Academic literature on the topic 'Combustión RCCI'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Combustión RCCI.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Combustión RCCI"

1

Benajes, Jesús, Antonio García, Javier Monsalve-Serrano, and Rafael Sari. "Potential of RCCI Series Hybrid Vehicle Architecture to Meet the Future CO2 Targets with Low Engine-Out Emissions." Applied Sciences 8, no. 9 (August 27, 2018): 1472. http://dx.doi.org/10.3390/app8091472.

Full text
Abstract:
Reactivity controlled compression ignition (RCCI) combustion has been shown to provide simultaneous ultra-low NOx and soot emissions with similar or better thermal efficiencies than conventional diesel combustion (CDC). Nonetheless, RCCI still has several challenges that restrict its operating range and limit its practical application. The dual-mode operation, which involves switching between different combustion modes, has been found as a promising alternative to operation in the whole engine map. However, the combustion mode switching requires difficult engine control, particularly during transient operation. The series hybrid vehicle (SHV) architecture allows the thermal engine to operate in a limited operating range by decoupling it from the drivetrain. Therefore, it could be an interesting alternative to the dual-mode concept. This work explores the potential of the RCCI series hybrid vehicle architecture to provide low engine-out emissions and CO2 by means of vehicle systems simulations. The results show the influence of the main parameters and control strategies of the SHV vehicle on its efficiency and emissions under different driving cycles. Finally, the optimal RCCI-SHV configuration is compared to CDC and dual-mode combustion strategies, confirming its potential as a future vehicle architecture for high efficiency and low emissions.
APA, Harvard, Vancouver, ISO, and other styles
2

Zulkurnai, Fatin Farhanah, Wan Mohd Faizal Wan Mahmood, Norhidayah Mat Taib, and Mohd Radzi Abu Mansor. "Simulation of Combustion Process of Diesel and Ethanol Fuel in Reactivity Controlled Compression Ignition Engine." CFD Letters 13, no. 2 (February 4, 2021): 1–11. http://dx.doi.org/10.37934/cfdl.13.2.111.

Full text
Abstract:
Reactivity controlled compression ignition (RCCI) engine give advantages over conventional diesel engine with the promising engine power and good control on NOx and soot emission. The trend of the RCCI concept is still new and Is very important to control the ignition in order to control the combustion progress and emission. The objective of this study is to provide data on the combustion characteristics and emission of diesel as high reactive, and ethanol as the low reactive fuel in the RCCI engine. The engine speed and injection timing were varied. Simulation work was conducted by using the Converge CFD software based on the Yanmar TF90 diesel engine parameter. Results show that operating the engine at low speed resulting in better engine performance and low carbon emissions due to the sufficient oxygen contents. For the high-speed engine, advancing the injection timing improves the fuel and air reactivity and steeper the equivalence ratio gradient, which result in a complete combustion process.
APA, Harvard, Vancouver, ISO, and other styles
3

Faingold, Galia, Leonid Tartakovsky, and Steven Frankel. "Numerical Study of a Direct Injection Internal Combustion Engine Burning a Blend of Hydrogen and Dimethyl Ether." Drones 2, no. 3 (July 24, 2018): 23. http://dx.doi.org/10.3390/drones2030023.

Full text
Abstract:
In the reported study, various aspects of dimethyl ether/hydrogen combustion in a Reactivity Controlled Compression Ignition (RCCI) engine are numerically evaluated using Reynolds Averaged Navier-Stokes (RANS) and Large Eddy Simulation (LES). Early direct injection and mixture propagation were also explored, along with peculiaritis of dimethyl ether combustion modeling. The numerical models are validated using available experimental results of a partially premixed dimethyl ether jet flames and an optically accessible internal combustion engine with direct hydrogen injection. LES showed more predictive results in modeling both combustion and mixture propagation. The same models were applied to a full engine cycle of an RCCI engine with stratified reactivity, to gain phenomenological insight into the physical processes involved in stratified reactivity combustion. We showed that 3D and turbulence considerations had a great impact on simulation results, and the LES was able to capture the pressure oscillations typical for this type of combustion.
APA, Harvard, Vancouver, ISO, and other styles
4

Mohebbi, Mostafa, Masoud Reyhanian, Iraj Ghofrani, Azhar Abdul Aziz, and Vahid Hosseini. "Availability analysis on combustion of n-heptane and isooctane blends in a reactivity controlled compression ignition engine." Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 232, no. 11 (October 24, 2017): 1501–15. http://dx.doi.org/10.1177/0954407017731167.

Full text
Abstract:
Unfortunately, energy demands and destruction of the environment from uncontrolled manipulation of fossil fuels have increased. Climate change concerns have resulted in the rapid use of new, alternative combustion technologies. In this study, reactivity controlled compression ignition (RCCI) combustion, which can simply be exploited in internal combustion (IC) engines, is investigated. To introduce and identify extra insightful information, an exergy-based study was conducted to classify various irreversibility and loss sources. Multidimensional models were combined with the primary kinetics mechanism to investigate RCCI combustion, incorporating the second law of thermodynamics. The n-heptane, a highly reactive fuel, was supplied by direct injection into the cylinder, whereas premixed fuel was supplied through the intake port in an isooctane/ n-heptane RCCI engine. For five n-heptane increments (5%, 7.5%, 15%, 25%, and 40%) and six different exhaust gas recirculation (EGR) rates (0%, 10%, 20%, 30%, 40%, and 50%), accumulation of different exergy terms was calculated. The results show that as EGR introduction increases from 0% to 50%, the exergy destruction increases from 21.1% to 28.9%. Furthermore, the value of exhaust thermomechanical exergy decreases from 18.4% to 14.4% of the mixture fuel chemical exergy. Among the five different high reactive fuel mass regimes, the 40% n-heptane mass fraction has the major heat transfer exergy owing to its advanced CA50 that exerts a unique influence on cylinder charge temperature of heat transfer layer. The utilization efficiency of exhaust in RCCI is less affected by the variation of reactive fuel mass fraction by contrast; it will significantly influence heat transfer availability. This study revealed that with increasing reactive fuel ( n-heptane) from 7.5% to 40% the irreversibility decreased from 28.6% to 25.8% and the second law efficiency first increased from 43.2% to 44.6% at 15% n-heptane then decreased to 42.9% at 40% n-heptane.
APA, Harvard, Vancouver, ISO, and other styles
5

Kousheshi, Navid, Mortaza Yari, Amin Paykani, Ali Saberi Mehr, and German F. de la Fuente. "Effect of Syngas Composition on the Combustion and Emissions Characteristics of a Syngas/Diesel RCCI Engine." Energies 13, no. 1 (January 2, 2020): 212. http://dx.doi.org/10.3390/en13010212.

Full text
Abstract:
Reactivity controlled compression ignition (RCCI) strategy uses two different fuels with different reactivities which provides more control over the combustion process and has the potential to dramatically lower combustion temperature and NOX and PM emissions. The objective of the present study is to numerically investigate the impact of syngas composition on the combustion and emissions characteristics of an RCCI engine operating with syngas/diesel at constant energy per cycle. For this purpose, different syngas compositions produced through gasification process have been chosen for comparison with the simulated syngas (mixture of hydrogen and carbon monoxide). The results obtained indicate that using syngas results in more soot, CO and UHC emissions compared with simulated syngas. Even though more NOX reduction can be achieved while operating with syngas, the engine could suffer from poor combustion and misfire at low loads due to the presence of nitrogen in the mixture. In terms of exergy, both syngas mixtures lead to more exergy destruction by the increase of syngas substitution. Nevertheless, the magnitude of exergy destruction for simulated syngas is less than the normal syngas.
APA, Harvard, Vancouver, ISO, and other styles
6

Yu, Guangying, Fatemeh Hadi, Ziyu Wang, and Hameed Metghalchi. "Review of Applications of Rate-Controlled Constrained-Equilibrium in Combustion Modeling." Journal of Non-Equilibrium Thermodynamics 45, no. 1 (January 28, 2020): 59–79. http://dx.doi.org/10.1515/jnet-2019-0060.

Full text
Abstract:
AbstractDeveloping an effective model for non-equilibrium states is of great importance for a variety of problems related to chemical synthesis and combustion. Rate-Controlled Constrained-Equilibrium (RCCE), a model order reduction method that originated from the second law of thermodynamics, assumes that the non-equilibrium states of a system can be described by a sequence of constrained-equilibrium states kinetically controlled by a relatively small number of constraints within acceptable accuracy. The full chemical composition at each constrained-equilibrium state is obtained by maximizing (or minimizing) the appropriate thermodynamic quantities, e. g., entropy (or Gibbs functions), subject to the instantaneous values of RCCE constraints. Regardless of the nature of the kinetic constraints, RCCE always guarantees a correct final equilibrium state. This paper reviews the fundamentals of the RCCE method, its constraints, constraint potential formulations, and major constraint selection techniques, as well as the application of the RCCE method to combustion of different fuels using a variety of combustion models. The RCCE method has been proven to be accurate and to reduce computational time in these simulations.
APA, Harvard, Vancouver, ISO, and other styles
7

Wissink, Martin L., Scott J. Curran, Greg Roberts, Mark PB Musculus, and Christine Mounaïm-Rousselle. "Isolating the effects of reactivity stratification in reactivity-controlled compression ignition with iso-octane and n-heptane on a light-duty multi-cylinder engine." International Journal of Engine Research 19, no. 9 (October 9, 2017): 907–26. http://dx.doi.org/10.1177/1468087417732898.

Full text
Abstract:
Reactivity-controlled compression ignition (RCCI) is a dual-fuel variant of low-temperature combustion that uses in-cylinder fuel stratification to control the rate of reactions occurring during combustion. Using fuels of varying reactivity (autoignition propensity), gradients of reactivity can be established within the charge, allowing for control over combustion phasing and duration for high efficiency while achieving low NOx and soot emissions. In practice, this is typically accomplished by premixing a low-reactivity fuel, such as gasoline, with early port or direct injection, and by direct injecting a high-reactivity fuel, such as diesel, at an intermediate timing before top dead center. Both the relative quantity and the timing of the injection(s) of high-reactivity fuel can be used to tailor the combustion process and thereby the efficiency and emissions under RCCI. While many combinations of high- and low-reactivity fuels have been successfully demonstrated to enable RCCI, there is a lack of fundamental understanding of what properties, chemical or physical, are most important or desirable for extending operation to both lower and higher loads and reducing emissions of unreacted fuel and CO. This is partly due to the fact that important variables such as temperature, equivalence ratio, and reactivity change simultaneously in both a local and a global sense with changes in the injection of the high-reactivity fuel. This study uses primary reference fuels iso-octane and n-heptane, which have similar physical properties but much different autoignition properties, to create both external and in-cylinder fuel blends that allow for the effects of reactivity stratification to be isolated and quantified. This study is part of a collaborative effort with researchers at Sandia National Laboratories who are investigating the same fuels and conditions of interest in an optical engine. This collaboration aims to improve our fundamental understanding of what fuel properties are required to further develop advanced combustion modes.
APA, Harvard, Vancouver, ISO, and other styles
8

Dalha, Ibrahim B., Mior A. Said, Zainal A. Abdul Karim, and Salah E. Mohammed. "An Experimental Investigation on the Influence of Port Injection at Valve on Combustion and Emission Characteristics of B5/Biogas RCCI Engine." Applied Sciences 10, no. 2 (January 8, 2020): 452. http://dx.doi.org/10.3390/app10020452.

Full text
Abstract:
High unburned hydrocarbon (UHC) and carbon monoxide (CO) emissions, on account of the premixed air-fuel mixture entering the crevices and pre-mature combustion, are setbacks to reactivity-controlled compression ignition (RCCI) combustion at a low load. The influence of direct-injected B5 and port injection of biogas at the intake valve was, experimentally, examined in the RCCI mode. The port injection at the valve was to elevate the temperature at low load and eliminate premixing for reduced pre-mature combustion and fuel entering the crevices. An advanced injection timing of 21° crank angle before top dead centre and fraction of 50% each of the fuels, were maintained at speeds of 1600, 1800 and 2000 rpm and varied the load from 4.5 to 6.5 bar indicated mean effective pressure (IMEP). The result shows slow combustion as the load increases with the highest indicated thermal efficiency of 36.33% at 5.5 bar IMEP. The carbon dioxide and nitrogen oxides emissions increased, but UHC emission decreased, significantly, as the load increases. However, CO emission rose from 4.5 to 5.5 bar IMEP, then reduced as the load increases. The use of these fuels and biogas injection at the valve were capable of averagely reducing the persistent challenge of the CO and UHC emissions, by 20.33% and 10% respectively, compared to the conventional premixed mode.
APA, Harvard, Vancouver, ISO, and other styles
9

Juknelevičius, Romualdas. "EXPERIMENTAL INVESTIGATIONS OF HYDROGEN EFFECTS ON PERFORMANCE AND EMISSIONS OF RENEWABLE DIESEL FUELED RCCI / VANDENILIO ĮTAKA ENERGINIAMS IR EMISIJOS RODIKLIAMS ALTERNATYVIU DYZELINU VEIKIANČIAME RCCI VARIKLYJE – EKSPERIMENTINIS TYRIMAS." Mokslas - Lietuvos ateitis 10 (December 21, 2018): 1–10. http://dx.doi.org/10.3846/mla.2018.4593.

Full text
Abstract:
The article presents the study of hydrogen effects on performance, combustion and emissions characteristics of renewable diesel fueled single cylinder CI engine with common rail injection system in RCCI mode. The renewable diesel fuels as the HRF are the HVO and it blend with petrol diesel further named PRO Diesel, investigated in this study. The purpose of this investigation was to examine the influence of the LRF – hydrogen addition to the HRF on combustion phases, engine performance, efficiency, and exhaust emissions. HES was changed within the range from 0 to 35%. Hydrogen injected through PFI during intake stroke to the combustion chamber, where it created homogeneous mixture with air. The HRF was directly injected into combustion chamber using electronic controlled unit. Tests were performed at both fixed and optimal injection timings at low, medium and nominal engine load. After analysis of the engine bench results, it was observed that lean hydrogen – HRF mixture does not support the flame propagation and efficient combustion. While at the rich fuel mixture and with increasing hydrogen fraction, the combustion intensity concentrate at the beginning of the combustion process and shortened the ignition delay phase. Decrease of CO, CO2 and smoke opacity was observed with increase of hydrogen amounts to the engine. However, increase of the NO concentration in the engine exhaust gases was observed.
APA, Harvard, Vancouver, ISO, and other styles
10

Martin, Jonathan, Andre Boehman, Rutvik Topkar, Sumit Chopra, Uday Subramaniam, and Heng Chen. "Intermediate Combustion Modes between Conventional Diesel and RCCI." SAE International Journal of Engines 11, no. 6 (April 3, 2018): 835–60. http://dx.doi.org/10.4271/2018-01-0249.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Combustión RCCI"

1

Bianchi, Zarco. "Sviluppo ed analisi di un sistema dual-fuel diesel/benzina per combustioni di tipo RCCI." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2015. http://amslaurea.unibo.it/8571/.

Full text
Abstract:
Nel presente lavoro è progettato e sviluppato un sistema dual-fuel diesel/benzina per combustioni di tipo RCCI, e sono esposti i risultati sperimentali in termini di prestazioni ed emissioni. E' inoltre descritto e implementato un algoritmo di stima dell'MFB50 a partire dalla sola misura della velocità motore.
APA, Harvard, Vancouver, ISO, and other styles
2

Miniutti, Giacomo Francesco. "Sistemi per la realizzazione di combustioni ad accensione per compressione mediante il controllo della reattività." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2014. http://amslaurea.unibo.it/6983/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Königsson, Fredrik. "Advancing the Limits of Dual Fuel Combustion." Licentiate thesis, KTH, Förbränningsmotorteknik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-96945.

Full text
Abstract:
There is a growing interest in alternative transport fuels. There are two underlying reasons for this interest; the desire to decrease the environmental impact of transports and the need to compensate for the declining availability of petroleum. In the light of both these factors the Diesel Dual Fuel, DDF, engine is an attractive concept. The primary fuel of the DDF engine is methane, which can be derived both from renewables and from fossil sources. Methane from organic waste; commonly referred to as biomethane, can provide a reduction in greenhouse gases unmatched by any other fuel. The DDF engine is from a combustion point of view a hybrid between the diesel and the otto engine and it shares characteristics with both. This work identifies the main challenges of DDF operation and suggests methods to overcome them. Injector tip temperature and pre-ignitions have been found to limit performance in addition to the restrictions known from literature such as knock and emissions of NOx and HC. HC emissions are especially challenging at light load where throttling is required to promote flame propagation. For this reason it is desired to increase the lean limit in the light load range in order to reduce pumping losses and increase efficiency. It is shown that the best results in this area are achieved by using early diesel injection to achieve HCCI/RCCI combustion where combustion phasing is controlled by the ratio between diesel and methane. However, even without committing to HCCI/RCCI combustion and the difficult control issues associated with it, substantial gains are accomplished by splitting the diesel injection into two and allocating most of the diesel fuel to the early injection. HCCI/RCCI and PPCI combustion can be used with great effect to reduce the emissions of unburned hydrocarbons at light load. At high load, the challenges that need to be overcome are mostly related to heat. Injector tip temperatures need to be observed since the cooling effect of diesel flow through the nozzle is largely removed. Through investigation and modeling it is shown that the cooling effect of the diesel fuel occurs as the fuel resides injector between injections and not during the actual injection event. For this reason; fuel residing close to the tip absorbs more heat and as a result the dependence of tip temperature on diesel substitution rate is highly non-linear. The problem can be reduced greatly by improved cooling around the diesel injector. Knock and preignitions are limiting the performance of the engine and the behavior of each and how they are affected by gas quality needs to be determined. Based on experiences from this project where pure methane has been used as fuel; preignitions impose a stricter limit on engine operation than knock.
QC 20120626
Diesel Dual Fuel
APA, Harvard, Vancouver, ISO, and other styles
4

Raggini, Lorenzo. "Sviluppo e calibrazione di sistemi di controllo per combustioni innovative." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018. http://amslaurea.unibo.it/16426/.

Full text
Abstract:
In questi anni, il settore di ricerca che si occupa dello studio di combustioni innovative ha ricevuto un grande impulso, al fine di sviluppare tipologie di combustione differenti e più efficienti rispetto alle tradizionali spark ignited (SI) e compression ignited (CI). Questo impulso è legato alla crescente esigenza di ridurre le emissioni di inquinanti (specie NOx) e climalteranti (CO2): da una parte, infatti, le tradizionali combustioni SI non garantiscono rendimenti sufficientemente elevati, comportando elevate emissioni di CO2, dall’altra, le combustioni CI sono implicitamente caratterizzate da elevate emissioni di NOx e di particolato. Se, quindi, le emissioni di particolato sono state drasticamente ridotte grazie all’uso dei filtri antiparticolato (DPF), è anche vero che la riduzione di NOx richiede l’impiego di sofisticati sistemi di post trattamento dei gas, comportando un notevole incremento del costo del prodotto. L’attività di tesi è dunque orientata a sviluppare strumenti che consentano la sperimentazione di combustioni innovative, basate sulla ossidazione di benzina o gasolio, e, in particolare, ha l’obiettivo di studiare e sviluppare un sistema di controllo RCP che permetta di ottenere un apparato sperimentale flessibile ed adatto per eseguire il controllo ed il test delle combustioni innovative.
APA, Harvard, Vancouver, ISO, and other styles
5

Chatzopoulos, Athanasios. "Modelling of turbulent combustion using the Rate-Controlled Constrained Equilibrium (RCCE)-Artificial Neural Networks (ANNs) approach." Thesis, Imperial College London, 2013. http://hdl.handle.net/10044/1/30782.

Full text
Abstract:
The objective of this work is the formulation, development and implementation of Artificial Neural Networks (ANNs) to turbulent combustion problems, for the representation of reduced chemical kinetics. Although ANNs are general and robust tools for simulating dynamical systems within reasonable computational times, their employment in combustion has been limited. In previous studies, ANNs were trained with data collected from either the test case of interest or from a similar problem. To overcome this training drawback, in this work, ANNs are trained with samples generated from an abstract problem; the laminar flamelet equation, allowing the simulation of a wide range of problems. To achieve this, the first step is to reduce a detailed chemical mechanism to a manageable number of variables. This task is performed by the Rate-Controlled Constrained Equilibrium (RCCE) reduction method. The training data sets consist of the composition of points with random mixture fraction, recorded from flamelets with random strain rates. The training, testing and simulation of the ANNs is carried out via the Self-Organising Map - Multilayer Perceptrons (SOM-MLPs) approach. The SOM-MLPs combination takes advantage of a reference map and splits the chemical space into domains of chemical similarity, allowing the employment of a separate MLP for each sub-domain. The RCCE-ANNs tabulation is used to replace conventional chemistry integration methods in RANS computations and LES of real turbulent flames. In the context of RANS the interaction of turbulence and combustion is described by using a PDF method utilising stochastic Lagrangian particles. In LES the sub-grid PDF is represented by an ensemble of Eulerian stochastic fields. Test cases include non-premixed and partially premixed turbulent flames in both non-piloted and piloted burner configurations. The comparison between RCCE-ANNs, real-time RCCE and experimental measurements shows good overall agreement in reproducing the overall flame structure and a significant speed-up of CPU time by the RCCE-ANN method.
APA, Harvard, Vancouver, ISO, and other styles
6

Paolucci, Lorenzo. "High efficiency low temperature combustion in compression ignition engines for automotive and aeronautical applications." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019.

Find full text
Abstract:
Internal combustion engines are increasingly subject to ever more stringent and severe Euro-legislations about pollutants emissions in terms of nitrogen oxide, carbon monoxide, unburned hydrocarbons and soot. In last years, thanks to advanced after treatment systems and technological innovations, emission have been improved but, due to even higher costs and complexity of such systems and in a view of further emissions restrictions, advanced combustion methods leading to cleaner and improved efficiency combustion are under investigation. A possible path to follow in order to met requirements on lower emissions, is relative to so called low temperature combustion: a group of innovative combustion methods which by exploiting lean and premixed combustion decreases significantly flame temperature which is mainly responsible for nitrogen oxide production. This work of thesis focus on preliminary study, development and experimental testing of a low temperature combustion strategy, namely "gasoline direct compression ignition" also known as "GDCI".
APA, Harvard, Vancouver, ISO, and other styles
7

Muca, Sonia. "Implementazione di un modello di controllo per la definizione dei target di iniezione di combustioni innovative." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2018.

Find full text
Abstract:
Con il presente lavoro di tesi è stato sviluppato e implementato un modello di controllo in Simulink per la definizione dei target di iniezione e la transizione di un motore ad accensione spontanea in condizioni di alimentazione Dual Fuel. Il modello è costituito da due sottosistemi con finalità diverse: uno deputato al passaggio in Dual Fuel (diesel/benzina) e l’altro per tornare alla condizione di sicurezza di alimentazione diesel. Una volta verificato il corretto funzionamento nelle prove numeriche, è stato sperimentato sul motore presente in banco prove e i test sperimentali sul modello sono stati esposti nel presente lavoro. Questo modello rappresenta uno spunto per potenziali sviluppi sul controllo di combustioni innovative.
APA, Harvard, Vancouver, ISO, and other styles
8

Soto, Izquierdo Lian. "Estudio del efecto de diferentes estrategias de formación de la mezcla sobre las emisiones gaseosas y de partículas en nuevos conceptos de combustión de motores de encendido por compresión." Doctoral thesis, 2020. http://hdl.handle.net/10251/149401.

Full text
Abstract:
[ES] En los últimos años, las normativas que regulan las emisiones contaminantes producidas por los MCIA han reducido significativamente los límites máximos permisibles. En este escenario, la comunidad científica ha venido desarrollando nuevos dispositivos y estrategias que proporcionen una reducción de las emisiones contaminantes. La investigación en nuevos conceptos de combustión LTC ("Low Temperature Combustion") como alternativa a la combustión diésel convencional en los MEC, es una de estas estrategias que viene mostrando excelentes resultados. No obstante, todavía existen algunas limitaciones que no permiten la implementación de estas nuevas estrategias de combustión en condiciones reales de operación. Tales como, los elevados niveles de emisiones de UHC y CO a baja carga y la excesiva presión en cámara a alta carga de operación. En este contexto, el objetivo principal de esta tesis doctoral consiste en evaluar en nuevos conceptos premezclados LTC, el impacto que tienen diferentes estrategias de inyección y de renovación de la carga sobre los procesos de preparación de la mezcla aire-combustible y combustión, así como su efecto sobre las emisiones contaminantes reguladas (UHC, CO, NOx y PM), incluyendo un análisis de la distribución de tamaño de partículas. Estas estrategias se llevaron a cabo en el concepto PPC ("Partially Premixed Combustion") de gasolina y en los conceptos de combustión dual-fuel del modo de operación DMDF ("Dual-Mode Dual-Fuel"). El modo DMDF emplea dos combustibles de diferente reactividad y cambia de combustión RCCI ("Reactivity Controlled Compression Ignition") completamente premezclada a baja carga a combustión dual-fuel de naturaleza difusiva a alta carga de operación. Para la consecución de dicho objetivo se ha realizado un estudio teórico-experimental basado en variaciones paramétricas de la presión de inyección, del ángulo de inicio de inyección de combustible, del cruce de válvula y de la tasa de EGR. Los ensayos experimentales se ejecutaron en dos motores de investigación diferentes. El concepto PPC se analizó en un MEC-ID de 2T, y las estrategias de combustión del modo DMDF se investigaron en un MEC-ID de 4T. Los resultados se analizaron sobre la base de los datos obtenidos directamente de los ensayos experimentales, así como de los obtenidos a partir de modelos de diagnóstico de la combustión y del proceso de renovación de la carga. A través de estos estudios se ha profundizado en la comprensión de los fenómenos que intervienen en los conceptos premezclados LTC. Siendo posible afirmar, que, en estas estrategias premezcladas de combustión existe un importante rango para definir las condiciones del proceso de mezcla aire-combustible. Sin embargo, se requiere un adecuado ajuste de los parámetros que afectan el proceso de mezcla, ya que estos definirán el desarrollo del proceso de combustión y los niveles de emisiones contaminantes.
[CA] En els últims anys, les normatives que regulen les emissions contaminants produïdes pels MCIA han disminuït significativament els límits màxims permissibles. En aquest escenari, la comunitat científica ha desenvolupat nous dispositius i estratègies que proporcionin una reducció de les emissions contaminants. La investigació en nous conceptes de combustió LTC ("Low Temperature Combustion") com a alternativa a la combustió dièsel convencional en els MEC, és una d'aquestes estratègies que està mostrant excel·lents resultats. No obstant això, encara hi ha algunes limitacions que no permeten la implementació d'aquestes noves estratègies de combustió en condicions reals d'operació. Com, els elevats nivells d'emissions de UHC i CO a baixa càrrega i l'excessiva pressió en càmera a alta càrrega d'operació. En aquest context, l'objectiu principal d'aquesta tesi doctoral consisteix a avaluar en nous conceptes premescladas LTC, l'impacte que tenen diferents estratègies d'injecció i de renovació de la càrrega sobre els processos de preparació de la barreja aire-combustible i combustió, així com el seu efecte sobre les emissions contaminants regulades (UHC, CO, NOx i PM), incloent una anàlisi de la distribució de mida de partícules. Aquestes estratègies es van dur a terme en el concepte PPC ("Partially Premixed Combustion") de gasolina i en els conceptes de combustió dual-fuel de la manera d'operació DMDF ("Dual-Mode Dual-Fuel"). La manera DMDF empra dos combustibles de diferent reactivitat i canvia de combustió RCCI ("Reactivity Controlled Compression Ignition") completament premesclada a baixa càrrega a combustió dual-fuel de naturalesa difusiva a alta càrrega d'operació. Per a la consecució d'aquest objectiu s'ha realitzat un estudi teòric-experimental basat en variacions paramètriques de la pressió d'injecció, de l'angle inicial d'injecció de combustible, de l'encreuament de vàlvula i de la taxa d'EGR. Els assajos experimentals es van executar en dos motors de investigació diferents. El concepte PPC es va analitzar en un MEC-ID de 2T, i les estratègies de combustió de la manera DMDF es van investigar en un MEC-ID de 4T. Els resultats es van analitzar sobre la base de les dades obtingudes directament dels assajos experimentals, així com dels obtinguts a partir de models de diagnòstic de la combustió i de el procés de renovació de la càrrega. A través d'aquests estudis s'ha aprofundit en la comprensió dels fenòmens que intervenen en els conceptes premescladas LTC. Sent possible afirmar que, en aquestes estratègies premescladas de combustió existeix un important rang per definir les condicions de l'procés de mescla aire-combustible. No obstant això, es requereix un adequat ajust dels paràmetres que afecten el procés de mescla, ja que aquests definiran el desenvolupament de el procés de combustió i els nivells d'emissions contaminants.
[EN] In recent years, the pollutant emission regulations of the reciprocating internal combustion engines have significantly reduced the maximum permissible limits. This way, the scientific community has been investing in the development of new devices and strategies that provide a reduction in pollutant emissions. The research into new low-temperature combustion (LTC) concepts as an alternative to conventional diésel combustion in compression ignition engines is one of these strategies that has been showing excellent results. However, there are still some limitations that do not allow the implementation of these new combustion strategies under real operating conditions. Such as the high levels of UHC and CO emissions at low load and the excessive in-cylinder pressure at high load. In this context, the main objective of this doctoral thesis is to evaluate, in new premixed LTC concepts, the impact of the different injection and air management strategies over the air-fuel mixture and combustion process, as well as, its effect on regulated pollutant emissions (UHC, CO, NOx and PM), including an analysis of the particle size distribution. These strategies were carried out in the partially premixed combustion (PPC) concept and in the dual-fuel combustion concepts of the dual-mode dual-fuel (DMDF) operation mode. The DMDF mode uses two fuels of different reactivity and switches from fully premixed reactivity controlled compression ignition (RCCI) combustion at low load to dual-fuel diffusive combustion at high load. To achieve this objective, a theoretical-experimental study based on parametric variations of the injection pressure, the start of injection, valve overlap period and EGR rate has been carried out. The experimental tests were run on two different research engines. The PPC concept was analyzed on a two-stroke poppet-valves engine, and the combustion strategies of the DMDF mode were investigated on a four-stroke compression ignition engine. The results were analyzed on the basis of the data obtained directly from the experimental tests, as well as, those obtained from diagnostic models of the combustion and air management. Through these studies, it has been possible to deepen in the understanding of the phenomenas that intervene in the premixed LTC concepts. Being possible to affirm that, in these premixed combustion strategies, there is an important range to define the conditions of the air-fuel mixture process. However, an adequate adjustment of the parameters that affect the mixture process is required, since these will define the development of the combustion process and the levels of pollutant emissions.
Soto Izquierdo, L. (2020). Estudio del efecto de diferentes estrategias de formación de la mezcla sobre las emisiones gaseosas y de partículas en nuevos conceptos de combustión de motores de encendido por compresión [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/149401
TESIS
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Combustión RCCI"

1

Singh, Ajay, Mohit Raj Saxena, and Rakesh Kumar Maurya. "Investigation of Nature of Cyclic Combustion Variations in RCCI Engine." In Lecture Notes in Mechanical Engineering, 589–98. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5996-9_46.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Singh, Ajay, Rakesh Kumar Maurya, and Mohit Raj Saxena. "Effect of Diesel Injection Timings on the Nature of Cyclic Combustion Variations in a RCCI Engine." In Proceedings of the 7th International Conference on Advances in Energy Research, 775–84. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5955-6_73.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Firmansyah, Abdul Rashid Abdul Aziz, Morgan Raymond Heikal, Ezrann Zharif Zainal Abidin, and Naveenchandran Panchatcharam. "Reactivity Controlled Compression Ignition (RCCI) of Gasoline- CNG Mixtures." In Improvement Trends for Internal Combustion Engines. InTech, 2018. http://dx.doi.org/10.5772/intechopen.72880.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Combustión RCCI"

1

Soloiu, Valentin, Jose Moncada, Remi Gaubert, Spencer Harp, Kyle Flowers, and Marcel Ilie. "Combustion and Emissions of Jet-A and N-Butanol in RCCI Operation." In ASME 2017 Internal Combustion Engine Division Fall Technical Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/icef2017-3671.

Full text
Abstract:
Jet-A was investigated in RCCI (Reactivity Controlled Compression Ignition) given that the fuel is readily available and has a similar cetane number compared to ultra-low sulfur diesel (ULSD#2). To promote emissions’ control, RCCI was conducted with direct injection (DI) of Jet-A and PFI (port fuel injection) of n-butanol. Combustion and emission characteristics of Jet-A RCCI were investigated for a medium duty DI experimental engine operated at constant boost and 30% EGR rate and compared to ULSD#2 RCCI and single-fuel ULSD#2 operation. DI fuel was injected at 5 CAD ATDC and constant rail pressure of 1500 bar. A 20% pilot by mass was added and investigated at timings from 15 to 5 CAD BTDC for combustion stability. The results showed that the effect of the pilot injection on Jet-A combustion was not as prominent as compared to that of ULSD#2, suggesting a slightly different spray and mixture formation. Ignition delay for Jet-A was 15–20% shorter compared to ULSD#2 in RCCI. When the pilot was set to 5 CAD BTDC, CA50 phased for ULSD#2 RCCI by 3 CAD later when compared to Jet-A RCCI. After TDC, the local pressure maximum for ULSD#2 RCCI decreased by 3 bar, resulting from a 15% difference in peak heat release rate between ULSD#2 and Jet-A in RCCI at the same pilot timing. NOx and soot levels were reduced by a respective maximum of 35% and 80% simultaneously in Jet-A RCCI mode compared to single-fuel ULSD#2, yet, were higher compared to ULSD#2 RCCI. Ringing intensity was maintained at similar levels and energy specific fuel consumption (ESFC) improved by at least 15% for Jet-A compared to ULSD#2 in RCCI. Mechanical efficiencies additionally improved at earlier pilot timing by 2%. In summary, Jet-A RCCI allowed for emissions control and increased fuel efficiencies compared to single fuel ULSD#2, however, injection should be further tweaked in order to reach lower soot levels.
APA, Harvard, Vancouver, ISO, and other styles
2

Curran, Scott J., James P. Szybist, and Robert M. Wagner. "Combustion Noise Investigation With Multi-Cylinder RCCI." In ASME 2013 Internal Combustion Engine Division Fall Technical Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/icef2013-19125.

Full text
Abstract:
Advanced combustion techniques have shown promise for achieving high thermal efficiency with simultaneous reductions in oxides of nitrogen (NOx) and particulate matter (PM) emissions. Many advanced combustion studies have used some form of noise-related metric to constrain engine operation, whether it be cylinder pressure rise rate, combustion noise, or ringing intensity. As the development of advanced combustion techniques progresses towards production-viable concepts, combustion noise is anticipated to be of the upmost concern for consumer acceptability. This study compares the noise metrics of cylinder pressure rise rate with combustion noise as measured by an AVL combustion noise meter over a wide range of engine operation conditions with reactivity controlled compression ignition on a light-duty multi-cylinder diesel engine modified to allow for direct injection of diesel fuel and port fuel injection of gasoline. Key parameters affecting noise metrics are engine load, speed, and the amount of boost. The trade-offs between high efficiency, low NOX emissions, and combustion noise were also explored. Additionally, the combustion noise algorithm integrated into the Drivven combustion analysis toolkit is compared to cylinder pressure rise rate and combustion noise as measured with a combustion noise meter. It is shown that the combustion noise of the multi-cylinder reactivity controlled compression ignition map can approach 100 dB while keeping the maximum pressure rise under 100 kPa/CAD.
APA, Harvard, Vancouver, ISO, and other styles
3

Soloiu, Valentin, Cesar E. Carapia, Justin T. Wiley, Jose Moncada, Remi Gaubert, Aliyah Knowles, Marcel Ilie, and Mosfequr Rahman. "RCCI Investigations With n-Butanol and ULSD." In ASME 2019 Internal Combustion Engine Division Fall Technical Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/icef2019-7226.

Full text
Abstract:
Abstract The focus of this study is to reduce harmful NOx and soot emissions of a compression ignition (CI) engine using reactivity-controlled compression ignition (RCCI) with n-Butanol. RCCI was achieved with the port fuel injection (PFI) of a low reactivity fuel, n-butanol, and a direct injection (DI) of the highly reactive fuel ULSD #2 (Ultra Low Sulfur Diesel) into the combustion chamber. The reactivity, ID, and CD where determined using a Constant Volume Combustion Chamber (CVCC) where ID for n-butanol was found to be 15 times slower than ULSD. The emissions and combustion analysis was conducted at 1500 RPM at an experimental low engine load of 4 bar IMEP; the baseline for emissions comparison was conducted using conventional diesel combustion (CDC) with an injection timing of 16° BTDC at a rail pressure of 800 bar. RCCI was conducted utilizing 75% by mass PFI of n-butanol with 25% ULSD DI, showed a simultaneous reduction of both NOx and soot emissions at a rate of 96.2% and 98.7% respectively albeit with an increase in UHC emissions by a factor of 5. Ringing Intensity was also significantly reduced for Bu75ULSD25 (RCCI Experiment) with a reduction of 62.1% from CDC.
APA, Harvard, Vancouver, ISO, and other styles
4

Hanson, Reed, and Rolf Reitz. "Investigation of Cold Starting and Combustion Mode Switching as Methods to Improve Low Load RCCI Operation." In ASME 2015 Internal Combustion Engine Division Fall Technical Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/icef2015-1093.

Full text
Abstract:
Reactivity Controlled Compression Ignition (RCCI) is an engine combustion strategy that utilizes in-cylinder fuel blending to produce low NOx and PM emissions while maintaining high thermal efficiency. The current study investigates RCCI and conventional diesel combustion (CDC) operation in a light-duty multi-cylinder engine using a transient capable engine test cell. The main focus of the work uses engine experiments to investigate methods which can improve low-load RCCI operation. The first set of experiments investigated RCCI operation during cold start conditions. The next set of tests investigated combustion mode switching between RCCI and CDC. During the cold start tests, RCCI performance and emissions were measured over a range of engine coolant temperatures from 48 to 85°C. A combination of open and closed loop controls enabled RCCI to operate at a 1,500 rpm, 1 bar BMEP operating point over this range of coolant temperatures. At a similar operating condition, i.e. 1,500 rpm, 2 bar BMEP, the engine was instantaneously switched between CDC and RCCI combustion using the same open and closed loop controls as the cold start testing. During the mode switch tests, emissions and performance were measured with high speed sampling equipment. The tests revealed that it was possible to operate RCCI down to 48°C with simple open and closed loop controls with emissions and efficiency similar to the warm steady-state values. Next, the mode switching tests were successful in switching combustion modes with minimal deviations in emissions and performance in either mode at steady-state.
APA, Harvard, Vancouver, ISO, and other styles
5

Fang, Wei, David B. Kittelson, and William F. Northrop. "Dilution Sensitivity of Particulate Matter Emissions From Reactivity Controlled Compression Ignition Combustion." In ASME 2015 Internal Combustion Engine Division Fall Technical Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/icef2015-1092.

Full text
Abstract:
Dual-fuel reactivity-controlled compression ignition (RCCI) combustion can yield high thermal efficiency and simultaneously low NOx and soot emissions. Although soot emissions from RCCI is very low, hydrocarbon emissions are high, potentially resulting in higher than desired total particulate matter (PM) mass and number caused by semi-volatile species converting the particle phase upon primary dilution in the exhaust plume. Such high organic fraction PM is known to be highly sensitive to the dilution conditions used when collecting samples on a filter or when measuring particle number using particle sizing instruments. In this study, PM emissions from a modified single-cylinder diesel engine operating in RCCI and conventional diesel combustion modes were investigated under different dilution conditions. To investigate the effect of the fumigated fuel on the PM emissions, 150 proof hydrous ethanol and gasoline were used as low reactivity fuels to study the relative contribution of fumigant versus directly injected fuel on the PM emissions. Our study found that PM from RCCI combustion is more sensitive to the variation of dilution conditions than PM from single fuel conventional diesel combustion. RCCI PM primarily consisted of semi-volatile organic compounds and a smaller amount of solid carbonaceous particles. The fumigated fuel had a significant effect on the PM emissions characteristics for RCCI combustion. Hydrous ethanol fueled RCCI PM contained a larger fraction of volatile materials and were more sensitive to the variation of dilution conditions compared to the gasoline fueled RCCI mode.
APA, Harvard, Vancouver, ISO, and other styles
6

Soloiu, Valentin, Martin Muiños, Tyler Naes, Spencer Harp, and Marcis Jansons. "RCCI of Synthetic Kerosene With PFI of N-Butanol-Combustion and Emissions Characteristics." In ASME 2015 Internal Combustion Engine Division Fall Technical Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/icef2015-1154.

Full text
Abstract:
In this study, the combustion and emissions characteristics of Reactivity Controlled Compression Ignition (RCCI) obtained by direct injection (DI) of S8 and port fuel injection (PFI) of n-butanol were compared with RCCI of ultra-low sulfur diesel #2 (ULSD#2) and PFI of n-butanol at 6 bar indicated mean effective pressure (IMEP) and 1500 rpm. S8 is a synthetic paraffinic kerosene (C6–C18) developed by Syntroleum and is derived from natural gas. S8 is a Fischer-Tropsch fuel that contains a low aromatic percentage (0.5 vol. %) and has a cetane number of 63 versus 47 of ULSD#2. Baselines of DI conventional diesel combustion (CDC), with 100% ULSD#2 and also DI of S8 were conducted. For both RCCI cases, the mass ratio of DI to PFI was set at 1:1. The ignition delay for the ULSD#2 baseline was found to be 10.9 CAD (1.21 ms) and for S8 was shorter at 10.1 CAD (1.12 ms). In RCCI, the premixed charge combustion has been split into two regions of high temperature heat release, an early one BTDC from ignition of ULSD#2 or S8, and a second stage, ATDC from n-butanol combustion. RCCI with n-butanol increased the NOx because the n-butanol contains 21% oxygen, while S8 alone produced 30% less NOx emissions when compared to the ULSD#2 baseline. The RCCI reduced soot by 80–90% (more efficient for S8). However, S8 alone showed a considerable increase in soot emissions compared with ULSD#2. The indicated thermal efficiency was the highest for the ULSD#2 and S8 baseline at 44%. The RCCI strategies showed a decrease in indicated thermal efficiency at 40% ULSD#2-RCCI and 42% and for S8-RCCI, respectively. S8 as a single fuel proved to be a very capable alternative to ULSD#2 in terms of combustion performance nevertheless, exhibited higher soot emissions that have been mitigated with the RCCI strategy without penalty in engine performance.
APA, Harvard, Vancouver, ISO, and other styles
7

Soloiu, Valentin, Cesar E. Carapia, Richard Smith, Amanda Weaver, Levi Mckinney, David Mothershed, Drake Grall, Marcel Ilie, and Mosfequr Rahman. "RCCI With High Reactivity S8-ULSD Blend and Low Reactivity N-Butanol." In ASME 2020 Internal Combustion Engine Division Fall Technical Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/icef2020-3010.

Full text
Abstract:
Abstract A fuel blend consisting of 10% S8 by mass (a Fischer-Tropsch synthetic kerosene), and 90% ULSD (Ultra Low Sulfur Diesel) was investigated for their combustion characteristics and impact on emissions during RCCI (Reactivity Controlled Compression Ignition) combustion in a single cylinder experimental engine utilizing a 65% by mass n-butanol port fuel injection (PFI). RCCI is a dual fuel combustion strategy achieved with the introduction of a PFI fuel of the low-reactive n-butanol, and a direct injection (DI) of a high-reactivity blend (FT-BLEND) into an experimental diesel engine. The combustion analysis and emissions testing were conducted at 1500 RPM at an engine load of 5 bar IMEP (Indicated Mean Effective Pressure), and CA50 of 9° ATDC (After Top Dead Center); CDC (Conventional Diesel Combustion) and RCCI with 65Bu-35ULSD were utilized as the baseline for AHRR (Apparent Heat Release Rate), ringing and emissions comparisons. It was found during a preliminary investigation with a Constant Volume Combustion Chamber (CVCC) that the introduction of 10% by mass S8 into a mixture with 90% ULSD by mass only increased Derived Cetane Number (DCN) by 0.8, yet it was found to have a significant effect on the combustion characteristics of the fuel blend. This led to the change in injection timing necessary for maintaining 65Bu-35F-T BLEND RCCI at a CA50 of 5° ATDC (After Top Dead Center) to be shifted 3° closer to TDC, thus affecting the Ringing Intensity (RI), Pressure Rise Rate, and heat release of the blend all to decrease. CDC was conducted with a primary injection of 14° BTDC at a rail pressure of 800 bar, all RCCI testing was conducted with 65% PFI of n-butanol by mass and 35% DI, to prevent knock, with a rail pressure of 600 bar and a pilot injection of 60° BTDC for 0.35 ms. 65Bu-35ULSD RCCI was conducted with a primary injection at 6° BTDC with neat ULSD#2, the fuel 65Bu-35F-T BLEND in RCCI had a primary injection at 3° BTDC to maintain CA50 at 9° ATDC. 65Bu-35ULSD RCCI experienced a NOx and soot emissions decrease of 40.8% and 91.44% respectively in comparison to CDC. The fuel 65Bu-35F-T BLEND in RCCI exhibited an additional decrease of NOx and soot of 32.9 and 5.3%, in comparison to 65Bu-35ULSD RCCI for an overall decrease in emissions of 73.7% and 96.71% respectively. Ringing Intensity followed a similar trend with reductions in RI for 65Bu-35ULSD RCCI decreasing only by 6.2% whereas 65Bu-35F-T BLEND had a decrease in RI of 76.6%. Although emissions for both RCCI fuels experienced a decrease in NOx and soot in comparison to CDC, UHC and CO did increase as a result of RCCI. CO emissions for 65Bu-35ULSD RCCI and 65Bu-35F-T BLEND where increased from CDC by a factor of 5 and 4 respectively with UHC emissions rising from CDC by a factor of 3.4. The fuel 65Bu-35F-T BLEND had a higher combustion efficiency than 65Bu-35ULSD in RCCI at 91.2% due to lower CO emissions of the blend.
APA, Harvard, Vancouver, ISO, and other styles
8

Ravaglioli, V., F. Ponti, F. Carra, and M. De Cesare. "Heat Release Experimental Analysis for RCCI Combustion Optimization." In ASME 2018 Internal Combustion Engine Division Fall Technical Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/icef2018-9714.

Full text
Abstract:
Over the past years, the increasingly stringent emission regulations for Internal Combustion Engines (ICE) spawned a great amount of research in the field of combustion control optimization. Nowadays, optimal combustion control has become crucial, especially to properly manage innovative Low Temperature Combustion (LTC) strategies, usually characterized by high instability, cycle-to-cycle variability and sensitivity to slight variations of injection parameters and thermal conditions. Many works demonstrate that stability and maximum efficiency of LTC strategies can be guaranteed using closed-loop control strategies that vary the standard injection parameters (mapped during the base calibration activity) to keep engine torque and center of combustion (CA50) approximately equal to their target values. However, the combination of standard base calibration and closed-loop control is usually not sufficient to accurately control Low Temperature Combustions in transient conditions. As a matter of fact, to properly manage LTC strategies in transient conditions it is usually necessary to investigate the combustion methodology of interest and implement specific functions that provide an accurate feed-forward contribution to the closed-loop controller. This work presents the experimental analysis performed running a light-duty compression ignited engine in dual-fuel RCCI mode, the goal being to highlight the way injection parameters and charge temperature affect combustion stability and ignition delay. Finally, the paper describes how the obtained results can be used to define the optimal injections strategy in the analyzed operating points, i.e. the combination of injection parameters to be used as a feed-forward for a closed-loop combustion control strategy.
APA, Harvard, Vancouver, ISO, and other styles
9

Walker, N. Ryan, Martin L. Wissink, Dan A. DelVescovo, and Rolf D. Reitz. "Natural Gas for High Load Dual-Fuel Reactivity Controlled Compression Ignition (RCCI) in Heavy-Duty Engines." In ASME 2014 Internal Combustion Engine Division Fall Technical Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/icef2014-5620.

Full text
Abstract:
Reactivity controlled compression ignition (RCCI) has been shown to be capable of providing improved engine efficiencies coupled with the benefit of low emissions via in-cylinder fuel blending. Much of the previous body of work has studied the use of gasoline as the premixed low-reactivity fuel. However, there is interest in exploring the use of alternative fuels in advanced combustion strategies. Due to the strong market growth of natural gas as a fuel in both mobile and stationary applications, a study on the use of methane for RCCI combustion was performed. Single cylinder heavy-duty engine experiments were undertaken to examine the operating range of the RCCI combustion strategy with methane/diesel fueling, and was compared against gasoline/diesel RCCI operation. The experimental results show a significant load extension of RCCI engine operation with methane/diesel fueling compared to gasoline/diesel fueling. For gasoline/diesel fueling, a maximum load of 6.9 bar IMEPg at CA50 = 0° aTDC and 7.0 bar IMEPg at CA50 = 4° aTDC was obtained without use of EGR. For methane/diesel fueling a maximum load of 15.4 bar IMEPg at CA50 = 0° aTDC and 17.3 bar IMEPg at CA50 = 4° aTDC was achieved, showing the effectiveness of the use of methane in extending the load limit for RCCI engine operation.
APA, Harvard, Vancouver, ISO, and other styles
10

Soloiu, Valentin, Jose Moncada, Remi Gaubert, Spencer Harp, Marcel Ilie, and Justin Wiley. "GTL Kerosene and N-Butanol in RCCI Mode: Combustion and Emissions Investigation." In ASME 2018 Internal Combustion Engine Division Fall Technical Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/icef2018-9585.

Full text
Abstract:
High reactivity gas-to-liquid kerosene (GTL) was investigated with port fuel injection (PFI) of low reactivity n-butanol to conduct reactivity controlled compression ignition (RCCI). In the preliminary stage, the GTL was investigated in a constant volume combustion chamber, and the results indicated a narrower negative temperature coefficient (NTC) region than ultra-low sulfur diesel (ULSD#2). The engine research was conducted at 1500 RPM and various loads with early n-butanol PFI and dual DI pulses of GTL at 60 crank angle degrees (CAD) before top dead center (TDC) and at a timing close to TDC. Boost and PFI fractions (60% by mass n-butanol) were kept constant in order to analyze the fuel reactivity effect on combustion. Conventional diesel combustion (CDC) mode with a single injection and the same combustion phasing (CA50) was used as an emissions baseline for RCCI. RCCI increased ignition delay and combustion duration decreased compared to CDC. Results showed that in order to maintain CA50 for RCCI within 1 CAD, GTL mass required for the first DI pulse to be 15% lower than that of ULSD#2 at higher loads. Peak heat release rate decreased for GTL by 25% given the high volatility and low viscosity of GTL. In general, using GTL, NOx and soot levels were reduced across load points by up to 15% to 30%, respectively, compared to ULSD RCCI, while maintaining RCCI combustion efficiency at 93–97%. Meanwhile, reductions of 85% in soot and 90% in NOx were determined when using RCCI compared to CDC. The more favorable heat release placement of GTL led to increased thermal efficiency by 3% at higher load compared to ULSD#2. The higher volatility and increased reactivity for GTL achieved lower UHC and CO than ULSD#2 at lower load. The study concluded that GTL offered advantages when used with n-butanol for this RCCI fueling configuration.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Combustión RCCI"

1

Musculus, Mark P. Co-Optima Project E2.2.2: Accelerate Development of ACI/LTC Fuel Effects on RCCI Combustion. Office of Scientific and Technical Information (OSTI), November 2017. http://dx.doi.org/10.2172/1410175.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography