Academic literature on the topic 'Combustion air'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Combustion air.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Combustion air"
Ran, Jing Yu, Li Juan Liu, Chai Zuo Li, and Li Zhang. "Numerical Study on Optimum Designing of the Air Distribution Structure of a New Cyclone Combustor." Advanced Materials Research 347-353 (October 2011): 3005–14. http://dx.doi.org/10.4028/www.scientific.net/amr.347-353.3005.
Full textChein, Reiyu, Yen-Cho Chen, Jui-Yu Chen, and J. N. Chung. "Premixed Methanol–Air Combustion Characteristics in a Mini-scale Catalytic Combustor." International Journal of Chemical Reactor Engineering 14, no. 1 (February 1, 2016): 383–93. http://dx.doi.org/10.1515/ijcre-2014-0061.
Full textLiu, C. H., R. M. Perez-Ortiz, and J. H. Whitelaw. "Vaporizer Performance." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 206, no. 4 (July 1992): 265–73. http://dx.doi.org/10.1243/pime_proc_1992_206_126_02.
Full textCao, H. L., J. N. Zhao, K. Zhang, D. B. Wang, and X. L. Wei. "Diffusion Combustion Characteristics of H2/Air in the Micro Porous Media Combustor." Advanced Materials Research 455-456 (January 2012): 413–18. http://dx.doi.org/10.4028/www.scientific.net/amr.455-456.413.
Full textColantonio, R. O. "The Applicability of Jet-Shear-Layer Mixing and Effervescent Atomization for Low-NOx Combustors." Journal of Engineering for Gas Turbines and Power 120, no. 1 (January 1, 1998): 17–23. http://dx.doi.org/10.1115/1.2818073.
Full textSom, S. K., S. S. Mondal, and S. K. Dash. "Energy and Exergy Balance in the Process of Pulverized Coal Combustion in a Tubular Combustor." Journal of Heat Transfer 127, no. 12 (July 25, 2005): 1322–33. http://dx.doi.org/10.1115/1.2101860.
Full textCowell, L. H., R. T. LeCren, and C. E. Tenbrook. "Two-Stage Slagging Combustor Design for a Coal-Fueled Industrial Gas Turbine." Journal of Engineering for Gas Turbines and Power 114, no. 2 (April 1, 1992): 359–66. http://dx.doi.org/10.1115/1.2906599.
Full textJohnson, B. V., S. J. Markowski, and H. M. Craig. "Cold Flow and Combustion Experiments With a New Burner Air Distribution Concept." Journal of Engineering for Gas Turbines and Power 108, no. 2 (April 1, 1986): 370–75. http://dx.doi.org/10.1115/1.3239913.
Full textErdiwansyah, Mahidin, Husni Husin, Nasaruddin, Muhtadin, Muhammad Faisal, Asri Gani, Usman, and Rizalman Mamat. "Combustion Efficiency in a Fluidized-Bed Combustor with a Modified Perforated Plate for Air Distribution." Processes 9, no. 9 (August 24, 2021): 1489. http://dx.doi.org/10.3390/pr9091489.
Full textQian, Yu Fen, Yan Ying Xu, and Ti Hai Xu. "Combustion Characteristics of a Helmholtz-Type Valveless Self-Excited Pulse Combustor." Applied Mechanics and Materials 291-294 (February 2013): 1719–22. http://dx.doi.org/10.4028/www.scientific.net/amm.291-294.1719.
Full textDissertations / Theses on the topic "Combustion air"
Mann, Kenneth R. C. "Premixed ammonia-methane-air combustion." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/MQ62250.pdf.
Full textLundin, Eva. "Adaptive air-fuel ratio control for combustion engines." Thesis, Linköping University, Department of Electrical Engineering, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-56651.
Full textAround the world, vehicle emission regulations become stricter, increasing exhaust emission demands. To manage these rules and regulations, vehicle manufacturers put a lot of effort into minimizing the exhaust emissions. The three-way catalytic converter was developed, and today it is the most commonly used device to control the exhaust emissions.
To work properly the catalytic converter needs to control the air-fuel mixture with great precision. This then increases the demands on the engine management systems, causing them to become more complex. With increased complexity, the time effort of optimizing parameters has grown drastically, hence increasing development costs. In addition to this, operating conditions change due to vehicles age, requiring further optimization of the parameters while running.
To minimize development cost and to control the air-fuel mixture with great precision during an engines full life span, this master thesis proposes a self-optimized system, i.e. an adaptive system, to control the air-fuel mixture.
In the suggested method, the fuel injection to the engine is controlled with help of a linear lambda sensor, which measures the air-fuel mixture. The mapping from injection to measured air-fuel mixture forms a nonlinear system. It can be approximated as a linear function at static engine operating points, allowing the system at each static point to be modelled as a first order system with long time delay. To enable utilization over full operating area, and not only in static point, the controller uses large maps, so called gain-scheduling maps, to change control parameters.
The tested controller is model based. It uses an Otto-Smith Predictor and a feed forward connection of target air-fuel. The model parameters in the controller are updated while driving and the adaptation method used is based on a least squares algorithm.
The performance of the adapted controller and the adaptation method is tested in both simulation environment and in vehicle, showing good potential.
Jahanbakhsh, Alireza. "Predicition of air flow in diesel combustion chambers." Thesis, Imperial College London, 1986. http://hdl.handle.net/10044/1/38049.
Full textBrandstetter, Markus. "Robust air-fuel ratio control for combustion engines." Thesis, University of Cambridge, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.627144.
Full textGonçalves, Cátia Vanessa Maio. "Contribution of biomass combustion to air pollutant emissions." Doctoral thesis, Universidade de Aveiro, 2011. http://hdl.handle.net/10773/8104.
Full textIn Portugal, it was estimated that around 1.95 Mton/year of wood is used in residential wood burning for heating and cooking. Additionally, in the last decades, burnt forest area has also been increasing. These combustions result in high levels of toxic air pollutants and a large perturbation of atmospheric chemistry, interfere with climate and have adverse effects on health. Accurate quantification of the amounts of trace gases and particulate matter emitted from residential wood burning, agriculture and garden waste burning and forest fires on a regional and global basis is essential for various purposes, including: the investigation of several atmospheric processes, the reporting of greenhouse gas emissions, and quantification of the air pollution sources that affect human health at regional scales. In Southern Europe, data on detailed emission factors from biomass burning are rather inexistent. Emission inventories and source apportionment, photochemical and climate change models use default values obtained for US and Northern Europe biofuels. Thus, it is desirable to use more specific locally available data. The objective of this study is to characterise and quantify the contribution of biomass combustion sources to atmospheric trace gases and aerosol concentrations more representative of the national reality. Laboratory (residential wood combustion) and field (agriculture/garden waste burning and experimental wildland fires) sampling experiments were carried out. In the laboratory, after the selection of the most representative wood species and combustion equipment in Portugal, a sampling program to determine gaseous and particulate matter emission rates was set up, including organic and inorganic aerosol composition. In the field, the smoke plumes from agriculture/garden waste and experimental wildland fires were sampled. The results of this study show that the combustion equipment and biofuel type used have an important role in the emission levels and composition. Significant differences between the use of traditional combustion equipment versus modern equipments were also observed. These differences are due to higher combustion efficiency of modern equipment, reflecting the smallest amount of particulate matter, organic carbon and carbon monoxide released. With regard to experimental wildland fires in shrub dominated areas, it was observed that the largest organic fraction in the samples studied was mainly composed by vegetation pyrolysis products. The major organic components in the smoke samples were pyrolysates of vegetation cuticles, mainly comprising steradienes and sterol derivatives, carbohydrates from the breakdown of cellulose, aliphatic lipids from vegetation waxes and methoxyphenols from the lignin thermal degradation. Despite being a banned practice in our country, agriculture/garden waste burning is actually quite common. To assess the particulate matter composition, the smoke from three different agriculture/garden residues have been sampled into 3 different size fractions (PM2.5, PM2.5-10 and PM>10). Despite distribution patterns of organic compounds in particulate matter varied among residues, the amounts of phenolics (polyphenol and guaiacyl derivatives) and organic acids were always predominant over other organic compounds in the organosoluble fraction of smoke. Among biomarkers, levoglucosan, β-sitosterol and phytol were detected in appreciable amounts in the smoke of all agriculture/garden residues. In addition, inositol may be considered as an eventual tracer for the smoke from potato haulm burning. It was shown that the prevailing ambient conditions (such as high humidity in the atmosphere) likely contributed to atmospheric processes (e.g. coagulation and hygroscopic growth), which influenced the particle size characteristics of the smoke tracers, shifting their distribution to larger diameters. An assessment of household biomass consumption was also made through a national scale survey. The information obtained with the survey combined with the databases on emission factors from the laboratory and field tests allowed us to estimate the pollutant amounts emitted in each Portuguese district. In addition to a likely contribution to the improvement of emission inventories, emission factors obtained for tracer compounds in this study can be applied in receptor models to assess the contribution of biomass burning to the levels of atmospheric aerosols and their constituents obtained in monitoring campaigns in Mediterranean Europe.
Em Portugal, estima-se que 1.95 Mton/ano de lenha sejam utilizadas na queima doméstica para aquecimento e confecção de alimentos. Em simultâneo, nas últimas décadas, a área de floresta ardida também tem vindo a aumentar. Estes tipos de combustão contribuem para a libertação de quantidades elevadas de poluentes tóxicos que perturbam a química da atmosfera, interferem com o clima e possuem efeitos nefastos na saúde. A quantificação rigorosa, à escala regional e global, das emissões de gases e matéria particulada associada à queima doméstica, queima de resíduos agrícolas e fogos florestais é fundamental para vários fins, nomeadamente na investigação dos diversos processos atmosféricos, na elaboração de relatórios de emissões de gases de estufa, e na quantificação de fontes de poluição atmosférica que afectam a saúde humana. No sul da Europa, as bases de dados com factores de emissão detalhados são praticamente inexistentes. Os modelos climáticos, a modelização fotoquímica, os inventários de emissões e os estudos de identificação de fontes emissoras utilizam valores típicos obtidos para biomassa norte-americana ou do norte da Europa. Assim, é conveniente utilizar valores mais específicos obtidos localmente. Este estudo teve como principal objectivo a caracterização e quantificação dos gases e aerossóis emitidos por fontes de queima de biomassa, englobando as espécies lenhosas mais representativas da realidade nacional. Foram realizadas experiências de amostragem em laboratório (queima doméstica) e no campo (queima de resíduos agrícolas/jardim e fogos florestais controlados). Em laboratório, após selecção das espécies de biomassa e dos equipamentos de queima mais representativos em Portugal, estabeleceu-se um programa de amostragem para determinar os factores de emissão de poluentes gasosos e particulados, incluindo a composição orgânica e inorgânica dos aerossóis. Ao nível do campo, efectuou-se a amostragem das plumas de fumo resultantes da queima de resíduos agrícolas/jardim e de fogos controlados numa área dominada por espécies arbustivas. Os resultados deste estudo mostram que o tipo de equipamento de combustão e o tipo de biomassa utilizados têm um papel importante nos níveis e composição dos poluentes emitidos. Diferenças significativas entre o uso de equipamentos de combustão tradicionais versus equipamentos modernos foram observadas. Estas diferenças devem-se à maior eficiência de combustão dos equipamentos modernos, reflectindo-se na menor quantidade de matéria particulada, carbono orgânico e monóxido de carbono libertados. No que diz respeito ao fogo controlado em áreas dominadas por espécies arbustivas observou-se que a fracção orgânica estudada nas amostras de fumo é composta essencialmente por produtos resultantes da pirólise da vegetação. Estes produtos são constituídos na sua maioria por esteredienos e derivados de esteróis, hidratos de carbono resultantes da quebra das moléculas de celulose, produtos alifáticos provenientes de ceras vegetais e metoxifenóis resultantes da degradação térmica da lenhina. A queima de resíduos agrícolas e de jardim, apesar de ser uma prática proibida no nosso país, é uma realidade bastante frequente. Para avaliar a composição das emissões de alguns tipos de resíduos foram recolhidas amostras de três tamanhos diferentes (PM2.5, PM2.5-10 and PM>10). Apesar de se poder observar uma grande variabilidade em termos de compostos orgânicos dependendo do tipo de resíduo queimado, os compostos fenólicos (derivados do polifenol e guaiacil) e os ácidos orgânicos foram sempre predominantes em relação à restante fracção orgânica. O levoglucosano, o β-sitosterol e o fitol foram os traçadores de queima de biomassa detectados em quantidades mais apreciáveis na generalidade dos resíduos agrícolas e de jardim. O inositol pode ser considerado um bom traçador para as emissões resultantes da queima de rama de batata. Observou-se que as condições ambientais (tais como valores elevados de humidade relativa na atmosfera) provavelmente contribuíram para processos de coagulação e de crescimento higroscópico que influenciaram as características dos traçadores de biomassa, mudando sua distribuição para diâmetros maiores. Foi também feita a avaliação do consumo doméstico de biomassa na forma de um inquérito aplicado à escala nacional. Os resultados obtidos, conjugados com as bases de dados sobre factores de emissão obtidas nos ensaios de queima laboratoriais, permitiram estimar as quantidades emitidas de vários poluentes em cada distrito de Portugal continental. Além de contribuir significativamente para o aperfeiçoamento dos inventários de emissões, os factores de emissão obtidos para vários compostos traçadores poderão ser aplicados em modelos no receptor de forma a avaliar a contribuição da queima de biomassa para os níveis de aerossóis atmosféricas e seus constituintes obtidos em campanhas de monitorização na Europa mediterrânea.
Nussbaum, Nicholas J. "In-plume measurements of combustion exhaust /." abstract and full text PDF (free order & download UNR users only), 2007. http://0-gateway.proquest.com.innopac.library.unr.edu/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:1447810.
Full text"May, 2007." Includes bibliographical references. Online version available on the World Wide Web. Library also has microfilm. Ann Arbor, Mich. : ProQuest Information and Learning Company, [2007]. 1 microfilm reel ; 35 mm.
Abu-Shanab, H. "Spark ignition of methane-air mixtures." Thesis, University of Leeds, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.376990.
Full textJimenez, Erick G. "Experimental apparatus for characterizing the methane-air combustion process." Thesis, Georgia Institute of Technology, 1992. http://hdl.handle.net/1853/16775.
Full textKrecl, Patricia. "Impact of residential wood combustion on urban air quality." Doctoral thesis, Stockholm : Department of Applied Environmental Science (ITM), Stockholm university, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-7682.
Full textNicolas, Pascal. "Modelling of Air-Isooctane Aerosol Combustion in Laminar Media." Thesis, University of Leeds, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.515373.
Full textBooks on the topic "Combustion air"
Hargittai, István, and Tamás Vidóczy, eds. Combustion Efficiency and Air Quality. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-1827-3.
Full textSchindler, P. J. Municipal waste combustion assessment: Combustion control at new facilities. Research Triangle Park, NC: U.S. Environmental Protection Agency, 1989.
Find full textNewhall, J. Waste combustion system analysis: Project summary. Research Triangle Park, NC: U.S. Environmental Protection Agency, Air and Energy Engineering Research Laboratory, 1992.
Find full textStewart, William E. Design guide: Combustion turbine inlet air cooling systems. Atlanta, Ga: American Society of Heating, Refrigerating and Air-Conditioning Engineers, 1999.
Find full textBeggs, Thomas W. Nitrogen oxide control for stationary combustion sources. Cincinnati, OH: Office of Research and Development, U.S. Environmental Protection Agency, 1986.
Find full textBuren, D. Van. External combustion particulate emissions: Source category report. Research Triangle Park, NC: U.S. Environmental Protection Agency, Research and Development, Air and Energy Engineering Research Laboratory, 1987.
Find full textAhuja, J. K. Numerical simulation of shock-induced combustion in a superdetonative hydrogen-air system. Washington, D. C: American Institute of Aeronautics and Astronautics, 1993.
Find full textMayo, Timothy. Combustion air supply codes in housing: A research report. Ottawa, Ont: Buildings Energy Technology Transfer Program, Energy, Mines and Resources Canada, 1985.
Find full textBook chapters on the topic "Combustion air"
Horton, Mike. "Preheated Combustion Air." In 67th Porcelain Enamel Institute Technical Forum: Ceramic Engineering and Science Proceedings, Volume 26, Number 9, 113–18. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2008. http://dx.doi.org/10.1002/9780470291290.ch16.
Full textShafer, Wade H. "Fuels, Combustion and Air Pollution." In Masters Theses in the Pure and Applied Sciences, 176. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4615-5969-6_16.
Full textTan, Zhongchao. "Post-combustion Air Emission Control." In Green Energy and Technology, 277–313. Singapore: Springer Singapore, 2014. http://dx.doi.org/10.1007/978-981-287-212-8_10.
Full textTan, Zhongchao. "Pre-combustion Air Emission Control." In Green Energy and Technology, 227–55. Singapore: Springer Singapore, 2014. http://dx.doi.org/10.1007/978-981-287-212-8_8.
Full textTan, Zhongchao. "In-combustion Air Emission Control." In Green Energy and Technology, 257–76. Singapore: Springer Singapore, 2014. http://dx.doi.org/10.1007/978-981-287-212-8_9.
Full textShafer, Wade H. "Fuels, Combustion and Air Pollution." In Masters Theses in the Pure and Applied Sciences, 200–201. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4615-2453-3_16.
Full textShafer, Wade H. "Fuels, Combustion, and Air Pollution." In Masters Theses in the Pure and Applied Sciences, 230–31. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-1969-0_16.
Full textShafer, Wade H. "Fuels, Combustion and Air Pollution." In Masters Theses in the Pure and Applied Sciences, 197–98. Boston, MA: Springer New York, 1987. http://dx.doi.org/10.1007/978-1-4615-7388-3_16.
Full textShafer, Wade H. "Fuels, Combustion and Air Pollution." In Masters Theses in the Pure and Applied Sciences, 188. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4615-7391-3_16.
Full textShafer, Wade H. "Fuels, Combustion and Air Pollution." In Masters Theses in the Pure and Applied Sciences, 222–23. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4615-7394-4_16.
Full textConference papers on the topic "Combustion air"
Thomas, M., and A. Leonard. "Air-Turbo-Rocket combustion." In 33rd Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1995. http://dx.doi.org/10.2514/6.1995-813.
Full textBrown, David R., John Narasaki, William Brown, Lennart Bosman, and Greg T. Brown. "Combustion Air Conditioning Systems." In International Congress & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1993. http://dx.doi.org/10.4271/930260.
Full textSingh, Kapil, Bala Varatharajan, Ertan Yilmaz, Fei Han, and Kwanwoo Kim. "Effect of Hydrogen Combustion on the Combustion Dynamics of a Natural Gas Combustor." In ASME Turbo Expo 2008: Power for Land, Sea, and Air. ASMEDC, 2008. http://dx.doi.org/10.1115/gt2008-51343.
Full textMariani, M. "Post-combustion CO2: separation and stocking." In AIR POLLUTION 2006. Southampton, UK: WIT Press, 2006. http://dx.doi.org/10.2495/air06077.
Full textHiramatsu, Masato, Yoshifumi Nakashima, Sadamasa Adachi, Yudai Yamasaki, and Shigehiko Kaneko. "Combustion Characteristics of Small Size Gas Turbine Combustor Fueled by Biomass Gas Employing Flameless Combustion." In ASME Turbo Expo 2007: Power for Land, Sea, and Air. ASMEDC, 2007. http://dx.doi.org/10.1115/gt2007-27636.
Full textDe Vita, A., and L. Di Angelo. "On the Performance of Car Interior Air Filters." In 2001 Internal Combustion Engines. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2001. http://dx.doi.org/10.4271/2001-24-0071.
Full textLovett, Jeffery A., and Kevin T. Uznanski. "Prediction of Combustion Dynamics in a Staged Premixed Combustor." In ASME Turbo Expo 2002: Power for Land, Sea, and Air. ASMEDC, 2002. http://dx.doi.org/10.1115/gt2002-30646.
Full textWang, F., Y. Huang, and T. Deng. "Gas Turbine Combustor Simulation With Various Turbulent Combustion Models." In ASME Turbo Expo 2009: Power for Land, Sea, and Air. ASMEDC, 2009. http://dx.doi.org/10.1115/gt2009-59198.
Full textGarnier, S., E. Depussay, C. Mounaïm-Rousselle, S. Burnel, N. Lamoureux, N. Djebaïli-Chaumeix, X. Jaffrezic, and A. Agneray. "Effect of a Heated Electrode On Lean Propane-Air Flame Development." In 2001 Internal Combustion Engines. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2001. http://dx.doi.org/10.4271/2001-24-0043.
Full textCarter, A. M., A. Germain, J. Rousseau, M. Bisson, and C. Gagnon. "Impact of residential wood combustion on ambient air quality." In AIR POLLUTION 2006. Southampton, UK: WIT Press, 2006. http://dx.doi.org/10.2495/air06063.
Full textReports on the topic "Combustion air"
Widmann, John F., S. Rao Charagundla, and Cary Presser. Characterization of the inlet combustion air in NIST's reference spray combustion facility:. Gaithersburg, MD: National Institute of Standards and Technology, 2000. http://dx.doi.org/10.6028/nist.ir.6458.
Full textCloutman, L. D. What is Air? A Standard Model for Combustion Simulations. Office of Scientific and Technical Information (OSTI), August 2001. http://dx.doi.org/10.2172/15005296.
Full textBrand, L. Measure Guideline: Combustion Safety for Natural Draft Appliances Using Indoor Air. Office of Scientific and Technical Information (OSTI), April 2014. http://dx.doi.org/10.2172/1130168.
Full textBrand, L. Measure Guideline: Combustion Safety for Natural Draft Appliances Using Indoor Air. Office of Scientific and Technical Information (OSTI), April 2014. http://dx.doi.org/10.2172/1221079.
Full textWesnor, J. D. Air toxics evaluation of ABB Combustion Engineering Low-Emission Boiler Systems. Office of Scientific and Technical Information (OSTI), October 1993. http://dx.doi.org/10.2172/10193274.
Full textBrown, D. R., S. Katipamula, and J. H. Konynenbelt. A comparative assessment of alternative combustion turbine inlet air cooling system. Office of Scientific and Technical Information (OSTI), February 1996. http://dx.doi.org/10.2172/211362.
Full textSzpunar, C. B. Air toxic emissions from the combustion of coal: Identifying and quantifying hazardous air pollutants from US coals. Office of Scientific and Technical Information (OSTI), September 1992. http://dx.doi.org/10.2172/6869555.
Full textSzpunar, C. B. Air toxic emissions from the combustion of coal: Identifying and quantifying hazardous air pollutants from US coals. Office of Scientific and Technical Information (OSTI), September 1992. http://dx.doi.org/10.2172/10125031.
Full textHanson, Ronald K. Portable Diode Laser Diagnostic System for Collaborative Research on Air-Breathing Combustion. Fort Belvoir, VA: Defense Technical Information Center, July 2003. http://dx.doi.org/10.21236/ada416567.
Full textZauderer, B. Nonequilibrium Sulfur Capture and Retention in an Air cooled Slagging Coal Combustion. Office of Scientific and Technical Information (OSTI), April 1997. http://dx.doi.org/10.2172/611770.
Full text