for any property P (such as "two-coloring") that is locally recognizable in the proper sense, a continuous function with property P exists on X if and only if a function with a corresponding property P' exists on one of the graphs in the collection. We present the theorem, and give several applications.
APA, Harvard, Vancouver, ISO, and other styles
3

Lin, Matthew. "Graph Cohomology." Scholarship @ Claremont, 2016. https://scholarship.claremont.edu/hmc_theses/82.

Full text
Abstract:
What is the cohomology of a graph? Cohomology is a topological invariant and encodes such information as genus and euler characteristic. Graphs are combinatorial objects which may not a priori admit a natural and isomorphism invariant cohomology ring. In this project, given any finite graph G, we constructively define a cohomology ring H*(G) of G. Our method uses graph associahedra and toric varieties. Given a graph, there is a canonically associated convex polytope, called the graph associahedron, constructed from G. In turn, a convex polytope uniquely determines a toric variety. We synthesize these results, and describe the cohomology of the associated variety directly in terms of the graph G itself.
APA, Harvard, Vancouver, ISO, and other styles
4

Weller, Kerstin B. "Connectivity and related properties for graph classes." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:667a139e-6d2c-4f67-8487-04c3a0136226.

Full text
Abstract:
There has been much recent interest in random graphs sampled uniformly from the set of (labelled) graphs on n vertices in a suitably structured class A. An important and well-studied example of such a suitable structure is bridge-addability, introduced in 2005 by McDiarmid et al. in the course of studying random planar graphs. A class A is bridge-addable when the following holds: if we take any graph G in A and any pair u,v of vertices that are in different components in G, then the graph G′ obtained by adding the edge uv to G is also in A. It was shown that for a random graph sampled from a bridge-addable class, the probability that it is connected is always bounded away from 0, and the number of components is bounded above by a Poisson law. What happens if ’bridge-addable’ is replaced by something weaker? In this thesis, this question is explored in several different directions. After an introductory chapter and a chapter on generating function methods presenting standard techniques as well as some new technical results needed later, we look at minor-closed, labelled classes of graphs. The excluded minors are always assumed to be connected, which is equivalent to the class A being decomposable - a graph is in A if and only if every component of the graph is in A. When A is minor-closed, decomposable and bridge-addable various properties are known (McDiarmid 2010), generalizing results for planar graphs. A minor-closed class is decomposable and bridge-addable if and only if all excluded minors are 2-connected. Chapter 3 presents a series of examples where the excluded minors are not 2-connected, analysed using generating functions as well as techniques from graph theory. This is a step towards a classification of connectivity behaviour for minor-closed classes of graphs. In contrast to the bridge-addable case, different types of behaviours are observed. Chapter 4 deals with a new, more general vari- ant of bridge-addability related to edge-expander graphs. We will see that as long as we are allowed to introduce ’sufficiently many’ edges between components, the number of components of a random graph can still be bounded above by a Pois- son law. In this context, random forests in Kn,n are studied in detail. Chapter 5 takes a different approach, and studies the class of labelled forests where some vertices belong to a specified stable set. A weighting parameter y for the vertices belonging to the stable set is introduced, and a graph is sampled with probability proportional to y*s where s is the size of its stable set. The behaviour of this class is studied for y tending to ∞. Chapters 6 concerns random graphs sampled from general decomposable classes. We investigate the minimum size of a component, in both the labelled and the unlabelled case.
APA, Harvard, Vancouver, ISO, and other styles
5

Richer, Duncan Christopher. "Graph theory and combinatorial games." Thesis, University of Cambridge, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.621916.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Krzywkowski, Marcin Piotr. "Hat problem on a graph." Thesis, University of Exeter, 2012. http://hdl.handle.net/10036/4019.

Full text
Abstract:
The topic of this thesis is the hat problem. In this problem, a team of n players enters a room, and a blue or red hat is randomly placed on the head of each player. Every player can see the hats of all of the other players but not his own. Then each player must simultaneously guess the color of his own hat or pass. The team wins if at least one player guesses his hat color correctly and no one guesses his hat color wrong, otherwise the team loses. The aim is to maximize the probability of winning. This thesis is based on publications, which form the second chapter. In the first chapter we give an overview of the published results. In Section 1.1 we introduce to the hat problem and the hat problem on a graph, where vertices correspond to players, and a player can see the adjacent players. To the hat problem on a graph we devote the next few sections. First, we give some fundamental theorems about the problem. Then we solve the hat problem on trees, cycles, and unicyclic graphs. Next we consider the hat problem on graphs with a universal vertex. We also investigate the problem on graphs with a neighborhood-dominated vertex. In addition, we consider the hat problem on disconnected graphs. Next we investigate the problem on graphs such that the only known information are degrees of vertices. We also present Nordhaus-Gaddum type inequalities for the hat problem on a graph. In Section 1.6 we investigate the hat problem on directed graphs. The topic of Section 1.7 is the generalized hat problem with q >= 2 colors. A modified hat problem is considered in Section 1.8. In this problem there are n >= 3 players and two colors. The players do not have to guess their hat colors simultaneously and we modify the way of making a guess. We give an optimal strategy for this problem which guarantees the win. Applications of the hat problem and its connections to different areas of science are presented in Section 1.9. We also give there a comprehensive list of variations of the hat problem considered in the literature.
APA, Harvard, Vancouver, ISO, and other styles
7

Ferra, Gomes de Almeida Girão António José. "Extremal and structural problems of graphs." Thesis, University of Cambridge, 2019. https://www.repository.cam.ac.uk/handle/1810/285427.

Full text
Abstract:
In this dissertation, we are interested in studying several parameters of graphs and understanding their extreme values. We begin in Chapter~$2$ with a question on edge colouring. When can a partial proper edge colouring of a graph of maximum degree $\Delta$ be extended to a proper colouring of the entire graph using an `optimal' set of colours? Albertson and Moore conjectured this is always possible provided no two precoloured edges are within distance $2$. The main result of Chapter~$2$ comes close to proving this conjecture. Moreover, in Chapter~$3$, we completely answer the previous question for the class of planar graphs. Next, in Chapter~$4$, we investigate some Ramsey theoretical problems. We determine exactly what minimum degree a graph $G$ must have to guarantee that, for any two-colouring of $E(G)$, we can partition $V(G)$ into two parts where each part induces a connected monochromatic subgraph. This completely resolves a conjecture of Bal and Debiasio. We also prove a `covering' version of this result. Finally, we study another variant of these problems which deals with coverings of a graph by monochromatic components of distinct colours. The following saturation problem proposed by Barrus, Ferrara, Vandenbussche, and Wenger is considered in Chapter~$5$. Given a graph $H$ and a set of colours $\{1,2,\ldots,t\}$ (for some integer $t\geq |E(H)|$), we define $sat_{t}(n, R(H))$ to be the minimum number of $t$-coloured edges in a graph on $n$ vertices which does not contain a rainbow copy of $H$ but the addition of any non-edge in any colour from $\{1,2,\ldots,t\}$ creates such a copy. We prove several results concerning these extremal numbers. In particular, we determine the correct order of $sat_{t}(n, R(H))$, as a function of $n$, for every connected graph $H$ of minimum degree greater than $1$ and for every integer $t\geq e(H)$. In Chapter~$6$, we consider the following question: under what conditions does a Hamiltonian graph on $n$ vertices possess a second cycle of length at least $n-o(n)$? We prove that the `weak' assumption of a minimum degree greater or equal to $3$ guarantees the existence of such a long cycle. We solve two problems related to majority colouring in Chapter~$7$. This topic was recently studied by Kreutzer, Oum, Seymour, van der Zypen and Wood. They raised the problem of determining, for a natural number $k$, the smallest positive integer $m = m(k)$ such that every digraph can be coloured with $m$ colours, where each vertex has the same colour as at most a proportion of $\frac{1}{k}$ of its out-neighbours. Our main theorem states that $m(k) \in \{2k-1, 2k\}$. We study the following problem, raised by Caro and Yuster, in Chapter~$8$. Does every graph $G$ contain a `large' induced subgraph $H$ which has $k$ vertices of degree exactly $\Delta(H)$? We answer in the affirmative an approximate version of this question. Indeed, we prove that, for every $k$, there exists $g(k)$ such that any $n$ vertex graph $G$ with maximum degree $\Delta$ contains an induced subgraph $H$ with at least $n-g(k)\sqrt{\Delta}$ vertices such that $V(H)$ contains at least $k$ vertices of the same degree $d \ge \Delta(H)-g(k)$. This result is sharp up to the order of $g(k)$. %Subsequently, we investigate a concept called $\textit{path-pairability}$. A graph is said to be path-pairable if for any pairing of its vertices there exist a collection of edge-disjoint paths routing the the vertices of each pair. A question we are concerned here asks whether every planar path pairable graph on $n$ vertices must possess a vertex of degree linear in $n$. Indeed, we answer this question in the affirmative. We also sketch a proof resolving an analogous question for graphs embeddable on surfaces of bounded genus. Finally, in Chapter~$9$, we move on to examine $k$-linked tournaments. A tournament $T$ is said to be $k$-linked if for any two disjoint sets of vertices $\{x_1,\ldots ,x_k\}$ and $\{y_1,\dots,y_k\}$ there are directed vertex disjoint paths $P_1,\dots, P_k$ such that $P_i$ joins $x_i$ to $y_i$ for $i = 1,\ldots, k$. We prove that any $4k$ strongly-connected tournament with sufficiently large minimum out-degree is $k$-linked. This result comes close to proving a conjecture of Pokrovskiy.
APA, Harvard, Vancouver, ISO, and other styles
8

Dickson, James Odziemiec. "An Introduction to Ramsey Theory on Graphs." Thesis, Virginia Tech, 2011. http://hdl.handle.net/10919/32873.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Milicevic, Luka. "Topics in metric geometry, combinatorial geometry, extremal combinatorics and additive combinatorics." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/273375.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Burns, Jonathan. "Recursive Methods in Number Theory, Combinatorial Graph Theory, and Probability." Scholar Commons, 2014. https://scholarcommons.usf.edu/etd/5193.

Full text
Abstract:
Recursion is a fundamental tool of mathematics used to define, construct, and analyze mathematical objects. This work employs induction, sieving, inversion, and other recursive methods to solve a variety of problems in the areas of algebraic number theory, topological and combinatorial graph theory, and analytic probability and statistics. A common theme of recursively defined functions, weighted sums, and cross-referencing sequences arises in all three contexts, and supplemented by sieving methods, generating functions, asymptotics, and heuristic algorithms. In the area of number theory, this work generalizes the sieve of Eratosthenes to a sequence of polynomial values called polynomial-value sieving. In the case of quadratics, the method of polynomial-value sieving may be characterized briefly as a product presentation of two binary quadratic forms. Polynomials for which the polynomial-value sieving yields all possible integer factorizations of the polynomial values are called recursively-factorable. The Euler and Legendre prime producing polynomials of the form n2+n+p and 2n2+p, respectively, and Landau's n2+1 are shown to be recursively-factorable. Integer factorizations realized by the polynomial-value sieving method, applied to quadratic functions, are in direct correspondence with the lattice point solutions (X,Y) of the conic sections aX2+bXY +cY2+X-nY=0. The factorization structure of the underlying quadratic polynomial is shown to have geometric properties in the space of the associated lattice point solutions of these conic sections. In the area of combinatorial graph theory, this work considers two topological structures that are used to model the process of homologous genetic recombination: assembly graphs and chord diagrams. The result of a homologous recombination can be recorded as a sequence of signed permutations called a micronuclear arrangement. In the assembly graph model, each micronuclear arrangement corresponds to a directed Hamiltonian polygonal path within a directed assembly graph. Starting from a given assembly graph, we construct all the associated micronuclear arrangements. Another way of modeling genetic rearrangement is to represent precursor and product genes as a sequence of blocks which form arcs of a circle. Associating matching blocks in the precursor and product gene with chords produces a chord diagram. The braid index of a chord diagram can be used to measure the scope of interaction between the crossings of the chords. We augment the brute force algorithm for computing the braid index to utilize a divide and conquer strategy. Both assembly graphs and chord diagrams are closely associated with double occurrence words, so we classify and enumerate the double occurrence words based on several notions of irreducibility. In the area of analytic probability, moments abstractly describe the shape of a probability distribution. Over the years, numerous varieties of moments such as central moments, factorial moments, and cumulants have been developed to assist in statistical analysis. We use inversion formulas to compute high order moments of various types for common probability distributions, and show how the successive ratios of moments can be used for distribution and parameter fitting. We consider examples for both simulated binomial data and the probability distribution affiliated with the braid index counting sequence. Finally we consider a sequence of multiparameter binomial sums which shares similar properties with the moment sequences generated by the binomial and beta-binomial distributions. This sequence of sums behaves asymptotically like the high order moments of the beta distribution, and has completely monotonic properties.
APA, Harvard, Vancouver, ISO, and other styles
11

Fiala, Nick C. "Some topics in combinatorial design theory and algebraic graph theory /." The Ohio State University, 2002. http://rave.ohiolink.edu/etdc/view?acc_num=osu1486402957198077.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Noel, Jonathan A. "Extremal combinatorics, graph limits and computational complexity." Thesis, University of Oxford, 2016. https://ora.ox.ac.uk/objects/uuid:8743ff27-b5e9-403a-a52a-3d6299792c7b.

Full text
Abstract:
This thesis is primarily focused on problems in extremal combinatorics, although we will also consider some questions of analytic and algorithmic nature. The d-dimensional hypercube is the graph with vertex set {0,1}d where two vertices are adjacent if they differ in exactly one coordinate. In Chapter 2 we obtain an upper bound on the 'saturation number' of Qm in Qd. Specifically, we show that for m ≥ 2 fixed and d large there exists a subgraph G of Qd of bounded average degree such that G does not contain a copy of Qm but, for every G' such that G ⊊ G' ⊆ Qd, the graph G' contains a copy of Qm. This result answers a question of Johnson and Pinto and is best possible up to a factor of O(m). In Chapter 3, we show that there exists ε > 0 such that for all k and for n sufficiently large there is a collection of at most 2(1-ε)k subsets of [n] which does not contain a chain of length k+1 under inclusion and is maximal subject to this property. This disproves a conjecture of Gerbner, Keszegh, Lemons, Palmer, Pálvölgyi and Patkós. We also prove that there exists a constant c ∈ (0,1) such that the smallest such collection is of cardinality 2(1+o(1))ck for all k. In Chapter 4, we obtain an exact expression for the 'weak saturation number' of Qm in Qd. That is, we determine the minimum number of edges in a spanning subgraph G of Qd such that the edges of E(Qd)\E(G) can be added to G, one edge at a time, such that each new edge completes a copy of Qm. This answers another question of Johnson and Pinto. We also obtain a more general result for the weak saturation of 'axis aligned' copies of a multidimensional grid in a larger grid. In the r-neighbour bootstrap process, one begins with a set A0 of 'infected' vertices in a graph G and, at each step, a 'healthy' vertex becomes infected if it has at least r infected neighbours. If every vertex of G is eventually infected, then we say that A0 percolates. In Chapter 5, we apply ideas from weak saturation to prove that, for fixed r ≥ 2, every percolating set in Qd has cardinality at least (1+o(1))(d choose r-1)/r. This confirms a conjecture of Balogh and Bollobás and is asymptotically best possible. In addition, we determine the minimum cardinality exactly in the case r=3 (the minimum cardinality in the case r=2 was already known). In Chapter 6, we provide a framework for proving lower bounds on the number of comparable pairs in a subset S of a partially ordered set (poset) of prescribed size. We apply this framework to obtain an explicit bound of this type for the poset 𝒱(q,n) consisting of all subspaces of 𝔽qnordered by inclusion which is best possible when S is not too large. In Chapter 7, we apply the result from Chapter 6 along with the recently developed 'container method,' to obtain an upper bound on the number of antichains in 𝒱(q,n) and a bound on the size of the largest antichain in a p-random subset of 𝒱(q,n) which holds with high probability for p in a certain range. In Chapter 8, we construct a 'finitely forcible graphon' W for which there exists a sequence (εi)i=1 tending to zero such that, for all i ≥ 1, every weak εi-regular partition of W has at least exp(εi-2/25log∗εi-2) parts. This result shows that the structure of a finitely forcible graphon can be much more complex than was anticipated in a paper of Lovász and Szegedy. For positive integers p,q with p/q ❘≥ 2, a circular (p,q)-colouring of a graph G is a mapping V(G) → ℤp such that any two adjacent vertices are mapped to elements of ℤp at distance at least q from one another. The reconfiguration problem for circular colourings asks, given two (p,q)-colourings f and g of G, is it possible to transform f into g by recolouring one vertex at a time so that every intermediate mapping is a p,q-colouring? In Chapter 9, we show that this question can be answered in polynomial time for 2 ≤ p/q < 4 and is PSPACE-complete for p/q ≥ 4.
APA, Harvard, Vancouver, ISO, and other styles
13

Carroll, Christina C. "Enumerative combinatorics of posets." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/22659.

Full text
Abstract:
Thesis (Ph. D.)--Mathematics, Georgia Institute of Technology, 2008.
Committee Chair: Tetali, Prasad; Committee Member: Duke, Richard; Committee Member: Heitsch, Christine; Committee Member: Randall, Dana; Committee Member: Trotter, William T.
APA, Harvard, Vancouver, ISO, and other styles
14

Peng, Richard. "Algorithm Design Using Spectral Graph Theory." Research Showcase @ CMU, 2013. http://repository.cmu.edu/dissertations/277.

Full text
Abstract:
Spectral graph theory is the interplay between linear algebra and combinatorial graph theory. Laplace’s equation and its discrete form, the Laplacian matrix, appear ubiquitously in mathematical physics. Due to the recent discovery of very fast solvers for these equations, they are also becoming increasingly useful in combinatorial optimization, computer vision, computer graphics, and machine learning. In this thesis, we develop highly efficient and parallelizable algorithms for solving linear systems involving graph Laplacian matrices. These solvers can also be extended to symmetric diagonally dominant matrices and M-matrices, both of which are closely related to graph Laplacians. Our algorithms build upon two decades of progress on combinatorial preconditioning, which connects numerical and combinatorial algorithms through spectral graph theory. They in turn rely on tools from numerical analysis, metric embeddings, and random matrix theory. We give two solver algorithms that take diametrically opposite approaches. The first is motivated by combinatorial algorithms, and aims to gradually break the problem into several smaller ones. It represents major simplifications over previous solver constructions, and has theoretical running time comparable to sorting. The second is motivated by numerical analysis, and aims to rapidly improve the algebraic connectivity of the graph. It is the first highly efficient solver for Laplacian linear systems that parallelizes almost completely. Our results improve the performances of applications of fast linear system solvers ranging from scientific computing to algorithmic graph theory. We also show that these solvers can be used to address broad classes of image processing tasks, and give some preliminary experimental results.
APA, Harvard, Vancouver, ISO, and other styles
15

Gray, Aaron D. "Extremal Results for Peg Solitaire on Graphs." Digital Commons @ East Tennessee State University, 2013. https://dc.etsu.edu/etd/2274.

Full text
Abstract:
In a 2011 paper by Beeler and Hoilman, the game of peg solitaire is generalized to arbitrary boards. These boards are treated as graphs in the combinatorial sense. An open problem from that paper is to determine the minimum number of edges necessary for a graph with a fixed number of vertices to be solvable. This thesis provides new bounds on this number. It also provides necessary and sufficient conditions for two families of graphs to be solvable, along with criticality results, and the maximum number of pegs that can be left in each of the two graph families.
APA, Harvard, Vancouver, ISO, and other styles
16

Durig, Rebekah Libby. "The Game of Light: A Graph Theoretical Approach." OpenSIUC, 2017. https://opensiuc.lib.siu.edu/theses/2199.

Full text
Abstract:
In the Game of Light, as formulated in "Harmonic Evolutions" (J. Kocik, 2007), there is a definition of dynamic graphs and a thorough explanation of how to find the structure of the digraph that shows the changing of states during the game. This thesis furthers this research in two directions: first, by exploring what happens when there are more than two vertex states, by expanding the state space to any cyclic group. Secondly, the research attempted to identify families of graphs and describe their graph states using only the number of vertex states. To further both of these goals, two programs were written, one as a calculator to compute the digraph structure, and one as a visualization tool that automates the game of light, allowing users to input graphs with simple point and click commands, and to easily see how graphs evolve. Finally, about one hundred graphs were evaluated using the calculator, and the resulting structures are recorded.
APA, Harvard, Vancouver, ISO, and other styles
17

Ross, Bailey Ann. "Combinatorics and topology of curves and knots." [Boise, Idaho] : Boise State University, 2010. http://scholarworks.boisestate.edu/td/89/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Chen, Ailian. "Combinatorial methods and probabilistic methods in graph theory." Paris 11, 2008. http://www.theses.fr/2008PA112101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Gruslys, Vytautas. "Tilings and other combinatorial results." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/271311.

Full text
Abstract:
In this dissertation we treat three tiling problems and three problems in combinatorial geometry, extremal graph theory and sparse Ramsey theory. We first consider tilings of $\mathbb{Z}^n$. In this setting a tile $T$ is just a finite subset of $\mathbb{Z}^n$. We say that $T$ tiles $\mathbb{Z}^n$ if the latter set admits a partition into isometric copies of $T$. Chalcraft observed that there exist $T$ that do not tile $\mathbb{Z}^n$ but tile $\mathbb{Z}^{d}$ for some $d > n$. He conjectured that such $d$ exists for any given tile. We prove this conjecture in Chapter 2. In Chapter 3 we prove a conjecture of Lonc, stating that for any poset $P$ of size a power of $2$, if $P$ has a greatest and a least element, then there is a positive integer $k$ such that $[2]^k$ can be partitioned into copies of $P$. The third tiling problem is about vertex-partitions of the hypercube graph $Q_n$. Offner asked: if $G$ is a subgraph of $Q_n$ such $|G|$ is a power of $2$, must $V(Q_d)$, for some $d$, admit a partition into isomorphic copies of $G$? In Chapter 4 we answer this question in the affirmative. We follow up with a question in combinatorial geometry. A line in a planar set $P$ is a maximal collinear subset of $P$. P\'or and Wood considered colourings of finite $P$ without large lines with a bounded number of colours. In particular, they examined whether monochromatic lines always appear in such colourings provided that $|P|$ is large. They conjectured that for all $k,l \ge 2$ there exists an $n \ge 2$ such that if $|P| \ge n$ and $P$ does not contain a line of cardinality larger than $l$, then every colouring of $P$ with $k$ colours produces a monochromatic line. In Chapter 5 we construct arbitrarily large counterexamples for the case $k=l=3$. We follow up with a problem in extremal graph theory. For any graph, we say that a given edge is triangular if it forms a triangle with two other edges. How few triangular edges can there be in a graph with $n$ vertices and $m$ edges? For sufficiently large $n$ we prove a conjecture of F\"uredi and Maleki that gives an exact formula for this minimum. This proof is given in Chapter 6. Finally, Chapter 7 is concerned with degrees of vertices in directed hypergraphs. One way to prescribe an orientation to an $r$-uniform graph $H$ is to assign for each of its edges one of the $r!$ possible orderings of its elements. Then, for any $p$-set of vertices $A$ and any $p$-set of indices $I \subset [r]$, we define the $I$-degree of $A$ to be the number of edges containing vertices $A$ in precisely the positions labelled by $I$. Caro and Hansberg were interested in determining whether a given $r$-uniform hypergraph admits an orientation where every set of $p$ vertices has some $I$-degree equal to $0$. They conjectured that a certain Hall-type condition is sufficient. We show that this is true for $r$ large, but false in general.
APA, Harvard, Vancouver, ISO, and other styles
20

Hill, Alan. "Self-Dual Graphs." Thesis, University of Waterloo, 2002. http://hdl.handle.net/10012/1014.

Full text
Abstract:
The study of self-duality has attracted some attention over the past decade. A good deal of research in that time has been done on constructing and classifying all self-dual graphs and in particular polyhedra. We will give an overview of the recent research in the first two chapters. In the third chapter, we will show the necessary condition that a self-complementary self-dual graph have n ≡ 0, 1 (mod 8) vertices and we will review White's infinite class (the Paley graphs, for which n ≡ 1 (mod 8)). Finally, we will construct a new infinite class of self-complementary self-dual graphs for which n ≡ 0 (mod 8).
APA, Harvard, Vancouver, ISO, and other styles
21

Green, Hannah E. "Differentiating Between a Protein and its Decoy Using Nested Graph Models and Weighted Graph Theoretical Invariants." Digital Commons @ East Tennessee State University, 2017. https://dc.etsu.edu/etd/3248.

Full text
Abstract:
To determine the function of a protein, we must know its 3-dimensional structure, which can be difficult to ascertain. Currently, predictive models are used to determine the structure of a protein from its sequence, but these models do not always predict the correct structure. To this end we use a nested graph model along with weighted invariants to minimize the errors and improve the accuracy of a predictive model to determine if we have the correct structure for a protein.
APA, Harvard, Vancouver, ISO, and other styles
22

Backman, Spencer Christopher Foster. "Combinatorial divisor theory for graphs." Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/51908.

Full text
Abstract:
Chip-firing is a deceptively simple game played on the vertices of a graph, which was independently discovered in probability theory, poset theory, graph theory, and statistical physics. In recent years, chip-firing has been employed in the development of a theory of divisors on graphs analogous to the classical theory for Riemann surfaces. In particular, Baker and Norin were able to use this set up to prove a combinatorial Riemann-Roch formula, whose classical counterpart is one of the cornerstones of modern algebraic geometry. It is now understood that the relationship between divisor theory for graphs and algebraic curves goes beyond pure analogy, and the primary operation for making this connection precise is tropicalization, a certain type of degeneration which allows us to treat graphs as “combinatorial shadows” of curves. The development of this tropical relationship between graphs and algebraic curves has allowed for beautiful applications of chip-firing to both algebraic geometry and number theory. In this thesis we continue the combinatorial development of divisor theory for graphs. In Chapter 1 we give an overview of the history of chip-firing and its connections to algebraic geometry. In Chapter 2 we describe a reinterpretation of chip-firing in the language of partial graph orientations and apply this setup to give a new proof of the Riemann-Roch formula. We introduce and investigate transfinite chip-firing, and chip-firing with respect to open covers in Chapters 3 and 4 respectively. Chapter 5 represents joint work with Arash Asadi, where we investigate Riemann-Roch theory for directed graphs and arithmetical graphs, the latter of which are a special class of balanced vertex weighted graphs arising naturally in arithmetic geometry.
APA, Harvard, Vancouver, ISO, and other styles
23

Meyer, Marie. "Polytopes Associated to Graph Laplacians." UKnowledge, 2018. https://uknowledge.uky.edu/math_etds/54.

Full text
Abstract:
Graphs provide interesting ways to generate families of lattice polytopes. In particular, one can use matrices encoding the information of a finite graph to define vertices of a polytope. This dissertation initiates the study of the Laplacian simplex, PG, obtained from a finite graph G by taking the convex hull of the columns of the Laplacian matrix for G. The Laplacian simplex is extended through the use of a parallel construction with a finite digraph D to obtain the Laplacian polytope, PD. Basic properties of both families of simplices, PG and PD, are established using techniques from Ehrhart theory. Motivated by a well-known conjecture in the field, our investigation focuses on reflexivity, the integer decomposition property, and unimodality of Ehrhart h*-vectors of these polytopes. A systematic investigation of PG for trees, cycles, and complete graphs is provided, which is enhanced by an investigation of PD for cyclic digraphs. We form intriguing connections with other families of simplices and produce G and D such that the h*-vectors of PG and PD exhibit extremal behavior.
APA, Harvard, Vancouver, ISO, and other styles
24

Sutinuntopas, Somporn. "Applications of Graph Theory and Topology to Combinatorial Designs." Thesis, University of North Texas, 1988. https://digital.library.unt.edu/ark:/67531/metadc331968/.

Full text
Abstract:
This dissertation is concerned with the existence and the isomorphism of designs. The first part studies the existence of designs. Chapter I shows how to obtain a design from a difference family. Chapters II to IV study the existence of an affine 3-(p^m,4,λ) design where the v-set is the Galois field GF(p^m). Associated to each prime p, this paper constructs a graph. If the graph has a 1-factor, then a difference family and hence an affine design exists. The question arises of how to determine when the graph has a 1-factor. It is not hard to see that the graph is connected and of even order. Tutte's theorem shows that if the graph is 2-connected and regular of degree three, then the graph has a 1-factor. By using the concept of quadratic reciprocity, this paper shows that if p Ξ 53 or 77 (mod 120), the graph is almost regular of degree three, i.e., every vertex has degree three, except two vertices each have degree tow. Adding an extra edge joining the two vertices with degree tow gives a regular graph of degree three. Also, Tutte proved that if A is an edge of the graph satisfying the above conditions, then it must have a 1-factor which contains A. The second part of the dissertation is concerned with determining if two designs are isomorphic. Here the v-set is any group G and translation by any element in G gives a design automorphism. Given a design B and its difference family D, two topological spaces, B and D, are constructed. We give topological conditions which imply that a design isomorphism is a group isomorphism.
APA, Harvard, Vancouver, ISO, and other styles
25

Warnke, Lutz. "Random graph processes with dependencies." Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:71b48e5f-a192-4684-a864-ea9059a25d74.

Full text
Abstract:
Random graph processes are basic mathematical models for large-scale networks evolving over time. Their systematic study was pioneered by Erdös and Rényi around 1960, and one key feature of many 'classical' models is that the edges appear independently. While this makes them amenable to a rigorous analysis, it is desirable, both mathematically and in terms of applications, to understand more complicated situations. In this thesis the main goal is to improve our rigorous understanding of evolving random graphs with significant dependencies. The first model we consider is known as an Achlioptas process: in each step two random edges are chosen, and using a given rule only one of them is selected and added to the evolving graph. Since 2000 a large class of 'complex' rules has eluded a rigorous analysis, and it was widely believed that these could give rise to a striking and unusual phenomenon. Making this explicit, Achlioptas, D'Souza and Spencer conjectured in Science that one such rule yields a very abrupt (discontinuous) percolation phase transition. We disprove this, showing that the transition is in fact continuous for all Achlioptas process. In addition, we give the first rigorous analysis of the more 'complex' rules, proving that certain key statistics are tightly concentrated (i) in the subcritical evolution, and (ii) also later on if an associated system of differential equations has a unique solution. The second model we study is the H-free process, where random edges are added subject to the constraint that they do not complete a copy of some fixed graph H. The most important open question for such 'constrained' processes is due to Erdös, Suen and Winkler: in 1995 they asked what the typical final number of edges is. While Osthus and Taraz answered this in 2000 up to logarithmic factors for a large class of graphs H, more precise bounds are only known for a few special graphs. We close this gap for the cases where a cycle of fixed length is forbidden, determining the final number of edges up to constants. Our result not only establishes several conjectures, it is also the first which answers the more than 15-year old question of Erdös et. al. for a class of forbidden graphs H.
APA, Harvard, Vancouver, ISO, and other styles
26

Bowlin, Garry. "Maximum frustration of bipartite signed graphs." Diss., Online access via UMI:, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
27

Pensaert, William. "Hamilton Paths in Generalized Petersen Graphs." Thesis, University of Waterloo, 2002. http://hdl.handle.net/10012/1198.

Full text
Abstract:
This thesis puts forward the conjecture that for n > 3k with k > 2, the generalized Petersen graph, GP(n,k) is Hamilton-laceable if n is even and k is odd, and it is Hamilton-connected otherwise. We take the first step in the proof of this conjecture by proving the case n = 3k + 1 and k greater than or equal to 1. We do this mainly by means of an induction which takes us from GP(3k + 1, k) to GP(3(k + 2) + 1, k + 2). The induction takes the form of mapping a Hamilton path in the smaller graph piecewise to the larger graph an inserting subpaths we call rotors to obtain a Hamilton path in the larger graph.
APA, Harvard, Vancouver, ISO, and other styles
28

Chavez, Dolores. "Investigation of 4-cutwidth critical graphs." CSUSB ScholarWorks, 2006. https://scholarworks.lib.csusb.edu/etd-project/3081.

Full text
Abstract:
A 2004 article written by Yixun Lin and Aifeng Yang published in the journal Discrete Math characterized the set of a 3-cutwidth critical graphs by five specified elements. This project extends the idea to 4-cutwidth critical graphs.
APA, Harvard, Vancouver, ISO, and other styles
29

Meeks, Kitty M. F. T. "Graph colourings and games." Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:a805a379-f891-4250-9a7d-df109f9f52e2.

Full text
Abstract:
Graph colourings and combinatorial games are two very widely studied topics in discrete mathematics. This thesis addresses the computational complexity of a range of problems falling within one or both of these subjects. Much of the thesis is concerned with the computational complexity of problems related to the combinatorial game (Free-)Flood-It, in which players aim to make a coloured graph monochromatic ("flood" the graph) with the minimum possible number of flooding operations; such problems are known to be computationally hard in many cases. We begin by proving some general structural results about the behaviour of the game, including a powerful characterisation of the number of moves required to flood a graph in terms of the number of moves required to flood its spanning trees; these structural results are then applied to prove tractability results about a number of flood-filling problems. We also consider the computational complexity of flood-filling problems when the game is played on a rectangular grid of fixed height (focussing in particular on 3xn and 2xn grids), answering an open question of Clifford, Jalsenius, Montanaro and Sach. The final chapter concerns the parameterised complexity of list problems on graphs of bounded treewidth. We prove structural results determining the list edge chromatic number and list total chromatic number of graphs with bounded treewidth and large maximum degree, which are special cases of the List (Edge) Colouring Conjecture and Total Colouring Conjecture respectively. Using these results, we show that the problem of determining either of these quantities is fixed parameter tractable, parameterised by the treewidth of the input graph. Finally, we analyse a list version of the Hamilton Path problem, and prove it to be W[1]-hard when parameterised by the pathwidth of the input graph. These results answer two open questions of Fellows, Fomin, Lokshtanov, Rosamond, Saurabh, Szeider and Thomassen.
APA, Harvard, Vancouver, ISO, and other styles
30

Walvoort, Clayton A. "Peg Solitaire on Trees with Diameter Four." Digital Commons @ East Tennessee State University, 2013. https://dc.etsu.edu/etd/1113.

Full text
Abstract:
In a paper by Beeler and Hoilman, the traditional game of peg solitaire is generalized to graphs in the combinatorial sense. One of the important open problems in this paper was to classify solvable trees. In this thesis, we will give necessary and sufficient conditions for the solvability for all trees with diameter four. We also give the maximum number of pegs that can be left on such a graph under the restriction that we jump whenever possible.
APA, Harvard, Vancouver, ISO, and other styles
31

Badaoui, Mohamad. "G-graphs and Expander graphs." Thesis, Normandie, 2018. http://www.theses.fr/2018NORMC207/document.

Full text
Abstract:
L’utilisation de l’algèbre pour résoudre des problèmes de graphes a conduit au développement de trois branches : théorie spectrale des graphes, géométrie et combinatoire des groupes et études des invariants de graphes. La notion de graphe d’expansions (invariant de graphes) est relativement récente, elle a été développée afin d’étudier la robustesse des réseaux de télécommunication. Il s’avère que la construction de familles infinies de graphes expanseurs est un problème difficile. Cette thèse traite principalement de la construction de nouvelles familles de tels graphes. Les graphes expanseurs possèdent des nombreuses applications en informatique, notamment dans la construction de certains algorithmes, en théorie de la complexité, sur les marches aléatoires (random walk), etc. En informatique théorique, ils sont utilisés pour construire des familles de codes correcteurs d’erreur. Comme nous l’avons déjà vu les familles d’expanseurs sont difficiles à construire. La plupart des constructions s'appuient sur des techniques algébriques complexes, principalement en utilisant des graphes de Cayley et des produit Zig-Zag. Dans cette thèse, nous présentons une nouvelle méthode de construction de familles infinies d’expanseurs en utilisant les G-graphes. Ceux-ci sont en quelque sorte une généralisation des graphes de Cayley. Plusieurs nouvelles familles infinies d’expanseurs sont construites, notamment la première famille d’expanseurs irréguliers
Applying algebraic and combinatorics techniques to solve graph problems leads to the birthof algebraic and combinatorial graph theory. This thesis deals mainly with a crossroads questbetween the two theories, that is, the problem of constructing infinite families of expandergraphs.From a combinatorial point of view, expander graphs are sparse graphs that have strongconnectivity properties. Expanders constructions have found extensive applications in bothpure and applied mathematics. Although expanders exist in great abundance, yet their explicitconstructions, which are very desirable for applications, are in general a hard task. Mostconstructions use deep algebraic and combinatorial approaches. Following the huge amountof research published in this direction, mainly through Cayley graphs and the Zig-Zagproduct, we choose to investigate this problem from a new perspective; namely by usingG-graphs theory and spectral hypergraph theory as well as some other techniques. G-graphsare like Cayley graphs defined from groups, but they correspond to an alternative construction.The reason that stands behind our choice is first a notable identifiable link between thesetwo classes of graphs that we prove. This relation is employed significantly to get many newresults. Another reason is the general form of G-graphs, that gives us the intuition that theymust have in many cases such as the relatively high connectivity property.The adopted methodology in this thesis leads to the identification of various approaches forconstructing an infinite family of expander graphs. The effectiveness of our techniques isillustrated by presenting new infinite expander families of Cayley and G-graphs on certaingroups. Also, since expanders stand in no single stem of graph theory, this brings us toinvestigate several closely related threads from a new angle. For instance, we obtain newresults concerning the computation of spectra of certain Cayley and G-graphs, and theconstruction of several new infinite classes of integral and Hamiltonian Cayley graphs
APA, Harvard, Vancouver, ISO, and other styles
32

Riddle, Marcia Ling. "Sandwich Theorem and Calculation of the Theta Function for Several Graphs." Diss., CLICK HERE for online access, 2003. http://contentdm.lib.byu.edu/ETD/image/etd181.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Gardner, Bradley. "Italian Domination on Ladders and Related Products." Digital Commons @ East Tennessee State University, 2018. https://dc.etsu.edu/etd/3509.

Full text
Abstract:
An Italian dominating function on a graph $G = (V,E)$ is a function such that $f : V \to \{0,1,2\}$, and for each vertex $v \in V$ for which $f(v) = 0$, we have $\sum_{u\in N(v)}f(u) \geq 2$. The weight of an Italian dominating function is $f(V) = \sum_{v\in V(G)}f(v)$. The minimum weight of all such functions on a graph $G$ is called the Italian domination number of $G$. In this thesis, we will consider Italian domination in various types of products of a graph $G$ with the complete graph $K_2$. We will find the value of the Italian domination number for ladders, specific families of prisms, mobius ladders and related products including categorical products $G\times K_2$ and lexicographic products $G\cdot K_2$. Finally, we will conclude with open problems.
APA, Harvard, Vancouver, ISO, and other styles
34

Butler, Steven Kay. "Bounding the Number of Graphs Containing Very Long Induced Paths." Diss., CLICK HERE for online access, 2003. http://contentdm.lib.byu.edu/ETD/image/etd158.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

McCall, Kevin J. "3-Maps And Their Generalizations." VCU Scholars Compass, 2018. https://scholarscompass.vcu.edu/etd/5581.

Full text
Abstract:
A 3-map is a 3-region colorable map. They have been studied by Craft and White in their paper 3-maps. This thesis introduces topological graph theory and then investigates 3-maps in detail, including examples, special types of 3-maps, the use of 3-maps to find the genus of special graphs, and a generalization known as n-maps.
APA, Harvard, Vancouver, ISO, and other styles
36

Humphries, Peter John. "Combinatorial Aspects of Leaf-Labelled Trees." Thesis, University of Canterbury. Mathematics and Statistics, 2008. http://hdl.handle.net/10092/1801.

Full text
Abstract:
Leaf-labelled trees are used commonly in computational biology and in other disciplines, to depict the ancestral relationships and present-day similarities between both extant and extinct species. Studying these trees from a mathematical perspective provides a foundation for developing tools and techniques that have practical applications. We begin by examining some quartet problems, namely determining the number of quartets that are required to infer the structure of a particular supertree. The quartet graph is introduced as a tool for tackling quartet problems, and is subsequently used to give new characterisations of compatible, definitive and identifying quartet sets. We then turn to investigating some properties of the subtrees induced by a collection of trees. This is motivated in part by the problem of reconstructing two or more trees simultaneously from their combined collection of subtrees. We also use some ideas drawn from Ramsey theory to show the existence of arbitrarily large common subtrees. Finally, we explore some extremal properties of the metric that is induced by the tree bisection and reconnection operation. This includes finding new (asymptotically) tight upper and lower bounds on both the size of the neighbourhoods in the metric space and on the diameter of the corresponding adjacency graph.
APA, Harvard, Vancouver, ISO, and other styles
37

Aftene, Florin. "Vertex-Relaxed Graceful Labelings of Graphs and Congruences." TopSCHOLAR®, 2018. https://digitalcommons.wku.edu/theses/2664.

Full text
Abstract:
A labeling of a graph is an assignment of a natural number to each vertex of a graph. Graceful labelings are very important types of labelings. The study of graceful labelings is very difficult and little has been shown about such labelings. Vertex-relaxed graceful labelings of graphs are a class of labelings that include graceful labelings, and their study gives an approach to the study of graceful labelings. In this thesis we generalize the congruence approach of Rosa to obtain new criteria for vertex-relaxed graceful labelings of graphs. To do this, we generalize Faulhaber’s Formula, which is a famous result about sums of powers of integers.
APA, Harvard, Vancouver, ISO, and other styles
38

Mayhew, Dillon. "Matroids and complexity." Thesis, University of Oxford, 2005. http://ora.ox.ac.uk/objects/uuid:23640923-17c3-4ad8-9845-320e3b662910.

Full text
Abstract:
We consider different ways of describing a matroid to a Turing machine by listing the members of various families of subsets, and we construct an order on these different methods of description. We show that, under this scheme, several natural matroid problems are complete in classes thought not to be equal to P. We list various results linking parameters of basis graphs to parameters of their associated matroids. For small values of k we determine which matroids have the clique number, chromatic number, or maximum degree of their basis graphs bounded above by k. If P is a class of graphs that is closed under isomorphism and induced subgraphs, then the set of matroids whose basis graphs belong to P is closed under minors. We characterise the minor-closed classes that arise in this way, and exhibit several examples. One way of choosing a basis of a matroid at random is to select a total ordering of the ground set uniformly at random and use the greedy algorithm. We consider the class of matroids having the property that this procedure chooses a basis uniformly at random. Finally we consider a problem mentioned by Oxley. He asked if, for every two elements and n - 2 cocircuits in an n-connected matroid, there is a circuit that contains both elements and that meets every cocircuit. We show that a slightly stronger property holds for regular matroids.
APA, Harvard, Vancouver, ISO, and other styles
39

Mattern, Amelia. "Ordering and Reordering: Using Heffter Arrays to Biembed Complete Graphs." ScholarWorks @ UVM, 2015. http://scholarworks.uvm.edu/graddis/341.

Full text
Abstract:
In this paper we extend the study of Heffter arrays and the biembedding of graphs on orientable surfaces first discussed by Archdeacon in 2014. We begin with the definitions of Heffter systems, Heffter arrays, and their relationship to orientable biembeddings through current graphs. We then focus on two specific cases. We first prove the existence of embeddings for every K_(6n+1) with every edge on a face of size 3 and a face of size n. We next present partial results for biembedding K_(10n+1) with every edge on a face of size 5 and a face of size n. Finally, we address the more general question of ordering subsets of Z_n take away {0}. We conclude with some open conjectures and further explorations.
APA, Harvard, Vancouver, ISO, and other styles
40

Mirghorbani, Nokandeh Seyed Mohammad S. "Graph-theoretic studies of combinatorial optimization problems." Diss., University of Iowa, 2013. https://ir.uiowa.edu/etd/4698.

Full text
Abstract:
Graph theory is fascinating branch of math. Leonhard Euler introduced the concept of Graph Theory in his paper about the seven bridges of Konigsberg published in 1736. In a nutshell, graph theory is the study of pair-wise relationships between objects. Each object is represented using a vertex and in case of a relationship between a pair of vertices, they will be connected using an edge. In this dissertation, graph theory is used to study several important combinatorial optimization problems. In chapter 2, we study the multi-dimensional assignment problem using their underlying hypergraphs. It will be shown how the MAP can be represented by a k-partite graph and how any solution to MAP is associated to a k-clique in the respective k-partite graph. Two heuristics are proposed to solve the MAP and computational studies are performed to compare the performance of the proposed methods with exact solutions. On the heels of chapter 3, a new branch-and-bound method is proposed to solve the problem of finding all k-cliques in a k-partite graph. The new method utilizes bitsets as the data-structure to represent graph data. A new pruning method is introduced in BitCLQ, and CPU instructions are used to improve the performance of the branch-and-bound method. BitCLQ gains up to 300% speed up over existing methods. In chapter 4, two new heuristic to solve decomposable cost MAP's are proposed. The proposed heuristic are based on the partitioning of the underlying graph representing the MAP. In the first heuristic method, MAP's are partitioned into several smaller MAP's with the same dimensiality and smaller cardinality. The solution to the original MAP is constructed incrementally, by using the solutions obtained from each of the smaller MAP's. The second heuristic works in the same fashion. But instead of partitioning the graph along the cardinality, graphs are divided into smaller graphs with the same cardinality but smaller dimensionality. The result of each heuristic is then compared with a well-known existing heuristic. An important problem in graph theory is the maximum clique problem (MCQ). A clique in a graph is defined as a complete subgraph. MCQ problem entails finding the size of the largest clique contained in a graph. General branch-and-bound methods to solve MCQ use graph coloring to find an upper bound on the size of the maximum clique. Recently, a new MAX-SAT based branch-and-bound method for MCQ is proposed that improves the quality of the upper bound obtained from graph coloring. In chapter 5, a branch and bound algorithm is proposed for the maximum clique problem. The proposed method uses bitsets as the data-structure. The result of the computational studies to compare the proposed method with existing methods for MCQ is provided. Chapter 6 contains an application of a graph theory in solving a risk management problem. A new mixed-integer mathematical model to formulate a risk-based network is provided. It will be shown that an optimal solution of the model is a maximal clique in the underlying graph representing the network. The model is then solved using a graph-theoretic approach and the results are compared to CPLEX.
APA, Harvard, Vancouver, ISO, and other styles
41

Koessler, Denise Renee. "A Predictive Model for Secondary RNA Structure Using Graph Theory and a Neural Network." Digital Commons @ East Tennessee State University, 2010. https://dc.etsu.edu/etd/1684.

Full text
Abstract:
In this work we use a graph-theoretic representation of secondary RNA structure found in the database RAG: RNA-As-Graphs. We model the bonding of two RNA secondary structures to form a larger structure with a graph operation called merge. The resulting data from each tree merge operation is summarized and represented by a vector. We use these vectors as input values for a neural network and train the network to recognize a tree as RNA-like or not based on the merge data vector. The network correctly assigned a high probability of RNA-likeness to trees identified as RNA-like in the RAG database, and a low probability of RNA-likeness to those classified as not RNA-like in the RAG database. We then used the neural network to predict the RNA-likeness of all the trees of order 9. The use of a graph operation to theoretically describe the bonding of secondary RNA is novel.
APA, Harvard, Vancouver, ISO, and other styles
42

Murphy, Kyle. "On t-Restricted Optimal Rubbling of Graphs." Digital Commons @ East Tennessee State University, 2017. https://dc.etsu.edu/etd/3251.

Full text
Abstract:
For a graph G = (V;E), a pebble distribution is defined as a mapping of the vertex set in to the integers, where each vertex begins with f(v) pebbles. A pebbling move takes two pebbles from some vertex adjacent to v and places one pebble on v. A rubbling move takes one pebble from each of two vertices that are adjacent to v and places one pebble on v. A vertex x is reachable under a pebbling distribution f if there exists some sequence of rubbling and pebbling moves that places a pebble on x. A pebbling distribution where every vertex is reachable is called a rubbling configuration. The t-restricted optimal rubbling number of G is the minimum number of pebbles required for a rubbling configuration where no vertex is initially assigned more than t pebbles. Here we present results on the 1-restricted optimal rubbling number and the 2- restricted optimal rubbling number.
APA, Harvard, Vancouver, ISO, and other styles
43

Meadows, Adam M. "Decompositions of Mixed Graphs with Partial Orientations of the P4." Digital Commons @ East Tennessee State University, 2009. https://dc.etsu.edu/etd/1870.

Full text
Abstract:
A decomposition D of a graph H by a graph G is a partition of the edge set of H such that the subgraph induced by the edges in each part of the partition is isomorphic to G. A mixed graph on V vertices is an ordered pair (V,C), where V is a set of vertices, |V| = v, and C is a set of ordered and unordered pairs, denoted (x, y) and [x, y] respectively, of elements of V [8]. An ordered pair (x, y) ∈ C is called an arc of (V,C) and an unordered pair [x, y] ∈ C is called an edge of graph (V,C). A path on n vertices is denoted as Pn. A partial orientation on G is obtained by replacing each edge [x, y] ∈ E(G) with either (x, y), (y, x), or [x, y] in such a way that there are twice as many arcs as edges. The complete mixed graph on v vertices, denoted Mv, is the mixed graph (V,C) where for every pair of distinct vertices v1, v2 ∈ V , we have {(v1, v2), (v2, v1), [v1, v2]} ⊂ C. The goal of this thesis is to establish necessary and sufficient conditions for decomposition of Mv by all possible partial orientations of P4.
APA, Harvard, Vancouver, ISO, and other styles
44

Shiping, Liu. "Synthetic notions of curvature and applications in graph theory." Doctoral thesis, Universitätsbibliothek Leipzig, 2013. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-102197.

Full text
Abstract:
The interaction between the study of geometric and analytic aspects of Riemannian manifolds and that of graphs is a very amazing subject. The study of synthetic curvature notions on graphs adds new contributions to this topic. In this thesis, we mainly study two kinds of synthetic curvature notions: the Ollivier-Ricci cuvature on locally finite graphs and the combinatorial curvature on infinite semiplanar graphs. In the first part, we study the Ollivier-Ricci curvature. As known in Riemannian geometry, a lower Ricci curvature bound prevents geodesics from diverging too fast on average. We translate this Riemannian idea into a combinatorial setting using the Olliver-Ricci curvature notion. Note that on a graph, the analogue of geodesics starting in different directions, but eventually approaching each other again, would be a triangle. We derive lower and upper Ollivier-Ricci curvature bounds on graphs in terms of number of triangles, which is sharp for instance for complete graphs. We then describe the relation between Ollivier-Ricci curvature and the local clustering coefficient, which is an important concept in network analysis introduced by Watts-Strogatz. Furthermore, positive lower boundedness of Ollivier-Ricci curvature for neighboring vertices imply the existence of at least one triangle. It turns out that the existence of triangles can also improve Lin-Yau\'s curvature dimension inequality on graphs and then produce an implication from Ollivier-Ricci curvature lower boundedness to the curvature dimension inequality. The existence of triangles prevents a graph from being bipartite. A finite graph is bipartite if and only if its largest eigenvalue equals 2. Therefore it is natural that Ollivier-Ricci curvature is closely related to the largest eigenvalue estimates. We combine Ollivier-Ricci curvature notion with the neighborhood graph method developed by Bauer-Jost to study the spectrum estimates of a finite graph. We can always obtain nontrivial estimates on a non-bipartite graph even if its curvature is nonpositive. This answers one of Ollivier\'s open problem in the finite graph setting. In the second part of this thesis, we study systematically infinite semiplanar graphs with nonnegative combinatorial curvature. Unlike the previous Gauss-Bonnet formula approach, we explore an Alexandrov approach based on the observation that the nonnegative combinatorial curvature on a semiplanar graph is equivalent to nonnegative Alexandrov curvature on the surface obtained by replacing each face by a regular polygon of side length one with the same facial degree and gluing the polygons along common edges. Applying Cheeger-Gromoll splitting theorem on the surface, we give a metric classification of infinite semiplanar graphs with nonnegative curvature. We also construct the graphs embedded into the projective plane minus one point. Those constructions answer a question proposed by Chen. We further prove the volume doubling property and Poincare inequality which make the running of Nash-Moser iteration possible. We in particular explore the volume growth behavior on Archimedean tilings on a plane and prove that they satisfy a weak version of relative volume comparison with constant 1. With the above two basic inequalities in hand, we study the geometric function theory of infinite semiplanar graphs with nonnegative curvature. We obtain the Liouville type theorem for positive harmonic functions, the parabolicity. We also prove a dimension estimate for polynomial growth harmonic functions, which is an extension of the solution of Colding-Minicozzi of a conjecture of Yau in Riemannian geometry.
APA, Harvard, Vancouver, ISO, and other styles
45

Williams, Trevor K. "Combinatorial Games on Graphs." DigitalCommons@USU, 2017. https://digitalcommons.usu.edu/etd/6502.

Full text
Abstract:
Combinatorial games are intriguing and have a tendency to engross students and lead them into a serious study of mathematics. The engaging nature of games is the basis for this thesis. Two combinatorial games along with some educational tools were developed in the pursuit of the solution of these games. The game of Nim is at least centuries old, possibly originating in China, but noted in the 16th century in European countries. It consists of several stacks of tokens, and two players alternate taking one or more tokens from one of the stacks, and the player who cannot make a move loses. The formal and intense study of Nim culminated in the celebrated Sprague-Grundy Theorem, which is now one of the centerpieces in the theory of impartial combinatorial games. We study a variation on Nim, played on a graph. Graph Nim, for which the theory of Sprague-Grundy does not provide a clear strategy, was originally developed at the University of Colorado Denver. Graph Nim was first played on graphs of three vertices. The winning strategy, and losing position, of three vertex Graph Nim has been discovered, but we will expand the game to four vertices and develop the winning strategies for four vertex Graph Nim. Graph Theory is a markedly visual field of mathematics. It is extremely useful for graph theorists and students to visualize the graphs they are studying. There exists software to visualize and analyze graphs, such as SAGE, but it is often extremely difficult to learn how use such programs. The tools in GeoGebra make pretty graphs, but there is no automated way to make a graph or analyze a graph that has been built. Fortunately GeoGebra allows the use of JavaScript in the creation of buttons which allow us to build useful Graph Theory tools in GeoGebra. We will discuss two applets we have created that can be used to help students learn some of the basics of Graph Theory. The game of thrones is a two-player impartial combinatorial game played on an oriented complete graph (or tournament) named after the popular fantasy book and TV series. The game of thrones relies on a special type of vertex called a king. A king is a vertex, k, in a tournament, T, which for all x in T either k beats x or there exists a vertex y such that k beats y and y beats x. Players take turns removing vertices from a given tournament until there is only one king left in the resulting tournament. The winning player is the one which makes the final move. We develop a winning position and classify those tournaments that are optimal for the first or second-moving player.
APA, Harvard, Vancouver, ISO, and other styles
46

Jayachandran, Jayakanth. "Improving resiliency using graph based evolutionary algorithms." Diss., Rolla, Mo. : Missouri University of Science and Technology, 2010. http://scholarsmine.mst.edu/thesis/pdf/Jayachandran_09007dcc807d6ba6.pdf.

Full text
Abstract:
Thesis (M.S.)--Missouri University of Science and Technology, 2010.
Vita. The entire thesis text is included in file. Title from title screen of thesis/dissertation PDF file (viewed July 19, 2010) Includes bibliographical references (p. 56-62).
APA, Harvard, Vancouver, ISO, and other styles
47

Leung, Yiu-cho. "Counting combinatorial structures in recursively constructible graphs /." View abstract or full-text, 2007. http://library.ust.hk/cgi/db/thesis.pl?CSED%202007%20LEUNG.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Sivanathan, Gowrishankar. "Sink free orientations in a graph." Diss., Online access via UMI:, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
49

Rockney, Alissa Ann. "A Predictive Model Which Uses Descriptors of RNA Secondary Structures Derived from Graph Theory." Digital Commons @ East Tennessee State University, 2011. https://dc.etsu.edu/etd/1300.

Full text
Abstract:
The secondary structures of ribonucleic acid (RNA) have been successfully modeled with graph-theoretic structures. Often, simple graphs are used to represent secondary RNA structures; however, in this research, a multigraph representation of RNA is used, in which vertices represent stems and edges represent the internal motifs. Any type of RNA secondary structure may be represented by a graph in this manner. We define novel graphical invariants to quantify the multigraphs and obtain characteristic descriptors of the secondary structures. These descriptors are used to train an artificial neural network (ANN) to recognize the characteristics of secondary RNA structure. Using the ANN, we classify the multigraphs as either RNA-like or not RNA-like. This classification method produced results similar to other classification methods. Given the expanding library of secondary RNA motifs, this method may provide a tool to help identify new structures and to guide the rational design of RNA molecules.
APA, Harvard, Vancouver, ISO, and other styles
50

Yang, Joyce C. "Interval Graphs." Scholarship @ Claremont, 2016. https://scholarship.claremont.edu/hmc_theses/83.

Full text
Abstract:
We examine the problem of counting interval graphs. We answer the question posed by Hanlon, of whether the formal power series generating function of the number of interval graphs on n vertices has a positive radius of convergence. We have found that it is zero. We have obtained a lower bound and an upper bound on the number of interval graphs on n vertices. We also study the application of interval graphs to the dynamic storage allocation problem. Dynamic storage allocation has been shown to be NP-complete by Stockmeyer. Coloring interval graphs on-line has applications to dynamic storage allocation. The most colors used by Kierstead's algorithm is 3 ω -2, where ω is the size of the largest clique in the graph. We determine a lower bound on the colors used. One such lower bound is 2 ω -1.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography