Academic literature on the topic 'Combustion gases'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Combustion gases.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Combustion gases"
Prada, Abelardo, and Caroll E. Cortés. "La descomposición térmica de la cascarilla de arroz: Una alternativa de aprovechamiento integral." Orinoquia 14, no. 2 sup (December 1, 2010): 155–70. http://dx.doi.org/10.22579/20112629.103.
Full textVitázek, I., J. Klúčik, D. Uhrinová, Z. Mikulová, and M. Mojžiš. "Thermodynamics of combustion gases from biogas." Research in Agricultural Engineering 62, Special Issue (December 28, 2016): S8—S13. http://dx.doi.org/10.17221/34/2016-rae.
Full textHoward, J. R. "Deposition from combustion gases." Heat Recovery Systems and CHP 10, no. 3 (January 1990): 297. http://dx.doi.org/10.1016/0890-4332(90)90010-h.
Full textOzturk, Suat. "A Numerical Investigation on Emissions of Partially Premixed Shale Gas Combustion." International Journal of Heat and Technology 38, no. 3 (October 15, 2020): 745–51. http://dx.doi.org/10.18280/ijht.380319.
Full textAlturaihi, Muna Hameed, Mahmoud Atallah Mashkour, and Sanaa Turki Mousa AL-Musawi. "Effects of Hydrogen and Nitrogen Concentration on Laminar Burning Velocities and NO, CO Formation of Propane-Air Mixtures." Mathematical Modelling of Engineering Problems 9, no. 4 (August 31, 2022): 1131–35. http://dx.doi.org/10.18280/mmep.090432.
Full textIsvoranu, Dragos D., and Paul G. A. Cizmas. "Numerical Simulation of Combustion and Rotor-Stator Interaction in a Turbine Combustor." International Journal of Rotating Machinery 9, no. 5 (2003): 363–74. http://dx.doi.org/10.1155/s1023621x03000344.
Full textVariny, Miroslav, Augustín Varga, Miroslav Rimár, Ján Janošovský, Ján Kizek, Ladislav Lukáč, Gustáv Jablonský, and Otto Mierka. "Advances in Biomass Co-Combustion with Fossil Fuels in the European Context: A Review." Processes 9, no. 1 (January 5, 2021): 100. http://dx.doi.org/10.3390/pr9010100.
Full textR. Bungay, Henry. "Waste Combustion Gases and Algae." Current Biotechnology 2, no. 1 (February 12, 2013): 59–63. http://dx.doi.org/10.2174/2211550111302010010.
Full textTakeno, Tadao. "Physics of Combustion of Gases." Combustion and Flame 64, no. 1 (April 1986): 125. http://dx.doi.org/10.1016/0010-2180(86)90103-3.
Full textLevytska, Olena Hryhoriivna, Yulia Vladimirovna Voytenko, and Anastasiia Oleksiivna Orishechok. "COMPARATIVE ASSESSMENT OF GASEOUS FUEL EMISSION." Bulletin of the National Technical University "KhPI". Series: Chemistry, Chemical Technology and Ecology, no. 1(5) (May 15, 2021): 83–91. http://dx.doi.org/10.20998/2079-0821.2021.01.13.
Full textDissertations / Theses on the topic "Combustion gases"
Pugh, Daniel. "Combustion characterisation of compositionally dynamic steelworks gases." Thesis, Cardiff University, 2013. http://orca.cf.ac.uk/58006/.
Full textChen, Nini. "Premixed combustion of high calorific value gases." Thesis, University of Leeds, 2016. http://etheses.whiterose.ac.uk/13385/.
Full textGal-Ed, Reuven. "Pulsating catalytic combustion of gaseous fuels." Diss., Georgia Institute of Technology, 1988. http://hdl.handle.net/1853/15649.
Full textParker, S. J. "Electric spark ignition of gases and dusts." Thesis, City University London, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.355585.
Full textPhuoc, Tran Xuan. "Ignition of polymeric material under radiative and convective exposure." Diss., Georgia Institute of Technology, 1985. http://hdl.handle.net/1853/18399.
Full textAnderson, Desmond Carl. "Chemical reactions involved in the desulphurisation of flue gases." Thesis, Queen's University Belfast, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.286829.
Full textJimenez, Erick G. "Experimental apparatus for characterizing the methane-air combustion process." Thesis, Georgia Institute of Technology, 1992. http://hdl.handle.net/1853/16775.
Full textKan, Tie. "Combustion of solid waste in a pulse incinerator." Diss., Georgia Institute of Technology, 1999. http://hdl.handle.net/1853/12975.
Full textPereira, Luís Manuel Cravo. "Capture of pollutants from post-combustion streams with ionic liquids." Master's thesis, Universidade de Aveiro, 2012. http://hdl.handle.net/10773/9533.
Full textO aumento da emissão de poluentes nitrogenados, bem como as limitações presentes nos atuais métodos de controlo e o aparecimento de novas legislações e limites máximos de emissão, requerem o desenvolvimento de novos métodos para a redução destes poluentes. Os Líquidos Iónicos (LIs), pelas suas características únicas e baixa pressão de vapor, têm despertado uma grande atenção durante a última década e estão a tornar-se numa nova classe de solventes muito promissores para a captura de poluentes e separação de gases, quer como fase estacionária num processo de membranas quer como absorvente num processo de extração. Não obstante, o desenvolvimento de novos processos de controlo, ou melhoria dos já existentes, requerem o conhecimento do equilíbrio gás-líquido (EGL) que é, até ao momento, ainda insuficiente. Neste trabalho, a solubilidade de gases presentes em processos de combustão como o azoto (N2), o metano (CH4), óxido nitroso (N2O) e dióxido de carbono (CO2) num líquido iónico muito polar foram estudados através de medições do EGL. Os resultados demostram a já reconhecida elevada solubilidade de N2O e CO2 em LIs bem como a elevada seletividade em relação ao ar devido à baixa solubilidade do N2 nos LIs. Foi ainda observado que, contrariamente aos outros gases, para os sistemas N2 + LIs o aumento da temperatura provoca uma aumento da solubilidade do gás. A descrição dos sistemas anteriores por modelos teóricos é fundamental para o projeto de potenciais técnicas de redução de poluentes. Neste sentido, a soft-SAFT EoS, que tem demonstrado ser capaz de descrever sistemas com LIs com enorme sucesso, foi usada para descrever os diferentes sistemas publicados na literatura e medidos aqui em função da temperatura, composição e pressão, permitindo deste modo estender a aplicabilidade do modelo a novos sistemas. Novos parâmetros moleculares, necessários para a descrição de cada componente, são propostos neste trabalho para o N2O e para três dos cinco LIs estudados. Os resultados demonstraram uma boa descrição dos dados experimentais, tanto no que diz respeito ao comportamento inverso observado para o N2 como a baixa dependência do CH4 com a temperatura. Finalmente, a capacidade de extração dos LIs bem como a sua seletividade é comparada com a dos solventes utilizados nos métodos de controlo atuais, como monoetanolamina (MEA) e éter monometílico de trietilenoglicol (TEGMME). Os resultados demonstram uma capacidade de extração dos LIs igual ou superior à dos solventes convencionais, aliada a uma elevada seletividade em relação ao N2O e CO2. Com base neste trabalho, pode-se afirmar que os LIs, devido às suas características únicas e elevada seletividade, apresentam um grande potencial para serem utilizados na captura de poluentes.
The increase in nitrogenated pollutants emissions, along with the limitations of the existing control methods and future stricter legislation, demands the development of new methods to reduce such pollutants. Ionic liquids (ILs), due to their unique characteristics and low vapour pressure, have attracted a large attention during the last decade and are becoming a promising class of solvents to capture pollutants and for gas separation, either as a stationary phase in a membrane process or as an absorption solvent in an extraction process. Nonetheless, the development and/or improvement of new/existing control processes requires the knowledge of gas-liquid equilibrium (GLE) data for ILs + gas systems that are, at the moment, still scarce. The solubilities of some common gases present in combustion processes, such as nitrogen (N2), methane (CH4), nitrous oxide (N2O) and carbon dioxide (CO2), were studied through the experimental measurement of the GLE. The results showed a high solubility of N2O and CO2 compared to N2. Furthermore, a surprisingly increase of the solubility of N2 with temperature was observed. The description of previous systems by theoretical models stands also as a vital task for the development of techniques to reduce pollutants. In this sense, the soft-SAFT EoS has proven to be able to describe systems with ILs with a huge success and in a predictive manner. Thus, this model was used to describe the GLE data available in the literature and measured here, for different temperatures and for all concentrations and pressures ranges studied, in order to extend the applicability of the soft-SAFT EoS to describe/predict the gas + ILs systems. The molecular parameters necessary for the description of each compound were determined for the first time in this work for N2O and three of the five ILs involved. The results showed a good description of the experimental data. In addition to that, soft-SAFT EoS successfully predicts the peculiar behaviour observed for N2 as well as the low temperature dependence observed for the CH4 systems. Finally, the extraction capacity and gases selectivity in the ILs was compared with other solvents used in the reduction of pollutants, such as monoethanolamine (MEA) and triethylene glycol monomethyl ether (TEGMME). The results showed a similar or higher extraction capacity of the ILs compared to conventional solvents, combined with a high selectivity towards N2O and CO2. Based on the results showed on this work, it is suggested that ILs due to their unique characteristics and high selectivity are promising agents to capture pollutants.
Gopalakrishnan, Priya. "Effects of the reacting flowfield on combustion processes in a stagnation point reverse flow combustor." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/22682.
Full textCommittee Chair: Seitzman, Jerry; Committee Member: Gaeta, Richard; Committee Member: Jagoda, Jeff; Committee Member: Neumeier, Yedidia; Committee Member: Yoda, Minami; Committee Member: Zinn, Ben.
Books on the topic "Combustion gases"
1903-, Von Elbe Guenther, ed. Combustion, flames, and explosions of gases. 3rd ed. Orlando: Academic Press, 1987.
Find full textE, Baukal Charles, ed. Oxygen-enhanced combustion. Boca Raton, Fla: CRC Press, 1998.
Find full textGjerneshErik. Thermodynamical and transport properties of gases. Roskilde: Risø NationalLaboratory, 1994.
Find full textŻukowski, Witold. Badania procesu spalania paliw gazowych w reaktorze z inertnym złożem fluidalnym. Kraków: Politechnika Krakowska, 2004.
Find full textUnited States. National Aeronautics and Space Administration., ed. Development of comprehensive numerical schemes for predicting evaporating gas-droplets flow processes of a liquid-fueled combustor: Semi-annual report, June 15, 1988-November 30, 1988. [Washington, DC]: National Aeronautics and Space Administration, 1990.
Find full textUnited States. National Aeronautics and Space Administration., ed. Component testing of a ground based gas turbine steam cooled rich-burn primary zone combustor for emissions control of nitrogenous fuels. [Washington, D.C.]: National Aeronautics and Space Administration, 1986.
Find full textR, Smith K., and United States. Environmental Protection Agency. Office of Research and Development, eds. Greenhouse gases from small-scale combustion in developing countries: A pilot study in Manila. Washington, D.C: U.S. Environmental Protection Agency, Office of Research and Development, 1992.
Find full textInternational Conference on Combustion & Emissions Control (2nd 1995 London, England). The Institute of Energy's Second International Conference on Combustion & Emissions Control: Proceedings of the Institute of Energy conference held in London, UK, on 4-5 December 1995 ; organized by the Institute of Energy ; co-sponsored by Associazione Termotecnica Italiana ... [et al.]. London: The Institute of Energy, 1995.
Find full textD, Roy G., Frolov S. M, Starik A. M, and International Symposium on Combustion and Atmospheric Pollution (2003 : Saint Petersburg, Russia), eds. Combustion and atmospheric pollution. Moscow: Torus Press, 2003.
Find full textBook chapters on the topic "Combustion gases"
Zeldovich, Ya B., G. I. Barenblatt, V. B. Librovich, and G. M. Makhviladze. "Diffusional Combustion of Gases." In The Mathematical Theory of Combustion and Explosions, 555–83. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4613-2349-5_7.
Full textMa, Tingguang. "Combustion Fundamentals." In Ignitability and Explosibility of Gases and Vapors, 37–72. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4939-2665-7_3.
Full textClarke, J. F. "Combustion and Compressibility in Gases." In Mathematical Modeling in Combustion and Related Topics, 43–63. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-2770-4_4.
Full textBebernes, Jerrold, and David Eberly. "Conservation Systems for Reactive Gases." In Mathematical Problems from Combustion Theory, 129–61. New York, NY: Springer New York, 1989. http://dx.doi.org/10.1007/978-1-4612-4546-9_6.
Full textKaplan, Harold L., and Gordon E. Hartzell. "Modeling of Toxicological Effects of Fire Gases: I. Incapacitating Effects of Narcotic Fire Gases." In Advances in Combustion Toxicology,Volume I, 182–201. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003418948-12.
Full textHanabusa, M., T. Nomura, S. Iguchi, S. Furuno, and T. Inoue. "CARS Thermometry For High Pressure Gases." In Laser Diagnostics and Modeling of Combustion, 111–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-45635-0_14.
Full textBanaszak, Teresa, Ryszard Miller, and Anita Zieba. "Thermal-Catalytic Incineration of Waste Gases." In Combustion Technologies for a Clean Environment, 633–42. London: CRC Press, 2022. http://dx.doi.org/10.1201/9780367810597-48.
Full textChiriac, Rareş Lucian, Anghel Chiru, and Ovidiu Andrei Condrea. "Technical Solutions for the Use of Internal Combustion Engine Combustion Gases." In The 30th SIAR International Congress of Automotive and Transport Engineering, 131–37. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-32564-0_16.
Full textLiberman, Michael A. "Energy Dissipation in Gases and Liquids." In Introduction to Physics and Chemistry of Combustion, 157–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-78759-4_7.
Full textRosier, B., P. Gicquel, D. Henry, and D. Coppale. "Carbon Monoxide Concentrations and Temperature Measurements in Combustion Gases." In Monitoring of Gaseous Pollutants by Tunable Diode Lasers, 246–60. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-0989-2_24.
Full textConference papers on the topic "Combustion gases"
Andresen, Peter. "Improving Combustion with Laser Diagnostics." In Modern Spectroscopy of Solids, Liquids, and Gases. Washington, D.C.: Optica Publishing Group, 1995. http://dx.doi.org/10.1364/msslg.1995.ssab1.
Full textTort Oropeza, Alejandro, Rogelio Gonza´lez Oropeza, and Fe´lix Nu´n˜ez Orozco. "A Different Combustion Engine." In ASME 2005 Internal Combustion Engine Division Spring Technical Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/ices2005-1007.
Full textJialu, Yan, Liu Ming, and Yang Yushun. "On the Thermodynamic Properties of Combustion Gases." In ASME 1985 Beijing International Gas Turbine Symposium and Exposition. American Society of Mechanical Engineers, 1985. http://dx.doi.org/10.1115/85-igt-26.
Full textZhang, Kunpeng, Fei Xue, and Weiming Pan. "Theoretical Investigation and Numerical Simulation of Turbulent Combustion in an Industrial Combustor With Combustion Gases Recirculation." In ASME 2004 Power Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/power2004-52025.
Full textArnau, Francisco, Ricardo Novella, Luis Miguel García-Cuevas, and Fabio Gutiérrez. "Adapting an Internal Combustion Engine to Oxy-Fuel Combustion With In-Situ Oxygen Production." In ASME 2021 Internal Combustion Engine Division Fall Technical Conference. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/icef2021-67707.
Full textGreen, S. F. "ACOUSTIC TEMPERATURE & VELOCITY MEASUREMENT IN COMBUSTION GASES." In International Heat Transfer Conference 8. Connecticut: Begellhouse, 1986. http://dx.doi.org/10.1615/ihtc8.2670.
Full textTrabelsi, S., W. Lakhal, E. Sediki, A. Soufiani, Mourad Telmini, Najeh Thabet Mliki, and Ezeddine Sediki. "Infrared Radiative Properties Model for Flowing Combustion Gases." In FUNDAMENTAL AND APPLIED SPECTROSCOPY: Second International Spectroscopy Conference, ISC 2007. AIP, 2007. http://dx.doi.org/10.1063/1.2795422.
Full textFARROW, R., R. LUCHT, and R. PALMER. "Spectral modeling for CARS diagnostics of combustion gases." In 19th AIAA, Fluid Dynamics, Plasma Dynamics, and Lasers Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1987. http://dx.doi.org/10.2514/6.1987-1304.
Full textNarayanan, G., and S. O. Bade Shrestha. "Landfill Gas: A Fuel for IC Engine Applications." In ASME 2007 Internal Combustion Engine Division Fall Technical Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/icef2007-1623.
Full textSonnenfroh, David M., and Mark G. Allen. "Diode Laser Absorption Spectroscopy of Combustion Gases Near 1.57 Microns." In Laser Applications to Chemical and Environmental Analysis. Washington, D.C.: Optica Publishing Group, 1996. http://dx.doi.org/10.1364/lacea.1996.lwa.5.
Full textReports on the topic "Combustion gases"
Hanson, Ronald, and Craig Bowman. Spectroscopy and Kinetics of Combustion Gases at High Temperatures. Office of Scientific and Technical Information (OSTI), February 2016. http://dx.doi.org/10.2172/1236969.
Full textHanson, R. K., and C. T. Bowman. Spectroscopy and kinetics of combustion gases at high temperatures. Office of Scientific and Technical Information (OSTI), December 1991. http://dx.doi.org/10.2172/5758465.
Full textHanson, R. K., and C. T. Bowman. Spectroscopy and kinetics of combustion gases at high temperatures. Office of Scientific and Technical Information (OSTI), November 1992. http://dx.doi.org/10.2172/7000934.
Full textDennis Laudal. JV Task 125-Mercury Measurement in Combustion Flue Gases Short Course. Office of Scientific and Technical Information (OSTI), September 2008. http://dx.doi.org/10.2172/989405.
Full textTanoue, Kimitoshi, Shuho Mori, Fumio Shimada, Hiroyuki Hirota, and Keita Kawano. The Effects of Inert Gases on Combustion Properties of Outwardly Propagating DME Flames. Warrendale, PA: SAE International, May 2005. http://dx.doi.org/10.4271/2005-08-0190.
Full textHanson, R. K., and C. T. Bowman. Spectroscopy and kinetics of combustion gases at high temperatures. Annual progress report 1991. Office of Scientific and Technical Information (OSTI), December 1991. http://dx.doi.org/10.2172/10133329.
Full textMorris D. Argyle. Supported, Alkali-Promoted Cobalt Oxide Catalysts for NOx Removal from Coal Combustion Flue Gases. Office of Scientific and Technical Information (OSTI), December 2005. http://dx.doi.org/10.2172/913563.
Full textNichols, B. D., C. Mueller, G. A. Necker, J. R. Travis, J. W. Spore, K. L. Lam, P. Royl, and T. L. Wilson. GASFLOW: A Computational Fluid Dynamics Code for Gases, Aerosols, and Combustion, Volume 2: User's Manual. Office of Scientific and Technical Information (OSTI), October 1998. http://dx.doi.org/10.2172/1222.
Full textMüller, C., E. D. Hughes, G. F. Niederauer, H. Wilkening, J. R. Travis, J. W. Spore, P. Royl, and W. Baumann. GASFLOW: A Computational Fluid Dynamics Code for Gases, Aerosols, and Combustion, Volume 3: Assessment Manual. Office of Scientific and Technical Information (OSTI), October 1998. http://dx.doi.org/10.2172/1223.
Full textBajwa, Abdullah, and Timothy Jacobs. PR-457-17201-R02 Residual Gas Fraction Estimation Based on Measured Engine Parameters. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), February 2019. http://dx.doi.org/10.55274/r0011558.
Full text