To see the other types of publications on this topic, follow the link: Combustion of Fuel.

Dissertations / Theses on the topic 'Combustion of Fuel'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Combustion of Fuel.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Radhakrishnan, Arun. "Self-sustained combustion of low grade solid fuels in a stagnation-point reverse-flow combustor." Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/50275.

Full text
Abstract:
This thesis investigates the use of the Stagnation-Point Reverse-Flow (SPRF) combustor geometry for burning low-grade solid fuels that are attractive for specific industrial applications because of their low cost and on-site availability. These fuels are in general, hard to burn, either because of high moisture and impurity-content, e.g. biomass, or their low-volatiles content, e.g., petroleum-coke. This results in various challenges to the combustor designer, for example reduced flame stability and poor combustion efficiency. Conventional solutions include preheating the incoming flow as well as co-firing with high-grade fuels. The SPRF combustor geometry has been chosen because it was demonstrated to operate stably on standard gaseous and liquid-fuels corresponding to ultra fuel-lean conditions and power densities at atmospheric-pressure around 20-25 MW/m3. Previous studies on the SPRF combustor have proven that the unique, reverse flow-geometry allows entrainment of near-adiabatic products into the incoming reactants, thereby enhancing the reactivity of the mixture. Further, the presence of the stagnation-end created a region of low mean velocities and high levels of unsteadiness and mixing-rates that supported the reaction-zones. In this study, we examine the performance of the SPRF geometry on a specific low grade solid fuel, petroleum coke. There are three main goals of this thesis. The first goal is the design of a SPRF combustor to operate on solid-fuels based on a design-scaling methodology, as well as demonstration of successful operation corresponding to a baseline condition. The second goal involves understanding the mode of operation of the SPRF combustor on solid-fuels based on visualization studies. The third goal of this thesis is developing and using reduced-order models to better understand and predict the ignition and quasi-steady burning behavior of dispersed-phase particles in the SPRF combustor. The SPRF combustor has been demonstrated to operate stably on pure-oxygen and a slurry made from water and petroleum-coke, both at the baseline conditions (125 kW, 18 g/s, ~25 µm particles) and higher power-densities and powder sizes. For an overall combustor length less than a meter, combustion is not complete (global combustion efficiency less than 70%). Luminance imaging results indicate the incoming reactant jet ignites and exhibits intense burning at the mid-combustor region, around 15 jet diameters downstream of the inlet, most likely due to enhanced mixing as a result of the highly unsteady velocity field. This roughly corresponds to the location of the reaction zones in the previous SPRF combustors operating on gas and liquid fuels. Planar laser visualization of the reacting flow-field using particle-scattering reveals that ignition of a significant amount of the reactants occurs only after the incoming jet has broken into reactant packets. Post-ignition, these burning packets burn out slowly as they reverse direction and exit the combustor on either side of the central injector. This is unlike the behavior in liquid and gas-fueled operation where the incoming reactants burned across a highly corrugated, thin-flame front. Based on these findings, as well as the results of previous SPRF studies, an idealized model of combustor operation based on a plug flow reactor has been developed. The predictions suggest that fuel-conversion efficiency is enhanced by the combustor operating pressure and lowered by the heat-losses. Overall, this effort has shown the SPRF geometry is a promising compact-combustor concept for self-sustained operation on low-grade solid-fuels for typical high-pressure applications such as direct steam-generation. Based on these findings, it is recommended that future designs for the specific application previously mentioned have a shorter base-combustor with lower heat-losses and a longer steam-generation section for injection of water.
APA, Harvard, Vancouver, ISO, and other styles
2

Hossain, Abu Norman. "Combustion of solid fuel in a fluidized bed combustor." Ohio : Ohio University, 1998. http://www.ohiolink.edu/etd/view.cgi?ohiou1176492911.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hossain, Abu Noman. "Combustion of solid fuel in a fluidized bed combustor." Ohio University / OhioLINK, 1998. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1176492911.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lin, Dah-Chan. "Computational modelling of solid fuel combustion." Thesis, Cranfield University, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.305380.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Farrow, Timipere Salome. "A fundamental study of biomass oxy-fuel combustion and co-combustion." Thesis, University of Nottingham, 2013. http://eprints.nottingham.ac.uk/27633/.

Full text
Abstract:
While oxy-fuel combustion research is developing and large scale projects are proceeding, little information is available on oxy-biomass combustion and cocombustion with coal. To address this knowledge gap, this research conducted has involved comprehensive laboratory based fundamental investigation of biomass firing and co-firing under oxy-fuel conditions and compared it to conventional air firing conditions. First, TGA was employed to understand the fundamental behaviour of biomass devolatilisation, char combustion and nitrogen partitioning between volatiles and residual char. The results revealed that C02 did not have effect on the devolatilisation of sawdust at temperatures below 1100 grad. C due to higher mass transfer resistance of primary volatiles in C02 than in N2 at low temperatures. Secondly,. by optimising the devolatilisation procedure in a combustion system that simulates closely to an industrial scale such as drop tube furnace (DTF), the devolatilisation/char combustion characteristics of sawdust was investigated. The effect of CO2 on volatile yields, nitrogen partitioning and char burnout were all significant in relation to N2• While coal combustion additives are being used to enhance coal burnout, this study observed improved coal char burnout when biomass char was co-fired with coal char, again a faster burnout was observed in oxy-firing condition compared to air firing. This was due to the catalytic effect of biomass inherent alkali and alkaline earth metals. Similarly, improved volatile yields were observed during codevolatilisation. These fundamental results have provided insight into oxybiomass' firing and co-firing and the data can be used in appropriate CFD modelling to aid the design of oxy-biomass co-firing burners.
APA, Harvard, Vancouver, ISO, and other styles
6

Cuseo, James M. (James Michael). "Cold start fuel management of port-fuel-injected internal combustion engines." Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/32380.

Full text
Abstract:
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2005.<br>Includes bibliographical references (p. 64).<br>The purpose of this study is to investigate how changes in fueling strategy in the second cycle of engine operation influence the delivered charge fuel mass and engine out hydrocarbon (EOHC) emissions in that and subsequent cycles. Close attention will be paid to cycle-to-cycle interaction of the fueling strategy. It is our intent to see if residual fuel from each cycle has a predicable influence on subsequent cycle's charge mass and EOHC emissions. The fast flame ionization detector is employed to measure both in-cylinder and engine out hydrocarbon concentrations for various cold start strategies. The manufacturer's original fueling strategy is used as a starting point and is compared to a "in-cylinder fuel air ratio (Phi) [approx.] 1" case (a fueling strategy that results in an in-cylinder concentration of approximately stoichiometric for each of the first five cycles) and to a number of cases that are chosen to illustrate cycle-to-cycle mixture preparation dependence on second cycle fueling. Significant cycle-to-cycle dependence is observed with the change in second cycle. A fueling deficit in cycle two has a more pronounce effect on future cycles delivered charge mass than a fueling surplus while a fueling surplus in cycle two has a more pronounce effect on future cycles charge mass than a fueling deficit.<br>by James M. Cuseo.<br>S.M.
APA, Harvard, Vancouver, ISO, and other styles
7

Königsson, Fredrik. "Advancing the Limits of Dual Fuel Combustion." Licentiate thesis, KTH, Förbränningsmotorteknik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-96945.

Full text
Abstract:
There is a growing interest in alternative transport fuels. There are two underlying reasons for this interest; the desire to decrease the environmental impact of transports and the need to compensate for the declining availability of petroleum. In the light of both these factors the Diesel Dual Fuel, DDF, engine is an attractive concept. The primary fuel of the DDF engine is methane, which can be derived both from renewables and from fossil sources. Methane from organic waste; commonly referred to as biomethane, can provide a reduction in greenhouse gases unmatched by any other fuel. The DDF engine is from a combustion point of view a hybrid between the diesel and the otto engine and it shares characteristics with both. This work identifies the main challenges of DDF operation and suggests methods to overcome them. Injector tip temperature and pre-ignitions have been found to limit performance in addition to the restrictions known from literature such as knock and emissions of NOx and HC. HC emissions are especially challenging at light load where throttling is required to promote flame propagation. For this reason it is desired to increase the lean limit in the light load range in order to reduce pumping losses and increase efficiency. It is shown that the best results in this area are achieved by using early diesel injection to achieve HCCI/RCCI combustion where combustion phasing is controlled by the ratio between diesel and methane. However, even without committing to HCCI/RCCI combustion and the difficult control issues associated with it, substantial gains are accomplished by splitting the diesel injection into two and allocating most of the diesel fuel to the early injection. HCCI/RCCI and PPCI combustion can be used with great effect to reduce the emissions of unburned hydrocarbons at light load. At high load, the challenges that need to be overcome are mostly related to heat. Injector tip temperatures need to be observed since the cooling effect of diesel flow through the nozzle is largely removed. Through investigation and modeling it is shown that the cooling effect of the diesel fuel occurs as the fuel resides injector between injections and not during the actual injection event. For this reason; fuel residing close to the tip absorbs more heat and as a result the dependence of tip temperature on diesel substitution rate is highly non-linear. The problem can be reduced greatly by improved cooling around the diesel injector. Knock and preignitions are limiting the performance of the engine and the behavior of each and how they are affected by gas quality needs to be determined. Based on experiences from this project where pure methane has been used as fuel; preignitions impose a stricter limit on engine operation than knock.<br>QC 20120626<br>Diesel Dual Fuel
APA, Harvard, Vancouver, ISO, and other styles
8

Girgis, Elisabeth. "Fuel devolatilization in packed bed wood combustion." Thesis, University of Ottawa (Canada), 2004. http://hdl.handle.net/10393/26645.

Full text
Abstract:
Packed bed combustion is the burning of solid fuel particles supported by a grate with the combustion air supplied from below. The combustion process is divided into four main stages: drying, devolatilization, volatiles combustion and char combustion. Biomasses proposed as renewal energy sources, such as wood, have a very high volatile content (&sim;80%). Therefore mechanistic models developed for the prediction of bed characteristics during biomass combustion must include devolatilization and volatile combustion stages in order to correctly predict combustion behaviour for better emissions control and process efficiency. A novel in-situ sampling method for tar, a major pyrolysis product, was developed that allows its concentration to be measured at various heights within the packed bed and appears to work satisfactorily. A series of experiments on packed bed combustion were conducted in a laboratory 'pot' type combustor. Two different equivalent particle size diameters (2.8 cm and 3.2 cm) of untreated spruce wood and two different airflow rates (0.025 kg/m2s and 0.03 kg/m 2s) were tested at a 22 cm bed height. Although the experimental data show scatter, the measurements indicated that pyrolysis occurred primarily within two particle diameters of the top of the bed, with large amounts of tar and CO and somewhat less CO2 being produced. This research also expanded a numerical model for packed bed combustion of solid fuels with the addition of a simple first order pyrolysis reaction, in which fixed proportions of the products were set as light volatiles of CO and CO2 with the balance as tar. The model results compared well with bed temperature, particle size and density measurement throughout the bed and gas concentration (CO, CO2, O2, and CH4) measurements in the reduction and oxidation zone.
APA, Harvard, Vancouver, ISO, and other styles
9

Elmedhem, Bashir A. "Modelling of liquid fuel combustion in furnaces." Thesis, University of Glasgow, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.325303.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Goldsmith, Claude Franklin III. "Predicting combustion properties of hydrocarbon fuel mixtures." Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/59876.

Full text
Abstract:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Chemical Engineering, 2010.<br>Cataloged from PDF version of thesis.<br>Includes bibliographical references (p. 189-201).<br>In this thesis, I applied computational quantum chemistry to improve the accuracy of kinetic mechanisms that are used to model combustion chemistry. I performed transition state theory calculations for several reactions that are critical in combustion, including a detailed analysis of the pressure dependence of these rate coefficients. I developed a new method for rapidly estimating the vibrational modes and hindered rotor parameters for molecules. This new method has been implemented in an automatic reaction mechanism generation software, RMG, and has improved the accuracy of the density of states computed in RMG, which in turn has improved RMG's ability to predict the pressure-dependence of rate coefficients for complex reaction networks. I used statistical mechanics to compute the thermochemistry for over 170 of the most important species in combustion. These calculations form a new library of thermodynamic parameters, and this library will improve the accuracy of kinetic models, particularly for fuel lean conditions. I measured reaction rate coefficients using both laser flash-photolysis absorption spectroscopy in a slow-flow reactor and time-of-flight mass spectrometry and laser Schlieren densitometry in a shock tube. Based upon these experimental projects, I helped design a one-of-a-kind instrument for measuring rate coefficients for combustion-relevant reactions. The new reactor combines photoionization time-of-flight mass spectrometry with multi-pass absorption spectroscopy in a laser-flash photolysis cell. The cumulative effect of these efforts should advance our understanding of combustion chemistry and allow us to make more accurate predictions of how hydrocarbons burn.<br>by Claude Franklin Goldsmith, III.<br>Ph.D.
APA, Harvard, Vancouver, ISO, and other styles
11

Turner, Dale Michael. "The combustion and emissions performance of fuel blends in modern combustion systems." Thesis, University of Birmingham, 2010. http://etheses.bham.ac.uk//id/eprint/1165/.

Full text
Abstract:
The combustion and emissions performance of fuel blends in modern combustion systems has been investigated with the intention of reducing emissions, improving efficiency and assessing the suitability of future automotive fuels. The combustion systems used in this study include Homogeneous Charge Compression Ignition (HCCI) and Direct Injection Spark Ignition (DISI). By adding a small quantity (10%) of diesel to gasoline, the HCCI combustion of this ‗Dieseline‘ mixture shows a 4% increase in the maximum and a 16% reduction in the minimum loads (IMEP) achievable. The NOX emissions are reduced, with greater than 30% savings seen for high engine loads. The addition of bio-fuels (ethanol and 2,5 di-methylfuran) to gasoline in HCCI combustion resulted in reduced ignitability giving rise to a 0.25 bar IMEP reduction of the maximum load. A 70% increase in NOX emissions is seen at an engine load of 3.5 bar IMEP. The addition of ethanol and to a lesser extent 2,5 di-methylfuran (DMF) to gasoline in DISI combustion shows increased combustion efficiency. The NOX emissions are reduced with ethanol, but are increased with the addition of DMF. At wide open throttle the bio-fuels show up to a 3 percentage point increase in efficiency through the use of more favourable spark timings brought about by the increased octane ratings and enthalpies of vaporisation. The PM emissions from DISI combustion can be reduced by up to 58% (mass) with the addition of ethanol. The soluble organic fraction forms a significant part of the total PM, particularly for the higher ethanol blends at wide open throttle. The addition of DMF however increases the total PM by up to 70% (mass) through the incomplete combustion of the ring structure.
APA, Harvard, Vancouver, ISO, and other styles
12

Weber, Matthew F. "Characterization of Combustion Dynamics in a Liquid Model Gas Turbine Combustor Under Fuel-Rich Conditions." University of Cincinnati / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1562060065192189.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Vittilapuram, Subramanian Kannan. "Modelin combustion of multicomponent fuel droplets: formulation and application to transportation fuels." Texas A&M University, 2004. http://hdl.handle.net/1969.1/3320.

Full text
Abstract:
The quasi-steady, spherically symmetric combustion of multicomponent isolated fuel droplets has been modeled using modified Shvab-Zeldovich variable mechanism. Newly developed modified Shvab-Zeldovich equations have been used to describe the gas phase reactions. Vapor-liquid equilibrium model has been applied to describe the phase change at the droplet surface. Constant gas phase specific heats are assumed. The liquid phase is assumed to be of uniform composition and temperature. Radiative heat transfer between the droplet and surroundings is neglected. The results of evaporation of gasoline with discrete composition of hydrocarbons have been presented. The evaporation rates seem to follow the pattern of volatility differentials. The evaporation rate constant was obtained as 0.344mm2/sec which compared well with the unsteady results of Reitz et al. The total evaporation time of the droplet at an ambience of 1000K was estimated to be around 0.63 seconds. Next, the results of evaporation of representative diesel fuels have been compared with previously reported experimental data. The previous experiments showed sufficient liquid phase diffusional resistance in the droplet. Numerical results are consistent with the qualitative behavior of the experiments. The quantitative deviation during the vaporization process can be attributed to the diffusion time inside the droplet which is unaccounted for in the model. Transient evaporation results have also been presented for the representative diesel droplets. The droplet temperature profile indicates that the droplet temperature does not reach an instantaneous steady state as in the case of single-component evaporation. To perform similar combustion calculations for multicomponent fuel droplets, no simple model existed prior to this work. Accordingly, a new simplified approximate mechanism for multicomponent combustion of fuel droplets has been developed and validated against several independent data sets. The new mechanism is simple enough to be used for computational studies of multicomponent droplets. The new modified Shvab-Zeldovich mechanism for multicomponent droplet combustion has been used to model the combustion characteristics of a binary alcohol-alkane droplet and validated against experimental data. Burn rate for the binary droplet of octanol-undecane was estimated to be 1.17mm2/sec in good concurrence with the experimental value of 0.952mm2/sec obtained by Law and Law. The model has then been used to evaluate the combustion characteristics of diesel fuels assuming only gas phase reactions. Flame sheet approximation has been invoked in the formulation of the model.
APA, Harvard, Vancouver, ISO, and other styles
14

Okon, Aniekan. "Combustion dynamics in a lean premixed combustor with swirl forcing and fuel conditions." Thesis, Cardiff University, 2017. http://orca.cf.ac.uk/108265/.

Full text
Abstract:
Fossil fuels still account for a large percentage of global energy demand according to available statistics. Natural gas is increasingly gaining the share of these fuels due to the retired coal and nuclear plants. The more stringent emission standards have also put natural gas ahead of other fuels as a result of its efficiency, cost, environmental attributes as well as the operational efficiency of the gas turbine, an engine that uses this fuel. A standard low emission combustion technique in gas turbines is the dry low NOx combustion, with lean fuel and fuel-air premixed upstream of the flame holder. However, this condition is highly susceptible to combustion instabilities characterised by large amplitude oscillations of the combustor’s acoustic modes excited by unsteady combustion processes. These pressure oscillations are detrimental both to the efficiency of performance as well as the hardware of the system. Although the processes and mechanisms that result in instabilities are well known, however, the current challenges facing gas turbine operators are the precise understanding of the operational conditions that cause combustion instabilities, accurate prediction of the instability modes and the control of the disturbances. In a bid to expand this knowledge frontier, this study uses a 100kW swirl premixed combustor to examine the evolution of the flow structures, its influence on the flame dynamics, in terms of heat release fluctuation and the overall effects on the pressure field, under different, swirl, fuel and external excitation conditions. The aim is to determine the operational conditions whose pressure oscillation is reduced to the barest minimum to keep the system in an excellent running condition. The results of this study are expected to contribute towards the design of a new control system to damp instabilities in gas turbines.
APA, Harvard, Vancouver, ISO, and other styles
15

Lundin, Eva. "Adaptive air-fuel ratio control for combustion engines." Thesis, Linköping University, Department of Electrical Engineering, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-56651.

Full text
Abstract:
<p>Around the world, vehicle emission regulations become stricter, increasing exhaust emission demands. To manage these rules and regulations, vehicle manufacturers put a lot of effort into minimizing the exhaust emissions. The three-way catalytic converter was developed, and today it is the most commonly used device to control the exhaust emissions.</p><p>To work properly the catalytic converter needs to control the air-fuel mixture with great precision. This then increases the demands on the engine management systems, causing them to become more complex. With increased complexity, the time effort of optimizing parameters has grown drastically, hence increasing development costs. In addition to this, operating conditions change due to vehicles age, requiring further optimization of the parameters while running.</p><p>To minimize development cost and to control the air-fuel mixture with great precision during an engines full life span, this master thesis proposes a self-optimized system, i.e. an adaptive system, to control the air-fuel mixture.</p><p>In the suggested method, the fuel injection to the engine is controlled with help of a linear lambda sensor, which measures the air-fuel mixture. The mapping from injection to measured air-fuel mixture forms a nonlinear system. It can be approximated as a linear function at static engine operating points, allowing the system at each static point to be modelled as a first order system with long time delay. To enable utilization over full operating area, and not only in static point, the controller uses large maps, so called gain-scheduling maps, to change control parameters.</p><p>The tested controller is model based. It uses an Otto-Smith Predictor and a feed forward connection of target air-fuel. The model parameters in the controller are updated while driving and the adaptation method used is based on a least squares algorithm.</p><p>The performance of the adapted controller and the adaptation method is tested in both simulation environment and in vehicle, showing good potential.</p>
APA, Harvard, Vancouver, ISO, and other styles
16

Hu, Yukun. "CO2 capture from oxy-fuel combustion power plants." Licentiate thesis, KTH, Energiprocesser, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-48666.

Full text
Abstract:
To mitigate the global greenhouse gases (GHGs) emissions, carbon dioxide (CO2) capture and storage (CCS) has the potential to play a significant role for reaching mitigation target. Oxy-fuel combustion is a promising technology for CO2 capture in power plants. Advantages compared to CCS with the conventional combustion technology are: high combustion efficiency, flue gas volume reduction, low fuel consumption, near zero CO2 emission, and less nitrogen oxides (NOx) formation can be reached simultaneously by using the oxy-fuel combustion technology. However, knowledge gaps relating to large scale coal based and natural gas based power plants with CO2 capture still exist, such as combustors and boilers operating at higher temperatures and design of CO2 turbines and compressors. To apply the oxy-fuel combustion technology on power plants, much work is focused on the fundamental and feasibility study regarding combustion characterization, process and system analysis, and economic evaluation etc. Further studies from system perspective point of view are highlighted, such as the impact of operating conditions on system performance and on advanced cycle integrated with oxy-fuel combustion for CO2 capture. In this thesis, the characterization for flue gas recycle (FGR) was theoretically derived based on mass balance of combustion reactions, and system modeling was conducted by using a process simulator, Aspen Plus. Important parameters such as FGR rate and ratio, flue gas composition, and electrical efficiency etc. were analyzed and discussed based on different operational conditions. An advanced evaporative gas turbine (EvGT) cycle with oxy-fuel combustion for CO2 capture was also studied. Based on economic indicators such as specific investment cost (SIC), cost of electricity (COE), and cost of CO2avoidance (COA), economic performance was evaluated and compared among various system configurations. The system configurations include an EvGT cycle power plant without CO2 capture, an EvGT cycle power plant with chemical absorption for CO2 capture, and a combined cycle power plant. The study shows that FGR ratio is of importance, which has impact not only on heat transfer but also on mass transfer in the oxy-coal combustion process. Significant reduction in the amount of flue gas can be achieved due to the flue gas recycling, particularly for the system with more prior upstream recycle options. Although the recycle options have almost no effect on FGR ratio, flue gas flow rate, and system electrical efficiency, FGR options have significant effects on flue gas compositions, especially the concentrations of CO2 and H2O, and heat exchanger duties. In addition, oxygen purity and water/gas ratio, respectively, have an optimum value for an EvGT cycle power plant with oxy-fuel combustion. Oxygen purity of 97 mol% and water/gas ratio of 0.133 can be considered as the optimum values for the studied system. For optional operating conditions of flue gas recycling, the exhaust gas recycled after condensing (dry recycle) results in about 5 percentage points higher electrical efficiency and about 45 % more cooling water consumption comparing with the exhaust gas recycled before condensing (wet recycle). The direct costs of EvGT cycle with oxy-fuel combustion are a little higher than the direct costs of EvGT cycle with chemical absorption. However, as plant size is larger than 60 MW, even though the EvGT cycle with oxy-fuel combustion has a higher COE than the EvGT cycle with chemical absorption, the EvGT cycle with oxy-fuel combustion has a lower COA. Further, compared with others studies of natural gas combined cycle (NGCC), the EvGT system has a lower COE and COA than the NGCC system no matter which CO2 capture technology is integrated.<br>QC 20111123
APA, Harvard, Vancouver, ISO, and other styles
17

Leiser, Simon [Verfasser]. "Numerical Simulation of Oxy-fuel Combustion / Simon Leiser." Aachen : Shaker, 2011. http://d-nb.info/1098040236/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Rajakaruna, Hobinanuwan Tikiri Banda. "A mathematical model for liquid fuel spray combustion." Thesis, De Montfort University, 1997. http://hdl.handle.net/2086/5207.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Ocampo-Barrera, Rene. "Combustion of Mexican heavy fuel oil/water emulsions." Thesis, University of Salford, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.244933.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Zhang, Fan. "Spray, combustion and emission characteristics of dieseline fuel." Thesis, University of Birmingham, 2013. http://etheses.bham.ac.uk//id/eprint/4699/.

Full text
Abstract:
The spray, combustion and emissions characteristics of diesel and gasoline blends (dieseline) were studied. Experimental results showed that the dieseline fuel spray had tip penetration length similar as diesel. With an increase of the gasoline/diesel blending ratio, the fuel droplets size decreased. When operating with dieseline, the engine's PM emissions were much lower than diesel. With advanced injection timing and large amounts of EGR, both the NOx and PM emissions of dieseline combustion were reduced significantly at part loads. Using split injection strategies gave even more flexibility for the control of mixing strength and combustion phasing. However, the power density of dieseline fuelled PPCI operation was limited. A novel concept, Stoichiometric Dual-fuel Compression Ignition (SDCI) was investigated. The diesel and gasoline were blended internally through direct injection and port fuel injection respectively. Stoichiometric condition was maintained through adjusting the EGR ratio, which thus allows for a three-way-catalyst to handle gaseous emissions. Experimental results showed that the SDCI combustion can achieve better thermal efficiency and lower PM emissions than conventional diesel combustion. Overall, the SDCI concept was proved to be a promising technique for optimising a CI engine's efficiency, emissions and noise without compromise of cost and power density.
APA, Harvard, Vancouver, ISO, and other styles
21

Kronholm, David Franklin 1967. "Molecular weight growth pathways in fuel-rich combustion." Thesis, Massachusetts Institute of Technology, 2000. http://hdl.handle.net/1721.1/8996.

Full text
Abstract:
Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Chemical Engineering, 2000.<br>Includes bibliographical references.<br>Polycyclic aromatic hydrocarbons (P AH) and soot are formed when a hydrocarbon fuel is oxidized under fuel-rich conditions. The distinction between what constitutes the largest P AH molecule and the smallest soot particle is arbitrary; the formation processes of both can be placed under the heading of molecular weight growth. Evidence exists for the carcinogenicity of many P AH molecules. Soot is used as a component of dyes and as an additive to rubbers as well as being an undesirable atmospheric pollutant. Both are emitted from many typical combustion processes such as diesel engines, wood fires, furnaces, etc. Though the area has received much attention, the fundamental chemical mechanisms for formation of both P AH and soot are still uncertain. Much debate has centered on the identity of the soot surface growth reactant, in particular whether the dominant surface growth reactant is P AH or acetylene. Though several models of soot formation exist, none has demonstrated through comparison to experimental data a thorough knowledge of the fundamental chemical processes of soot formation. The goal of this research was to further the understanding of these fundamental chemical processes. Since the chemistry of P AH and soot are intertwined, PAH was a necessary subcomponent of the soot formation research. The research was accomplished by obtaining soot particle size distribution data for the jet-stirred reactor/ plug-flow reactor (JSR/PFR), development of kinetics modeling methods, and the development of a kinetics model of soot formation. The JSR/PFR has been used extensively in the past to investigate P AH and soot formation, providing much data for concentrations of light-gas species, P AH, and soot under various conditions of equivalence ratio, temperature, and PFR additives. No experimental data have been obtained for soot particle size distribution in the JSR/PFR, so a study was undertaken here to obtain the soot particle size distributions for two conditions previously studied by Marr, premixed atmospheric ethylene combustion at equivalence ratio 2.2 and temperatures of 1520 K and 1620 K. Thermophoretic sampling was used to obtain soot samples for transmission electron micrograph analysis. Software was written and used to obtain soot particle sizes from electron micrographs. The chemical environment in a fuel-rich flame consists of many hundreds of species and thousands of chemical reactions. To isolate particular portions of the chemistry, a calculational technique was developed, data incorporation, that replaces chosen portions of the chemistry in kinetics models with functions of data concentrations. This technique was then used to isolate the process of P AH molecular weight growth and soot nucleation through the use of a discrete sectional model, and rate coefficients for hydrogen-atom abstraction, acetylene-addition, and PAH radical addition to PAH were obtained by comparisons to data from Marr for the 1620 K condition described above and the same condition with naphthalene injection into the PFR. The data incorporation technique was then used to expand the discrete sectional model to include sections describing soot, and the experimental soot size distribution data described above was used with previously available PFR data to obtain values for rate coefficients of PAHaddition to soot and coagulation of soot particles. Five PFR conditions were used to develop the soot formation model in these calculations, and the dominant mechanisms of soot formation present under these conditions appear to be present in the model. Quantitative agreement is obtained to all of the available data, including simultaneous agreement of soot mass and particle size, without significant deviation in the rate coefficients required to obtain agreement. Calculations were performed using both PAH and acetylene as the dominant soot surface growth reactant. It was found that P AH had far more consistent rate coefficient values (constant to within a factor of 4) than acetylene ( constant to within a factor of 59) to describe the data for all of the conditions. An analysis of the above five sets of conditions in the PFR, an additional three for the PFR, and three for premixed one-dimensional flames of acetylene, ethylene, and benzene, for which concentrations of acetylene, P AH. and soot, and in the case of the one-dimensional flames, soot particle size data, were available, were analyzed with the aim of understanding the dominant characteristics of the soot surface growth reactant. Soot mass growth rates were calculated for all of the conditions, and deviate markedly between the PFR and one-dimensional flames. Soot growth rate increases and oscillates in the PFR and sharply declines in the one-dimensional flames in the region of soot growth after initial particle inception. Under all of these conditions, PAH show the characteristics required of the dominant surface growth reactant: increases and oscillations in the PFR and sharp declines in the one-dimensional flames. For acetylene to be the dominant surface growth reactant, anomalous behavior of acetylene-suot reactivity would be required that cannot be explained by soot aging or radical intermediates. This leads to the observation that the long-held notion of declining soot reactivity in premixed one-dimensional flames similar to the ones studied here is a result of variations in the PAH intermediates and not a real phenomenon in the region after soot particle inception. An approximate method of uncertainty analysis of kinetics models was used to place an uncertainty bound of a factor of 3 on the rate coefficient parameters calculated. The approximate method was compared to more precise techniques and used to show that the uncertainty of concentration predictions with PAH kinetics models is of very large magnitude. The approximate uncertainty analysis technique was also used to show that the data incorporation technique reduces the uncertainty in calculated rate parameters by over two orders of magnitude. A kinetics model reduction algorithm was developed and implemented to reduce a PAH kinetics model fro.n 722 reactions and 187 species to 93 reactions and 52 species, maintaining naphthalene conc1;;ntration to within 9% of the original model. This technique was also used by Dinaro to redm:e a benzene oxidation model from 545 to 41 reactions for use in super-critical water oxidation applications.<br>by David Franklin Kronholm.<br>Ph.D.
APA, Harvard, Vancouver, ISO, and other styles
22

Brandstetter, Markus. "Robust air-fuel ratio control for combustion engines." Thesis, University of Cambridge, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.627144.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Young, Gregory. "Metallic nanoparticles as fuel additives in airbreathing combustion." College Park, Md.: University of Maryland, 2007. http://hdl.handle.net/1903/7710.

Full text
Abstract:
Thesis (Ph. D.) -- University of Maryland, College Park, 2007.<br>Thesis research directed by: Dept. of Mechanical Engineering. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
APA, Harvard, Vancouver, ISO, and other styles
24

Atiku, Farooq Abubakar. "Combustion of bio-oil and heavy fuel oil." Thesis, University of Leeds, 2015. http://etheses.whiterose.ac.uk/12179/.

Full text
Abstract:
The use of combustion parameters to predict what happens to fuel during burning and its effect on living systems is important. This work is directed towards understanding the fundamental chemistry of soot generated from burning biomass-pyrolysis liquid fuels and its mechanism of formation. In this study, fuels such as eugenol, anisole, furfural and some hydrocarbon fuels are subjected to combustion using a wick burner which allowed the burning rate, smoke point and emission factor to be investigated. Reaction zone analysis of flames by direct photography and by using optical filters for further investigation of C2* and CH* species, was conducted. Additionally, detailed characterization of the soot generated was performed, and comparisons were made with soot from petroleum products and from biomass combustion system. The key aim was to generate experimental data and to capture detailed information regarding sooting tendencies with a view to utilize the information which would eventually allow the formation of a comprehensive bio-oil combustion model. This could provide accurate predictions of the combustion characteristics and pollutant formation. Studies are reported on the significant role of high temperature pyrolysis products in soot formation and acquiring further mechanistic insight. This work has been extended to consider heavy petroleum fuel oils (residual oil) during combustion and the effect of composition on combustion products and on the effect on health and the global environment. Heavy fuel oil, such as Bunker C and vacuum residue, are commonly used as fuel for industrial boilers, power generation, and as transport fuels in, for example, in large marine engines. The combustion of these fuels gives rise to carbonaceous particulate emissions including fine soot (Black Carbon or BC) which, along with associated polynuclear aromatic hydrocarbons (PAH): The structure and thermal reactions of petroleum asphaltene have been studied by analytical pyrolysis. Additionally, related combustion characteristics of the asphaltene extracted from bio-oil have been investigated by pyrolysis gas chromatography-mass spectrometry. The results showed the difference between bio-asphaltene and the petroleum asphaltene and the different tendency to form smoke. They also showed the presence of markers for the bio-asphaltene structure.
APA, Harvard, Vancouver, ISO, and other styles
25

Wu, Chunyang. "Fuel-NOx Formation during Low-Grade Fuel Combustion in a Swirling-Flow Burner." Diss., CLICK HERE for online access, 2006. http://contentdm.lib.byu.edu/ETD/image/etd1165.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Duboc, B. "The effect of fuel additives on diesel fuel delivery system and combustion performance." Thesis, University College London (University of London), 2014. http://discovery.ucl.ac.uk/1455626/.

Full text
Abstract:
The thesis presents an investigation of several aspects of fuel additive performance, including the effects of additives on the pump torque required to deliver high pressure fuel to engine injectors, the fuel droplet size distribution at sub-zero diesel fuel temperature, when wax formation occurs, and the ignition delay of diesel fuel combustion in an engine as well as constant volume combustion vessel. Exhaust emissions due to fuel additives were also investigated in an engine. A pump torque rig was designed and commissioned to investigate fuel additive performance at various pump speeds, fuel delivery (common rail) pressures and fuel temperatures, including sub-zero temperatures at which fuel waxing occurs. An existing constant volume combustion vessel was adapted to allow observations of fuel spray with additives and it was used for spray and combustion investigations. Various components of the combustion vessel were modified to support the fuel spray instrumentation. Also, a sub-zero fuel temperature system was developed to allow fuel to be cooled down for investigations; finally, a fuel pressure intensifier was designed which allowed ease of dismantling and thorough cleaning so as to eliminate additive cross-contamination between successive tests with additives. Results have shown that in general, additives have very small effects on many aspects of the fuel delivery system performance when the primary purpose of the additive is not related to the fuel delivery system. That is, there are virtually no side effects on pumping system performance from additives not intended to affect this system. This is mainly due to the small quantity in which the fuel additives are added, which is too small to affect any of the overall fuel properties. Additionally, it was proven that a constant volume combustion vessel is unsuitable to carry out combustion performance tests on fuel with additives, due to the high error in test repeatability. In contrast, the engine tests were able to reveal the effects of several combustion modifying additives on engine combustion performance and exhaust emissions. The fuel spray analysis at sub-zero temperatures revealed that wax formation was not the likely cause of an increase in droplet size but, instead, the likely cause is an increase in fuel viscosity.
APA, Harvard, Vancouver, ISO, and other styles
27

Falk, Joel. "Effect of fuel composition and combustion conditions on phosphorus behavior during combustion of biomass." Licentiate thesis, Luleå tekniska universitet, Energivetenskap, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-71240.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Phuoc, Tran Xuan. "Ignition of polymeric material under radiative and convective exposure." Diss., Georgia Institute of Technology, 1985. http://hdl.handle.net/1853/18399.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Hines, Anne Michelle. "Characteristics of Active Combustion Control for Liquid-Fuel Systems with Proportional Primary Fuel Modulation." Thesis, Virginia Tech, 2005. http://hdl.handle.net/10919/32569.

Full text
Abstract:
The first part of this work focuses on control experiments performed on an unstable kerosene-fueled turbulent combustor. Using a phase shift controller and primary fuel modulation stability is successfully gained for a wide band of global equivalence ratios allowing the limitations of the control scheme to be characterized. It is shown that control signal saturation can significantly impact the ability of the control scheme to stabilize the system. Three different regions of controllability are defined based on the degree of saturation. A hysteresis behavior is also found to exist for the controller settings depending on whether stability is being maintained or realized for an unstable system. <p> The second part of this work focuses on the impact that primary fuel modulation has on the fuel spray. Measurements for a simplex nozzle and an air-assist nozzle are taken under both static and dynamic operating conditions with a Phase Doppler Anemometry system. The dynamic modulation is found to significantly impact the spray properties of both nozzles.<br>Master of Science
APA, Harvard, Vancouver, ISO, and other styles
30

Dannecker, Karin Margaret. "EFFECT OF COAL COMPOSITION ON FUEL-NITROGEN MECHANISMS DURING FUEL RICH COMBUSTION (STAGED, POLLUTANTS)." Thesis, The University of Arizona, 1985. http://hdl.handle.net/10150/275302.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Monsalve, Serrano Javier. "Dual-fuel compression ignition: towards clean, highly efficient combustion." Doctoral thesis, Universitat Politècnica de València, 2016. http://hdl.handle.net/10251/75109.

Full text
Abstract:
The more and more stringent emissions regulations, together with the greater fuel economy demanded by vehicle users, impose a clear objective to researchers and engine manufacturers: look for the maximum efficiency with the minimum pollutant emissions levels. The conventional diesel combustion is a highly efficient process, but also leads to high levels of NOx and soot emissions that require using aftertreatment systems to reduce the final levels released to the environment. Since these systems incur in higher costs of acquisition and operation of the engine, the scientific community is working on developing alternative strategies to reduce the generation of these pollutants during the combustion process itself. The literature shows that the new combustion modes based on promoting low temperatures during this process, offer high efficiency and very low NOx and soot levels simultaneously. However, after years of investigation, it can be concluded that these techniques cannot be applied in the whole engine operating range due to, among others, factors like the low control of the combustion process. In recent years, it has been demonstrated that the dual-fuel combustion technique allows to overcome this limitation thanks to the additional degree of freedom provided by the capacity of modulating the fuel reactivity depending on the engine operating conditions. This characteristic, together with the near-zero NOx and soot levels obtained with this technique, has encouraged the scientific community to deeply investigate the dual-fuel combustion. In this sense, former works confirm the advantages previously described, concluding that still exist some limitations to be tackled, as well as some margin for improving the potential of this combustion concept. The general objective of the present Doctoral Thesis is to contribute to the understanding of the dual-fuel combustion mode, with the particular aim of exploring different ways to improve its efficiency. For this purpose, it has been experimentally evaluated different options such as the modification of the engine operating parameters, specific designs of the piston geometry or the use of alternative fuels. With the aim of answering some of the questions found in the literature, the first part of each study has been dedicated to perform a detailed analysis of the influence of each particular strategy on the dual-fuel operation at low load. Later, it has been checked the ability of each option to extend the dual-fuel operating range towards higher engine loads. It is interesting to note that the analysis of some results has been supported by CFD calculations, which have allowed to understand some local phenomena occurring during the dual-fuel combustion process, which cannot be confirmed only from the experimental point of view. Finally, taking into account the knowledge acquired during the different studies performed, the last chapter of results has been devoted to evaluate the ability of the dual-fuel concept to operate over the whole engine map, as well as to identify the possible limitations that this technique presents from the technological point of view.<br>Las cada vez más restrictivas normativas anticontaminantes, junto con la demanda de motores con menor consumo de combustible por parte de los usuarios, imponen un claro objetivo a investigadores y fabricantes de motores: la búsqueda de la máxima eficiencia con los mínimos niveles de emisiones contaminantes. La combustión diésel convencional ofrece una alta eficiencia, pero a su vez da lugar a elevadas emisiones de NOx y hollín que requieren del uso de sistemas de postratamiento para reducir los niveles finales emitidos al ambiente. Dado que estos sistemas incurren en mayores costes de adquisición y operación del motor, la comunidad científica está trabajando en el desarrollo distintas estrategias para reducir la generación de estos contaminantes durante el propio proceso de combustión. La literatura demuestra que los nuevos modos de combustión basados en promover bajas temperaturas durante este proceso, ofrecen simultáneamente una elevada eficiencia y muy bajos niveles de NOx y hollín. Sin embargo, tras años de investigación, se puede llegar a la conclusión de que estas técnicas no pueden ser aplicadas en todo el rango de operación del motor debido a, entre otros, factores como el escaso control sobre el proceso de combustión. En los últimos años, se ha demostrado que la técnica de combustión dual-fuel permite superar esta limitación gracias al grado de libertad adicional que supone la capacidad de modular la reactividad del combustible en función de las condiciones de operación del motor. Esta característica, junto con los casi nulos niveles de NOx y hollín que proporciona, ha despertado un gran interés sobre la comunidad científica. En este sentido, trabajos precedentes confirman las ventajas que este modo de combustión ofrece, demostrando a su vez que aún existen una serie de limitaciones por abordar, así como cierto margen por explotar para mejorar el potencial de este concepto. La presente Tesis Doctoral plantea como objetivo general el contribuir a la comprensión del modo de combustión dual-fuel, y de manera particular explorar distintas vías con objeto de mejorar su eficiencia. Para ello, se han evaluado de manera experimental diferentes opciones que van desde la modificación de los parámetros de operación del motor, hasta diseños específicos de la geometría del pistón o el uso de combustibles alternativos. Tratando de responder algunas de las cuestiones encontradas en la literatura, en cada uno de los estudios se ha realizado un análisis detallado de la influencia del parámetro en cuestión sobre la operación del motor a baja carga, y a su vez se ha comprobado la capacidad de cada una de estas opciones de extender la operación del motor hacia cargas más elevadas. Cabe destacar que el análisis de ciertos resultados se ha apoyado en cálculos numéricos CFD, los cuales han permitido entender ciertos fenómenos locales que ocurren durante el proceso de combustión dual-fuel, y que no pueden ser confirmados únicamente desde el punto de vista experimental. Finalmente, teniendo en cuenta el conocimiento adquirido en los diferentes estudios realizados, el último capítulo de resultados se ha dedicado a evaluar la capacidad de operación del concepto dual-fuel en todo el rango de funcionamiento del motor, así como a identificar las posibles limitaciones que esta técnica presenta desde el punto de vista tecnológico.<br>Les cada vegada més restrictives normatives anticontaminants, juntament amb la demanda de motors amb menor consum de combustible per part dels usuaris, imposen un clar objectiu a investigadors i fabricants de motors: la cerca de la màxima eficiència amb els mínims nivells d'emissions contaminants. La combustió dièsel convencional ofereix una alta eficiència, però al seu torn dóna lloc a elevades emissions de NOx i sutge que requereixen de l'ús de sistemes de postractament per a reduir els nivells finals emesos a l'ambient. Aquests sistemes incorren en majors costos d'adquisició i operació del motor, per la qual cosa de forma paral·lela, la comunitat científica està treballant en el desenvolupament de diferents estratègies per a reduir la generació d'aquests contaminants durant el propi procés de combustió. La literatura demostra que les noves tècniques de combustió basades a promoure baixes temperatures durant aquest procés, ofereixen simultàniament una elevada eficiència i molt baixos nivells de NOx i sutge. No obstant açò, després d'anys de recerca, es pot arribar a la conclusió que aquestes tècniques no poden ser aplicades en tot el rang d'operació del motor a causa de, entre uns altres, factors com l'escàs control sobre el procés de combustió. En els últims anys, s'ha demostrat que la tècnica de combustió dual-fuel permet superar aquesta limitació gràcies al grau de llibertat addicional que suposa la capacitat de modular la reactivitat del combustible en funció de les condicions d'operació del motor. Aquesta característica, juntament amb els quasi nuls nivells de NOx i sutge que proporciona, ha despertat un gran interès sobre la comunitat científica. En aquest sentit, treballs precedents confirmen els avantatges que aquesta tècnica de combustió ofereix, demostrant al seu torn que encara existeixen una sèrie de limitacions per abordar, així com cert marge per explotar per a millorar el potencial d'aquest concepte. La present Tesi Doctoral planteja com a objectiu general el contribuir a la comprensió de la tècnica de combustió dual-fuel, i de manera particular explorar diferents vies a fi de millorar la seua eficiència. Per a açò, s'han avaluat de manera experimental diferents opcions que van des de la modificació dels paràmetres d'operació del motor, fins a dissenys específics de la geometria del pistó o l'ús de combustibles alternatius. Tractant de respondre algunes de les qüestions trobades en la literatura, en cadascun dels estudis s'ha realitzat una anàlisi detallada de la influència del paràmetre en qüestió sobre l'operació del motor a baixa càrrega, i al seu torn s'ha comprovat la capacitat de cadascuna d'aquestes opcions d'estendre l'operació del motor cap a càrregues més elevades. Cal destacar que l'anàlisi de certs resultats s'ha recolzat en càlculs numèrics CFD, els quals han permès entendre certs fenòmens locals que ocorren durant el procés de combustió dual-fuel, i que no poden ser confirmats únicament des del punt de vista experimental. Finalment, tenint en compte el coneixement adquirit en els diferents estudis realitzats, l'últim capítol de resultats s'ha dedicat a avaluar la capacitat d'operació del concepte dual-fuel en tot el rang de funcionament del motor, així com a identificar les possibles limitacions que aquesta tècnica presenta des del punt de vista tecnològic.<br>Monsalve Serrano, J. (2016). Dual-fuel compression ignition: towards clean, highly efficient combustion [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/75109<br>TESIS
APA, Harvard, Vancouver, ISO, and other styles
32

Stauber, Alfredsson Malin. "Effects of Different Fuels on Combustion Boiler Processes : The analysis of alternative fuel mixtures." Thesis, KTH, Skolan för kemi, bioteknologi och hälsa (CBH), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-231565.

Full text
Abstract:
The objective of this study is to investigate the eect of dierent fuels on two uidized bed boiler systemsat the energy company Soderenergi's site in Igelsta, called IKV and IGV P3. Today, recovered wastewood (RWW) is the major fuel share fed into the boilers. However, with an insecure fuel supply in thefuture, other fuel types must be considered. Based on knowledge from previous fuel usage in the boilers,an evaluation of how other potential fuel mixtures may eect the operation is conducted. The additionalfuels considered in the fuel blends are; stem wood chips, cutter shavings, solid recycled fuel (SRF) andrubber.With elemental analysis of the fuels and established key numbers, the previous fuel mixtures are evaluated.The indications by the guiding parameters are compared with experienced problems and the formercondition of the boilers, and the risk limits for the key numbers are adjusted to a suitable level. Thepotential mixtures are evaluated with the key numbers and the updated limits. In addition to the keynumbers, the heavy metal concentration, the heating value, the moisture content and the ash content ofthe fuel blends are included in the evaluation. The considered damages in the boilers caused by the fuelblends are corrosion, sintering and fouling.The damage level from the current fuel usage for IKV and IGV P3 is fairly low. The results from theanalyzed fuel mixtures show an increased damage risk in the boilers. Additionally, adjustments of theboiler systems are required by some of the analyzed fuel mixtures. In general, the corrosion risk andthe heavy metal content will increase in comparison with today's fuel. The fouling and slagging are aswell expected to increase for the assessed fuel mixtures. Moreover, the result illustrates an increased ashgeneration, which demands a reconstruction of the ash cooling system for IKV. Furthermore, the increaseof LHV in the assessed fuel mixtures to IGV P3, is likely to require an increased capacity of the ue gasrecirculation pump.In the analysis of the potential fuel mixtures it is found that the corrosion risk expressed by the keynumbers is reduced with a higher share of rubber. The heavy metal content is, however, increased,leading to e.g. an enhanced risk for formation of eutectic salts, which as well are corrosive. On thecontrary, the fuel mixtures with a high risk expressed by the key numbers, have the lowest concentrationsof heavy metals. Due to the results are con icting, a balance between the risk indicated by the keynumbers and the heavy metal concentration must be considered in the evaluation. The fuel mixturesconsidered causing least damage to IKV are a mixture of 42% RWW, 48% wood fuel and 15% SRF, and amixture of 70% wood fuel, 20% SRF and 10% rubber. The fuel mixtures considered causing least damageto IGV P3 are a mixture of 85% RWW and 15% rubber and a mixture of 70% RWW and 30% SRF.<br>Syftet med studien var att undersoka branslets paverkan pa tva uidbaddpannor, IKV och IGV P3, hos energiforetaget Soderenergi. Idag ar det huvudsakliga branslet i dessa pannor returtra (RT). Med en standigtrorlig branslemarknad kravs kunskap av alternativa branslen. Baserat pa tidigare bransleanvandning,har paverkan fran potentiella bransleblandningar pa pannan undersokts. Utover returtra ar stamveds is,span, papper-plast-tra (SRF) och gummi med i de analyserade blandningarna.Med elementaranalyser pa branslen och etablerade nyckeltal utvarderades de tidigare anvanda branslena.Indikationen fran nyckeltalen ar jamford med upplevda problem och risknivaerna for nyckeltalen arandrade till passande nivaer. De framtida bransleblandningarna analyserades med hjalp av nyckeltalenoch de uppdaterade risknivaerna. Utover nyckeltalen analyserades tungmetallhalten, varmevardet, fukthaltenoch askhalten i bransleblandningarna. De pannskador orsakade av bransleblandningarna somundersokts ar korrosion, sintring och paslag.Det nuvarande branslet till IKV och IGV P3 ger en relativt lag skadeniva. Resultaten fran de analyseradebransleblandningarna visar att skaderisken i pannorna kommer att oka och forandringar av pannan kankomma att kravas. Generellt kommer korrosionsrisken och tungmetallinnehallet att oka i jamforelse meddagens bransle. Okat paslag och slaggning ar ocksa forvantat. Vidare visar resultatet att askproduktionenkommer att oka, vilket gor att IKVs kylsystem for bottenaskan kommer behovas byggas ut. LHV for deanalyserade bransleblandningarna for IGV P3 okar, vilket innebar att kapaciteten for returgas aktarnatroligen maste okas.I jamforelsen av de olika bransleblandningarna visas att korrosionsrisken, forutspadd av nyckeltalen,minskar med en hogre andel gummi. Daremot okar tungmetallinnehallet, vilket leder till en okad riskfor bildning av eutektiska salter, vilka ocksa ar korrosiva. Bransleblandningarna med en indikerad hogrisk av nyckeltalen, har tvartemot den lagsta koncentrationen av tungmetaller. Eftersom resultatenar motsagande, kravs en avvagning mellan riskerna indikerade av nyckeltalen och tungmetallshalten.De bransleblandningar som ar ansedda att vara minst skadliga for IKV ar en blandning av 42% RT,48% tradbransle och 15% SRF, och en blandning av 70% tradbransle, 20% SRF och 10% gummi. Debransleblandning som ar ansedda att vara minst skadliga for IGV P3 ar en blandning av 85% RT och15% gummi, och en blandning av 70% RT och 30% SRF.
APA, Harvard, Vancouver, ISO, and other styles
33

Urbon, Bruce Charles Netzer David Willis. "Atomization and combustion of a gelled, metallized slurry fuel /." Monterey, Calif. : Springfield, Va. : Naval Postgraduate School; Available from the National Technical Information Service, 1992. http://handle.dtic.mil/100.2/ADA261778.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Brandvoll, Øyvind. "Chemical looping combustion : fuel conversion with inherent CO2 capture." Doctoral thesis, Norwegian University of Science and Technology, Department of Energy and Process Engineering, 2005. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-1203.

Full text
Abstract:
<p>Chemical looping combustion (CLC) is a new concept for fuel energy conversion with CO<sub>2</sub> capture. In CLC, fuel combustion is split into seperate reduction and oxidation processes, in which a solid carrier is reduced and oxidized, respectively. The carrier is continuously recirculated between the two vessels, and hence direct contact between air and suel is avoided. As a result, a stoichiometric amount of oxygen is transferred to the fuel by a regenerable solid intermediate, and CLC is thus a varient of oxy-fuel combustion. In principle, pure CO<sub>2</sub> can be obtained from the reduction exhaust by condensation of the produced water vapor. The termodynamic potential and feasibility of CLC has been studied by means of process simulatons and experimental studies of oxygen carriers. Process simulations have focused on parameter sensitivity studies of CLC implemented in 3 power cycles; CLC-Combined Cycle, CLC-Humid Air Turbine and CLC-Integrated Steam Generation. Simulations indicate that overall fuel conversion ratio, oxidation temperature and operating pressure are among the most imortant process parameters in CLC. A promising thermodynamic potentail of CLC has been found, with efficiencies comparable to, - or better than existing technologies for CO<sub>2 </sub>capture. The proposed oxygen carrier nickel oxide on nickel spinel (NiONiA1) has been studied in reduction with hydrogen, methane and methane/steam as well as oxidation with dry air. It has been found that at atmosphereic pressure and temperatures above 600° C, solid reduction with dry methane occurs with overall fuel conversion of 92%. Steam methane reforming is observed along with methane cracking as side reactions, yealding an overall selectivity of 90% with regard to solid reduction. If steam is added to the reactant fuel, coking can be avoided. A methodology for long term investigation of solid chemical activity in a batch reactor is proposed. The method is based on time variables for oxidaton. The results for NiONiA1 do not rule out CLC as a viable alternative for CO<sub>2 </sub>capture, but long term durability studies along with realistic testing of the carrier in a continuous rig is needed to firmly conclude. For comparative purposes a perovskite was synthesized and tested in CLC, under similar conditions as NiONiA1. The results indicate that in a moving bed CLC application, perovskites have inherent disadvantages as compared to simpler compounds, by virtue of low relative oxygen content. </p>
APA, Harvard, Vancouver, ISO, and other styles
35

Xiao, Zhiying. "Influence of fuel composition on diesel combustion and emissions." Thesis, Brunel University, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.285096.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Lake, Timothy Hugh. "Gasoline combustion systems for improved fuel economy and emissions." Thesis, University of Brighton, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.302289.

Full text
Abstract:
This document is the statement of independent and original contribution to knowledge represented by the published works in partial fulfilment of the requirements of the University of Brighton for the degree of Doctor of Philosophy (by publication). The thesis reviews the impact of research work conducted between 1992 and 1998 on various concepts to improve the economy and emissions of gasoline engines in order to address environmental and legislative pressures. The research has a common theme, examining the dilution of the intake charge (with either recycled exhaust gas [EGR], excess air, or the two in combination) in both conventional port injected [MPI] and direct injection [G-DI] combustion systems. After establishing the current status of gasoline engine technology before the programme of research was started, the thesis concentrates on seven major pieces of research between 1992 and 1996. These explored a subsequently patented method of applying recycled exhaust gas to conventional port injected gasoline engines to improve their economy and emissions whilst staying compatible with three-way catalyst systems. Nine other studies are reviewed which took place between 1992 and 1999 covering other methods of improving gasoline engines, specifically direct injection and two-stroke operation. Together, all the studies provide a treatise on methods to improve the gasoline engine and the thesis allows a view from a broader perspective than was possible at the time each study was conducted. In particular, the review identifies a range of strategies that use elements of the research that can be used to improve economy and emissions. Four major categories of systems researched include: conventional stoichiometric MPI engines developed to tolerate high EGR rates [CCVS]; two-stroke G-DI engines; G-DI engines operating stoichiometrically with high EGR rates; and G-DI engines operating with high dilution from both excess air and EGR. The findings of the studies illustrate that although good fuel economy improvements and emissions can be obtained with EGR dilution of stoichiometric engines, the highest fuel economy improvements require lean deNOx aftertreatment [LNA] and these, in turn, require new aftertreatment technologies and preferably new fuel specifications. The development of suitable LNA and the cost of implementation of these approaches represents one of the main barriers to improving gasoline engine fuel economy and emissions.
APA, Harvard, Vancouver, ISO, and other styles
37

Königsson, Fredrik. "On Combustion in the CNG-Diesel Dual Fuel Engine." Doctoral thesis, KTH, Förbränningsmotorteknik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-151188.

Full text
Abstract:
Currently there is a large interest in alternative transport fuels. There are two underlying reasons for this interest: the desire to decrease the environmental impact of transports and the need to compensate for the declining availability of petroleum. In the light of both these factors, the CNG-diesel dual fuelengine is an attractive concept. The primary fuel of the dual fuel engine is methane, which can be derived both from renewables and from fossil sources. Methane from organic waste, commonly referred to as biomethane, can provide a reduction in greenhouse gases unmatched by any other fuel. Furthermore, fossil methane, natural gas, is one of the most abundant fossil fuels.Thedual fuelengine is, from a combustion point of view, a hybridof the diesel and theOtto-engineand it shares characteristics with both. From a market standpoint, the dual fuel technology is highly desirable; however, from a technical point of view it has proven difficult to realize. The aim of this project was to identify limitations to engine operation, investigate these challenges, and ,as much as possible, suggest remedies. Investigations have been made into emissions formation, nozzle-hole coking, impact of varying in-cylinder air motion, behavior and root causes of pre-ignitions, and the potential of advanced injection strategies and unconventional combustion modes. The findings from each of these investigations have been summarized, and recommendations for the development of a Euro 6 compliant dual fuel engine have been formulated. Two key challenges must be researched further for this development to succeed: an aftertreatment system which allows for low exhaust temperatures must be available, and the root cause of pre-ignitions must be found and eliminated.<br><p>QQC 20140915</p>
APA, Harvard, Vancouver, ISO, and other styles
38

Urbon, Bruce Charles. "Atomization and combustion of a gelled, metallized slurry fuel." Thesis, Monterey, California. Naval Postgraduate School, 1992. http://hdl.handle.net/10945/38512.

Full text
Abstract:
Approved for public rrelease; distribution is unlimited.<br>Two commercially available atomizers were tested for their ability to atomize a gelled boron slurry fuel. Particle size distributions were measured in non-reacting flow using a Malvern 2600 HSD Laser Diffraction Particle Sizer. A sub-scale ramjet combustor was designed and fabricated which utilized a sudden expansion inlet dump together with inlet air swirl for flame stabilization. An airblast atomizer produced sufficiently small particles for good combustion, but at the cost of a high pressure drop across the atomizer, making it impractical for use in a slurry fueled ramjet. Sustained steady combination of the slurry fuel was not achieved using the airblast atomizer. A whistle type ultrasonic atomizer als produced sufficiently small particles and at a much lower pressure drop across the atomizer. Sustained stable combustion was achieved using the ultrasonic atomizer which yielded a combustion efficiency of 76% at 96 psia and an equivalence ratio of 0.78.
APA, Harvard, Vancouver, ISO, and other styles
39

Varella, Roberto Aliandro. "Analysis of plasma assisted combustion under rich-fuel conditions." Instituto Tecnológico de Aeronáutica, 2015. http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=3234.

Full text
Abstract:
The recently increasing interest in plasma assisted combustion is motivated by new possibilities for ignition and flame stabilization, in addition to pollutant emission reduction and control. The plasma generates a chemical active environment producing radicals, excited species and ions thus increasing the combustion process reaction rate. In this work the effect of plasma assisted combustion phenomena in a premixed flame of natural gas-air is investigated by using pollutant emission gas analysis, optical emission spectroscopy and high speed imaging. The plasma is created by using a gliding-arc discharge, chosen because of its properties: works at atmospheric pressure, generates high electron density plasma and has chemical selectivity. The reactor geometry limits the equivalence ratio (?) range of stability between ? = 0.3 - 0.7 and ? = 1.2 - 1.4. Within these ranges the equivalence ratios of ? = 1.2 and ? = 1.4 were chosen for investigation. The variable in this study is the applied electrical power ranging between 220W and 370W. Results show the behavior from fundamental components of natural gas combustion, as CH4, nitrous oxide components, carbon monoxide, carbon dioxide and others. Also, the formation of radicals was evaluated and high speed images were recorded for a better overview of the process. It was seen that relations between gas temperature, input electrical power and chemical dynamics influence the parameters of combustion, emission gases and radicals.
APA, Harvard, Vancouver, ISO, and other styles
40

Makhadmeh, Leema al. "Coal pyrolysis and char combustion under oxy-fuel conditions." Aachen Shaker, 2009. http://d-nb.info/996033009/04.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Szuhánszki, János. "Advanced oxy-fuel combustion for carbon capture and sequestration." Thesis, University of Leeds, 2014. http://etheses.whiterose.ac.uk/7339/.

Full text
Abstract:
This dissertation assesses the contribution of CCS in mitigating climate change, investigates Computational Fluid Dynamics (CFD) in aiding the development of CCS technology, and presents the results of air and oxy-fuel combustion experiments conducted in a 250 kW furnace. Coal combustion was investigated using non-preheated and preheated air. Preheating increased the heat input to the flame and the radiative heat transfer near the flame region, enhancing flame stability and burnout. Radiative and convective heat transfer measurements showed that the total heat transfer is mainly influenced by thermal radiation, data on which is essential in validating newly developed radiation models. Oxy-fuel experiments produced flue gas with over 90% CO2 concentration (allowing CCS without chemical scrubbing). Exit concentrations of NO and SO2 increased with reduced recycle ratio, largely due to the reduction in dilution. However, total NO emissions reduced by ~50% compared to air-firing, which was attributed to low levels of atmospheric N2 in the oxidiser and significant reductions in fuel NO formation. Air and oxy-fired peak radiative heat transfer corresponded to a range typical of coal-fired boilers. For the oxy-cases, in-furnace temperatures and heat flux increased with total O2 concentration. Radiative heat transfer increased with higher gas emissivity. The results indicated that the air-fired temperature profiles can be matched when retrofitting to oxy-firing by modifying the recycle ratio, and the optimum ratio lies between the investigated cases of 27% and 30% O2 concentrations (using a dry recycle). The radiative heat flux profiles can also be adjusted. Temperature and heat flux measurements indicated delayed combustion due to the higher heat capacity of CO2 and delayed mixing between the Primary and Secondary/Tertiary streams. CFD modelling was undertaken on 250 kW and 2.4 MW coal-fired furnaces under air-firing conditions, and a 500MWe utility boiler firing coal, a biomass blend, and 100% biomass under air and oxy-fuel conditions. Using wet recycle, the optimum total O2 concentration lies between 25 and 30%, where air-fired heat transfer characteristics can be matched without significant modifications when firing coal or the biomass blend, but not 100% biomass.
APA, Harvard, Vancouver, ISO, and other styles
42

Ribeiro, Mateus Dias. "Fuel spray modeling for application in internal combustion engines /." Guaratinguetá, 2019. http://hdl.handle.net/11449/183102.

Full text
Abstract:
Orientador: José Antônio Perrella Balestieri<br>Abstract: Direct injection spark ignition (DISI) engines aim at reducing specific fuel consumption and achieving the strict emission standards in state of the art internal combustion engines. Therefore, in this work the goal is to develop code for simulations of the internal flow in DISI engines, as well as the phenomenon of fuel spray injection into the combustion chamber using a Lagrangian-Eulerian approach for representing the multiphase flow, and Large-eddy Simulations (LES) for modeling the turbulence of the continuum medium by means of the open-source CFD library OpenFOAM. In order to validate the obtained results and the developed models, experimental data from the Darmstadt optical engine, and the non-reactive “Spray G” gasoline injection case, along with the reactive “Spray A” case from the Engine Combustion Network (ECN) will be employed. Finally, a novel open-source solver will be proposed to simulate the Darmstadt optical engine in motored and fired operation under stratified mixture condition, using data compiled by the Darmstadt Engine Workshop (DEW) for validation. Moreover, a deep learning framework is presented to train an artificial neural network (ANN) with the engine LES data generated in this work, in order to make predictions of the small scale turbulence behavior.<br>Resumo: Motores de ignição a centelha com injeção direta (direct injection spark ignition engines, DISI engines) visam reduzir o consumo específico de combustível e respeitar os restritos níveis de emissão em motores de combustão interna de última geração. Assim, pretende-se com este trabalho desenvolver código para simulação do escoamento interno em motores DISI, assim como os fenômenos de injeção de combustível no interior da câmara de combustão utilizando uma abordagem Lagrangeana-Euleriana para representação do escoamento multifásico e Simulação de Grandes Escalas (Large-eddy simulation, LES) para a modelagem da turbulência no meio contínuo, por intermédio da biblioteca CFD de código aberto OpenFOAM. De modo a validar os resultados e os modelos desenvolvidos, dados experimentais serão utilizados, obtidos do motor óptico de Darmstadt, e do caso de teste de injeção de gasolina não-reativo “Spray G”, juntamente com o caso reativo “Spray A” da Rede de Combustão em Motores (Engine Combustion Network, ECN). Enfim, um novo código aberto será proposto para simular o motor óptico de Darmstadt em condições de escoamento a frio (sem combustão) e com combustão em condição de mistura estratificada, usando dados compilados pelo Workshop do Motor de Darmstadt (Darmstadt Engine Workshop, DEW) para validação. Além disso, uma abordagem de aprendizado profundo (deep learning) será apresentada para treinar uma rede neural artificial (artificial neural network, ANN) com dados de simulação LES de moto... (Resumo completo, clicar acesso eletrônico abaixo)<br>Doutor
APA, Harvard, Vancouver, ISO, and other styles
43

Tongroon, Manida. "Combustion characteristics and in-cylinder process of CAI combustion with alcohol fuels." Thesis, Brunel University, 2010. http://bura.brunel.ac.uk/handle/2438/4501.

Full text
Abstract:
Controlled auto-ignition (CAI) combustion in the gasoline engine has been extensively studied in the last several years due to its potential for simultaneous improvement in fuel consumption and exhaust emissions. At the same time, there has been increasing interest in the use of alternative fuels in order to reduce reliance on conventional fossil fuels. Therefore, this study has been carried out to investigate the effect of alcohol fuels on the combustion characteristics and in-cylinder processes of CAI combustion in a single cylinder gasoline engine. In order to study the effect of alcohol fuels, combustion characteristics were investigated by heat releases analysis in the first part. The combustion process was studied through flame structure and excited molecule by chemiluminescence imaging. Furthermore, in-cylinder gas composition was analysis by GC-MS to identify the auto-ignition reactions involved in the CAI combustion. In addition, the influence of spark-assisted ignition and injection timings were also studied. Alcohol fuels, in particular methanol, resulted in advanced auto-ignition and faster combustion than that of gasoline. In addition, their use could lead to substantially lower HC, NOX and CO exhaust emissions. Spark-assisted ignition assisted gasoline combustion by advancing ignition timing and initiating flame kernel at the centre of combustion chamber but it had marginal effect on alcohol fuels. Auto-ignition always took place at the perimeter of the chamber and occurred earlier with alcohol fuels. Fuel reforming reactions during the NVO period were observed and they had significant effect on alcohol combustion.
APA, Harvard, Vancouver, ISO, and other styles
44

Sher, Farooq. "Design and operation of a 20 kWth fluidised bed combustor for biomass oxy-fuel combustion." Thesis, University of Nottingham, 2017. http://eprints.nottingham.ac.uk/40606/.

Full text
Abstract:
Due to growing concerns about climate change, the heat and power sector is continuously facing challenges to reduce CO2 emissions. Carbon capture and storage (CCS) is one of the short-medium term measures that can mitigate CO2 emissions emitted from fossil fuels utilisation. Oxy-fuel combustion is a promising technology for CSS that can be integrated into the new and the current fleet of power plants. Biomass is a carbon neutral renewable source of energy that can replace fossil fuels. If the biomass is utilised as a fuel in oxy-fuel combustion it could lead even to negative CO2 emissions. Although the sintering and agglomeration problems associated with the combustion of non-woody biomasses in the fluidised beds are still major issues, fluidised beds have emerged as one of the best among the other proven biomass combustion technologies, mainly due to their fuel flexibility, low SOx and NOx emissions. However, oxy-fuel combustion technology in fluidised beds is in the early stages of development and still needs a lot of research for improvement before its application on full-scale power plants. In this work basic combustion fundamentals of different biomass fuels in terms of energy production were studied using thermogravimetric analysis (TGA) under air, N2, CO2 and selected oxy-fuel (30%O2/70%CO2) reaction environments. Then a 20 kWth bubbling fluidised bed combustor (BFBC) was designed, manufactured and successfully tested for a range of biomass fuels under air and oxy-fuel combustion environments. The agglomeration and sintering behaviour of these biomass fuels during combustion under air was also investigated using different analytical techniques such as SEM-EDX, XRD and XRF. The biomass fuels investigated in this study include domestic wood, industrial wood, miscanthus, wheat straw and peanut shell pellets. The BFBC testing of these biomass fuels focused on the influence of operating conditions, the effect of excess air level and fuel feed rate on the hydrodynamics, temperature profiles and emissions, NOx, CO2 and CO within the BFBC. Air staging can be very effective in reducing NOx emissions of non-woody biomass fuels especially when the secondary air was injected at the higher level with an overall low excess air level. A maximum NOx reduction percentage of 30% was achieved for the non-woody biomasses during air staging combustion. The non-isothermal TGA analyses under N2 and CO2 showed almost identical weight loss (R), reactivity (RM) and activation energy (Ea) profiles in devolatilisation zones. However, when devolatilisation occurred under CO2 conditions at temperatures higher than 700 oC, an additional weight loss was observed for all biomass fuels, being indicative of the contribution of CO2-char gasification reactions. Under air and oxy-fuel (30%O2/70%CO2) results showed almost similar profiles for R, RM and Ea. In oxy-fuel atmospheres, by replacing N2 with CO2 a slight increase in the maximum rate of weight loss (RMax) was observed in both reaction zones for all studied biomasses. The unstaged and staged air combustion experiments in the 20 kWth BFBC showed that higher excess air always led to higher NOx emissions for any of the biomass fuels tested because less CO and char were available in the reactor to promote NOx reductions. Due to the consequence of the high volatile matter content of the biomass fuels, the maximum temperatures were achieved at the top of the dense bed and/or beginning of the freeboard, which suggests that the main combustion reaction takes place in this part of the combustor. Air staging leads to higher temperatures in the freeboard, especially at low excess air levels, as a result of additional combustion in the freeboard under staged air conditions. Air staging can be very effective in reducing NOx emissions of non-woody biomass fuels especially when the secondary air was injected at the higher level with an overall low excess air level. A higher percentage of carbon in ash was obtained while working under air staging conditions than that of without air staging combustion. The results of oxy-fuel combustion tests in the 20 kWth BFBC showed that oxy-fuel combustion was different from air combustion in several ways, including reduced gas temperatures, delayed flame ignition, increased CO emissions under 21%O2/79%CO2 and 25%O2/75%CO2 oxy-mixtures. Many of these parameters were associated with differences in properties of the main diluting gases CO2 and N2 in oxy-fuel and air combustion respectively. In order to match the biomass oxy-fuel combustion gas temperatures to those of air combustion, the oxygen concentration in the mixture of O2/CO2 has to be increased to 30% or higher. Moreover, the oxy-fuel combustion with 30%O2/70%CO2 has shown higher efficiencies than air, which indicates biomass fuels can be successfully combusted in the BFBC under oxy-fuel combustion conditions. The agglomeration and sintering behaviour was observed under continuous air combustion conditions in the 20 kWth BFBC. The analysis using SEM-EDX, XRD and XRF concluded that the potassium present in wheat straw was mainly responsible for agglomeration, which was detected in the form of KCl and K2O in the bed material and cyclone ash samples.
APA, Harvard, Vancouver, ISO, and other styles
45

Flora, Giacomo. "Fuel Structure Effects on Surrogate Alternative Jet Fuel Emission." University of Dayton / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1450286398.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Belaid-Saleh, Haïfa. "Etude des régimes de combustion dans le contexte du fonctionnement dual fuel." Thesis, Orléans, 2015. http://www.theses.fr/2015ORLE2064.

Full text
Abstract:
Le développement de stratégies de combustion innovantes est nécessaire aujourd’hui pour répondre aux réglementations de plus en plus intransigeantes qui fixent les seuils d’émissions polluantes par les véhicules neufs. Parmi ces stratégies, l’approche Dual Fuel a montré un fort potentiel dans la réduction des émissions tout en maintenant des niveaux de rendement élevés. Le concept Dual Fuel est fondé sur la formation d’un mélange homogène d’air et d’un carburant volatile (essence, méthane, éthanol...) allumé par une injection directe d’un carburant à fort cétane (de type gazole) dans la chambre de combustion. Une compréhension détaillée des différents processus de combustion est primordiale pour aider au développement des stratégies Dual Fuel concrètes. Dans ce contexte, le développement d’un modèle adapté, couplé à des mesures expérimentales réalisées sur moteur optique, est indispensable pour optimiser la combustion Dual Fuel. Une étude numérique, fondée sur le couplage d’un modèle de combustion turbulente dédié à la propagation de flamme dans des milieux stratifiés (ECFM3Z) et un modèle de chimie tabulée pour la prédiction de l’auto-inflammation (TKI), a été menée afin d’évaluer la capacité des modèles existants à prédire les différents régimes de combustion qui pourraient exister dans les stratégies Dual Fuel. Des critères de transition ont été ajoutés et évalués afin d’améliorer le couplage des deux modèles et d’assurer la transition entre l’auto-inflammation et la propagation de flamme. D’autre part, l’étude expérimentale sur un moteur à accès optiques a permis d’étudier des variations de richesse, de carburant de prémélange et de taux de dilution et de caractériser de manière fine les mécanismes de la combustion Dual Fuel afin de servir de base de données aux développements de modèles CFD<br>Advanced combustion strategies are required in response to increasingly stringent worldwide regulations governing exhaust gas emissions in the transport sector. Among these strategies, the Dual Fuel approach has shown potential to reduce engine-out pollutant emissions without penalizing combustion efficiency. The Dual Fuel concept relies on the formation of a homogeneous mixture of air with a highly volatile fuel (gasoline, methane, ethanol...) which is ignited by direct injection of a high-cetane fuel (Diesel fuel) in the combustion chamber. An improved understanding of the underlying physical phenomena and a detailed insight of the predominant combustion regime(s) are required in order to advance the development of the Dual Fuel combustion strategies. In this context, numerical modeling and optical engine measurements are combined to investigate Dual Fuel combustion. A numerical study, based on the coupling between a turbulent combustion model for flame propagation in stratified mixtures (ECFM3Z) and a tabulated kinetics model for auto-ignition (TKI), was conducted to evaluate the capacity of the existing models to cope with the various combustion regimes that might exist in Duel Fuel combustion strategies. Transition criteria were added and evaluated in order to improve the coupling between the two models and to better predict the transitions between auto-ignition and flame propagation. In addition, an experimental investigation, including equivalence ratio, premixed fuel and dilution variations, was performed in an optical engine. The objective was to apply advanced optical diagnostic techniques to thoroughly characterize the Dual Fuel combustion process and thus enhancing CFD model developments
APA, Harvard, Vancouver, ISO, and other styles
47

Lago, Sari Rafael. "Dual Mode Dual Fuel Combustion: Implementation on a Real Medium Duty Engine Platform." Doctoral thesis, Universitat Politècnica de València, 2021. http://hdl.handle.net/10251/165366.

Full text
Abstract:
[ES] Históricamente, el sector del transporte de servicio mediano y pesado ha sido desafiado por las regulaciones de emisiones que se han impuesto a lo largo de los años, lo que requirió intensificar el esfuerzo de investigación con el objetivo de avanzar en el desarrollo tecnológico para ofrecer una opción que cumpla con las normas a un precio similar para el propietario. No obstante, la reciente introducción de la normativa EUVI ha requerido la adición de un complejo sistema de postratamiento, agregando nuevos costes fijos al producto, así como costes operativos con el consumo de urea. Este avance fue necesario debido a la limitación de la combustión diésel convencional que no puede desacoplar las altas emisiones de NOx y la eficiencia. Esta limitación tecnológica ha impulsado la investigación sobre diferentes conceptos de combustión que podrían mantener niveles de eficiencia similares a los de la combustión diésel controlando la formación de emisiones durante el proceso de combustión. Entre las diferentes soluciones que han ido apareciendo a lo largo de los años, se demostró que la Ignición por Compresión Controlada por Reactividad (RCCI por sus siglas en inglés) tiene una ventaja competitiva debido a su mejor controlabilidad, alta eficiencia y bajas emisiones de hollín y NOx. A pesar de sus beneficios, la extensión de RCCI a la operación de mapa completo ha indicado limitaciones importantes como gradientes de presión excesivos a alta carga, o alta inestabilidad de combustión y productos no quemados a baja carga del motor. Recientemente, se introdujo el concepto de combustión Dual-Mode Dual-Fuel (DMDF) como un intento de resolver los inconvenientes de la combustión RCCI manteniendo sus ventajas. Los resultados preliminares obtenidos en un motor mono cilíndrico (SCE por sus siglas en inglés) han demostrado que el DMDF puede alcanzar niveles de eficiencia similares a los de la combustión diésel convencional al mismo tiempo que favorece niveles ultra bajos de hollín y NOx. Si bien, los requisitos de la condición límite son difíciles de encajar en el rango operativo de sistema de gestión de aire, así como inconvenientes como el exceso de HC y CO que aún persiste en la zona de baja y media carga, lo que puede ser un desafío para el sistema de postratamiento. Además, las futuras regulaciones a corto plazo exigirán una reducción del 15 % de las emisiones de CO2 en 2025, reto que la literatura sugiere que no se logrará fácilmente solo mediante la optimización del proceso de combustión. En este sentido, esta tesis tiene como objetivo general la implementación del concepto de combustión DMDF en un motor multicilindro (MCE por sus siglas en inglés) bajo las restricciones de las aplicaciones reales para realizar una combustión limpia y eficiente en el mapa completo a la vez que brinda alternativas para reducir la concentración de HC y CO y lograr un ahorro de CO2. Este objetivo se logra mediante un primer extenso procedimiento de calibración experimental que tiene como objetivo trasladar las pautas de la combustión DMDF del SCE al MCE respetando los límites operativos del hardware original, evaluando su impacto en los resultados de combustión, rendimiento y emisiones en condiciones estacionarias y condiciones de ciclo de conducción. A continuación, se realizan estudios específicos para abordar el problema relacionado con la concentración excesiva de productos no quemados mediante investigaciones experimentales y simulaciones numéricas para comprender las consecuencias del uso de combustibles con diferente reactividad en la eficiencia de conversión del catalizador de oxidación original y su capacidad para lograr emisiones en el escape menores que el límite EUVI. Finalmente, se busca la reducción de CO2 a través de la modificación del combustible, investigando tanto la mejora del proceso de combustión como el equilibrio entre el ciclo de vida del combustible.<br>[CA] Històricament, el sector del transport de servei mitjà i pesat ha sigut desafiat per les regulacions d'emissions que s'han imposat al llarg dels anys, la qual cosa va requerir intensificar l'esforç d'investigació amb l'objectiu d'avançar en el desenvolupament tecnològic per a oferir una opció que complisca amb les normes a un preu similar per al propietari. No obstant això, la recent introducció de la normativa EUVI ha requerit l'addició d'un complex sistema de postractament, agregant nous costos fixos al producte, així com costos operatius amb el consum d'urea. Aquest avanç va ser necessari a causa de la limitació de la combustió dièsel convencional que no pot desacoblar les altes emissions de NOx i l'eficiència. Aquesta limitació tecnològica ha impulsat la investigació sobre diferents conceptes de combustió que podrien mantindre nivells d'eficiència similars als de la combustió dièsel controlant la formació d'emissions durant el procés de combustió. Entre les diferents solucions que han anat apareixent al llarg dels anys, es va demostrar que la Ignició per Compressió Controlada per Reactivitat (RCCI per les seues sigles en anglés) té un avantatge competitiu a causa de la seua millor controlabilitat, alta eficiència i baixes emissions de sutge i NOx. Malgrat els seus beneficis, l'extensió del RCCI a l'operació de mapa complet ha indicat limitacions importants com a gradients de pressió excessius a alta càrrega, o alta inestabilitat de combustió i productes no cremats a baixa càrrega del motor. Recentment, es va introduir el concepte de combustió Dual-Mode Dual-Fuel (DMDF) com un intent de resoldre els inconvenients de la combustió RCCI mantenint els seus avantatges. Els resultats preliminars obtinguts en un motor mono-cilíndric (SCE per les seues sigles en anglés) han demostrat que el DMDF pot aconseguir nivells d'eficiència similars als de la combustió dièsel convencional al mateix temps que afavoreix nivells ultra baixos de sutge i NOx. Si bé, els requisits de la condició límit són difícils d'encaixar en el rang operatiu de sistema de gestió d'aire, així com inconvenients com l'excés de HC i CO que encara persisteix en la zona de baixa i mitja càrrega, la qual cosa pot ser un desafiament per al sistema de postractament. A més, les futures regulacions a curt termini exigiran una reducció del 15% de les emissions de CO¿ en 2025, repte que la literatura suggereix que no s'aconseguirà fàcilment només mitjançant l'optimització del procés de combustió. En aquest sentit, aquesta tesi té com a objectiu general la implementació del concepte de combustió DMDF en un motor multi-cilindre (MCE per les seues sigles en anglés) sota les restriccions de les aplicacions reals per a realitzar una combustió neta i eficient en el mapa complet alhora que brinda alternatives per a reduir la concentració de HC i CO i aconseguir un estalvi de CO¿. Aquest objectiu s'aconsegueix mitjançant un primer extens procediment de calibratge experimental que té com a objectiu traslladar les pautes de la combustió DMDF del SCE al MCE respectant els límits operatius del motor original, avaluant el seu impacte en els resultats de combustió, rendiment i emissions en condicions estacionàries i condicions de cicle de conducció. A continuació, es realitzen estudis específics per a abordar el problema relacionat amb la concentració excessiva de productes no cremats mitjançant investigacions experimentals i simulacions numèriques per a comprendre les conseqüències de l'ús de combustibles amb diferent reactivitat en l'eficiència de conversió del catalitzador d'oxidació original i la seua capacitat per a aconseguir emissions al tub d'escapament menors que el límit EUVI. Finalment, es busca la reducció de CO2 a través de la modificació del combustible, investigant tant la millora del procés de combustió com l'equilibri entre el cicle de vida del combustible.<br>[EN] The medium and heavy-duty transport sector was historically challenged by the emissions regulations that were imposed along the years, requiring to step up the research effort aiming at advancing the product development to deliver a normative compliant option at similar price to the owner. Nonetheless, the recent introduction of EUVI normative have required the addition of a complex aftertreatment system, adding new fixed costs to the product as well as operational costs with the urea consumption. This breakthrough was required due to the limitation of the conventional diesel combustion which cannot decouple high NOx emissions and efficiency. This technological limitation has boosted the investigation on different combustion concepts that could maintain similar efficiency levels than the diesel combustion while controlling the emission formation during the combustion process. Among the different solutions that have appeared along the years, Reactivity Controlled Compression Ignition (RCCI) was demonstrated to have a competitive edge due to its better controllability, high efficiency and low soot and NOx emissions. Despite the benefits, the extension of RCCI to full map operation has presented significant limitations, as excessive pressure gradients at high load and high combustion instability and unburned products at low engine load. Recently, Dual-Mode Dual-Fuel (DMDF) combustion concept was introduced as an attempt of solving the drawbacks of the RCCI combustion while maintaining its advantages. The preliminary results obtained in single cylinder engine (SCE) have evidenced that DMDF can achieves similar efficiency levels than those from conventional diesel combustion while promoting ultra-low levels of soot and NOx. Albeit, the boundary condition requirements are hard to fit in the operating range of commercial air management system as well as drawbacks like excessive HC and CO that still persists from low to medium load, which can be a challenge for the aftertreatment system. Moreover, short-term future regulations will demand a 15 % reduction of CO2 emissions in 2025 which was proven in the literature to not be easily achieved only by combustion process optimization. In this sense, this thesis has as general objective the implementation of the DMDF combustion concept in a multi-cylinder engine (MCE) under the restrictions of real applications to realize clean and efficient combustion in the complete map while providing alternatives to reduce the HC and CO concentration and accomplish CO2 savings. This objective is accomplished by means of a first extensive experimental calibration procedure aiming to translate the guidelines of the DMDF combustion from the SCE to the MCE while respecting the operating limits of the stock hardware, assessing its impacts on combustion, performance, and emission results under steady and driving cycle conditions. Next, dedicated studies are performed to address the issue related with the excessive concentration of unburned products by means of experimental investigations and numerical simulations, to understand the consequences of using fuels with different reactivity in the stock oxidation catalyst conversion efficiency and its ability in achieving EUVI tailpipe emissions. Finally, CO2 reduction is explored through fuel modification, investigating both combustion process improvement and well-to-wheel balance as paths to realize CO2 abatement.<br>This doctoral thesis has been partially supported by the Spanish Ministry of Science Innovation and Universities under the grant:"Ayudas para contratos predoctorales para la formación de doctores" (PRE2018-085043)<br>Lago Sari, R. (2021). Dual Mode Dual Fuel Combustion: Implementation on a Real Medium Duty Engine Platform [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/165366<br>TESIS
APA, Harvard, Vancouver, ISO, and other styles
48

Rabello, de Castro Ricardo. "Effect of the fuel composition of syngas on the combustion process in Dual-Fuel engine." Electronic Thesis or Diss., Orléans, 2024. http://www.theses.fr/2024ORLE1032.

Full text
Abstract:
Le gaz de synthèse, également appelé ‘syngas', est considéré comme un carburant alternatif prometteur pour lutter à la fois contre le réchauffement climatique et la gestion des déchets, deux défis majeurs de la société moderne. La composition chimique du gaz de synthèse dépend fortement des caractéristiques de la matière première et du processus utilisé pour sa production, et impacte son efficacité en tant que carburant dans les moteurs à combustion. L'objectif principal de cette étude est de déterminer comment optimiser un moteur à combustion interne bicarburant (ICE) syngas/diesel pour différentes compositions de gaz de synthèse, ratios de substitution de diesel et richesse de prémélange gaz/air. Nous commençons par donner un aperçu des moyens de sa production et des compositions du gaz de synthèse pour sélectionner trois mélanges représentatifs de ses éléments de base. Ensuite, nous examinons les études sur le syngas/diesel (ou autre carburant à haute réactivité) pour déterminer comment chaque paramètre affecte les performances et les émissions du moteur. Dans le chapitre suivant, nous déterminons deux propriétés de combustion, à savoir les vitesses de flamme laminaire et les longueurs de Markstein, pour plusieurs conditions pertinentes pour le moteur et pour les trois compositions. Ensuite, nous poursuivons les expériences menées dans un moteur entièrement métallique (non transparent) pour mesurer les performances du moteur et les émissions à l'échappement. Dans cette expérience, nous explorons comment le rapport énergétique syngas-diesel, la richesse du mélange syngas/air et les effets de la composition du gaz de synthèse produisent différents résultats de performance et émissions. Enfin, nous effectuons des expériences dans un moteur optique Dual-Fuel pour déterminer le comportement des flammes et des radicaux, par analyse des images de combustion du moteur<br>Synthesis Gas, also known as Syngas, is deemed as a promising alternative fuel to tackle both global warming and waste management - two major challenges for modern society. The chemical composition of syngas, however, is highly dependent on the characteristics of the feedstock and the process used in its production; and so is its efficiency as a fuel in combustion engines. The main goal of this study is to determine how to optimize a syngas/diesel Dual-Fuel Internal Combustion Engine (ICE) for different syngas compositions, diesel substitution ratios and syngas/air equivalence ratios. We start providing an overview of syngas production and compositions to select three representative mixtures of its basic elements. Afterwards, we review Dual-Fuel syngas/diesel (or a high-reactivity fuel) studies to determine how each parameter affects the engine performance and emissions. In the following chapter, we determine two combustion properties, namely, the laminar flame speeds and the Markstein lengths, for several engine-relevant conditions for the three compositions. Then, we proceed conducting experiments in a full-metal (not optical) engine to measure engine performance and exhaust emissions. In that experiment we explore how the syngas-diesel energy ratio, the premixed Syngas/air equivalence ratio and the Syngas composition effects, produce different performances and exhaust emissions. Finally, we perform experiments in an optical Dual-Fuel engine to determine flame and radicals´ behaviors, followed by an analysis of engine combustion images
APA, Harvard, Vancouver, ISO, and other styles
49

Sone, Kazuo. "Unsteady simulations of mixing and combustion in internal combustion engines." Thesis, Georgia Institute of Technology, 2001. http://hdl.handle.net/1853/12171.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Asay, Rich. "A Five-Zone Model for Direct Injection Diesel Combustion." BYU ScholarsArchive, 2003. https://scholarsarchive.byu.edu/etd/100.

Full text
Abstract:
Recent imaging studies have provided a new conceptual model of the internal structure of direct injection diesel fuel jets as well as empirical correlations predicting jet development and structure. This information was used to create a diesel cycle simulation model using C language including compression, fuel injection and combustion, and expansion processes. Empirical relationships were used to create a new mixing-limited zero-dimensional model of the diesel combustion process. During fuel injection five zones were created to model the reacting fuel jet: 1) liquid phase fuel 2) vapor phase fuel 3) rich premixed products 4) diffusion flame sheath 5) surrounding bulk gas. Temperature and composition in each zone is calculated. Composition in combusting zones was calculated using an equilibrium model that includes 21 species. Sub models for ignition delay, premixed burn duration, heat release rate, and heat transfer were also included. Apparent heat release rate results of the model were compared with data from a constant volume combustion vessel and two single-cylinder direct injection diesel engines. The modeled heat release results included all basic features of diesel combustion. Expected trends were seen in the ignition delay and premixed burn model studies, but the model is not predictive. The rise in heat release rate due to the diffusion burn is over-predicted in all cases. The shape of the heat release rate for the constant volume chamber is well characterized by the model, as is the peak heat release rate. The shape produced for the diffusion burn in the engine cases is not correct. The injector in the combustion vessel has a single nozzle and greater distance to the wall reducing or eliminating wall effects and jet interaction effects. Interactions between jets and the use of a spray penetration correlation developed for non-reacting jets contribute to inaccuracies in the model.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography