Academic literature on the topic 'Communication Device-To-Device'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Communication Device-To-Device.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Communication Device-To-Device"
Jeon, Sang-Woon, Sang Won Choi, Juyeop Kim, and Won-Yong Shin. "Transmission Protocol for Cellular-Aided Device-to-Device Communication." Journal of Korean Institute of Communications and Information Sciences 41, no. 11 (November 30, 2016): 1619–29. http://dx.doi.org/10.7840/kics.2016.41.11.1619.
Full textSandeep, K., K. Monisha, and G. Navya D. Harika T. Aasritha. "Promoting Device-to-Device Communication in Cellular Networks by Hashing Techniques." International Journal of Trend in Scientific Research and Development Volume-2, Issue-3 (April 30, 2018): 1257–60. http://dx.doi.org/10.31142/ijtsrd11229.
Full textJANIS, Pekka, Chia-Hao YU, Klaus DOPPLER, Cassio RIBEIRO, Carl WIJTING, Klaus HUGL, Olav TIRKKONEN, and Visa KOIVUNEN. "Device-to-Device Communication Underlaying Cellular Communications Systems." International Journal of Communications, Network and System Sciences 02, no. 03 (2009): 169–78. http://dx.doi.org/10.4236/ijcns.2009.23019.
Full textPedhadiya, Mittal K., Rakesh Kumar Jha, and Hetal G. Bhatt. "Device to device communication: A survey." Journal of Network and Computer Applications 129 (March 2019): 71–89. http://dx.doi.org/10.1016/j.jnca.2018.10.012.
Full textNarottama, Bhaskara, Arfianto Fahmi, Rina Pudji Astuti, Desti Madya Saputri, Nur Andini, Hurianti Vidyaningtyas, Patricius Evander Christy, Obed Rhesa Ludwiniananda, and Furry Rachmawati. "Selective Green Device Discovery for Device-to-Device Communication." TELKOMNIKA (Telecommunication Computing Electronics and Control) 15, no. 4 (December 1, 2017): 1666. http://dx.doi.org/10.12928/telkomnika.v15i4.6686.
Full textAdnan, Mohd Hirzi, and Zuriati Ahmad Zukarnain. "Device-To-Device Communication in 5G Environment: Issues, Solutions, and Challenges." Symmetry 12, no. 11 (October 24, 2020): 1762. http://dx.doi.org/10.3390/sym12111762.
Full textPark, Eunhye, and Joonhyuk Kang. "Location-Based Device Identification Algorithm for Device-to-Device Communication." Journal of Korea Information and Communications Society 38A, no. 10 (October 31, 2013): 893–97. http://dx.doi.org/10.7840/kics.2013.38a.10.893.
Full textSrikanth Kamath, H., Sreelakshmi ., Muthyala Siri Chandana Reddy, and Chelsea Camilo Monteiro. "Overview of Device-to-Device Communication and Vehicle-to-Vehicle Communication." International Journal of Engineering & Technology 7, no. 4.36 (December 9, 2018): 859. http://dx.doi.org/10.14419/ijet.v7i4.36.24546.
Full textZenalden, Feras, Suhaidi Hassan, and Adib Habbal. "Mode Selection Mechanism to Enable Effective Device-to-Device Communication System over Different Environments." International Journal of Interactive Mobile Technologies (iJIM) 13, no. 04 (April 10, 2019): 33. http://dx.doi.org/10.3991/ijim.v13i04.10518.
Full textBisht, Yogesh Singh. "Device to Device based Women Safety System." International Journal for Research in Applied Science and Engineering Technology 9, no. VI (June 14, 2021): 620–25. http://dx.doi.org/10.22214/ijraset.2021.35045.
Full textDissertations / Theses on the topic "Communication Device-To-Device"
Sahlström, Nathalie. "Secure device to device communication." Thesis, KTH, Kommunikationsteori, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-146611.
Full textDaghal, Asaad. "Content delivery through device to device communication." Thesis, University of Kent, 2017. https://kar.kent.ac.uk/65771/.
Full textGupta, Shruti. "Energy harvesting aided device-to-device communication networks." Thesis, University of Southampton, 2017. https://eprints.soton.ac.uk/415790/.
Full textChen, Xue. "Efficient Device to Device Communication Underlaying Heterogeneous Networks." DigitalCommons@USU, 2016. https://digitalcommons.usu.edu/etd/4673.
Full textAli, S. (Samad). "Full duplex device-to-device communication in cellular networks." Master's thesis, University of Oulu, 2014. http://urn.fi/URN:NBN:fi:oulu-201411081977.
Full textChour, Hussein. "Full-Duplex Device-to-Device Communication for 5G Network." Thesis, CentraleSupélec, 2019. http://www.theses.fr/2019CSUP0002.
Full textWith the rapidly growing of the customers' data traffic demand, improving the system capacity and increasing the user throughput have become essential concerns for the future 5G wireless communication network. In this context, D2D communication and FD are proposed as potential solutions to increase the spatial spectrum utilization and the user rate in a cellular network. D2D allows two nearby devices to communicate without BS participation or with limited participation. On the other hand, FD communication enables simultaneous transmission and reception in the same frequency band. Due to the short distance property of D2D links, exploiting the FD technology in D2D communication is an excellent choice to further improve the cellular spectrum efficiency and the users’ throughput. However, practical FD transceivers add new challenges for D2D communication. For instance, the existing FD devices cannot perfectly eliminate the SI imposed on the receiver by the node’s own transmitter. Thus, the RSI which is tightly related to the transmitter power value highly affects the performance of FD transmission. Moreover, the FD technique creates additional interference in the network which may degrade its performance when compared with the half-duplex transmission. Thus, proper radio resource management is needed to exploit the benefits of FD and guarantee the QoS of the users. The works in this dissertation focus on the PA and CA of a FD-D2D network. In particular, this thesis first addresses the PA problem and proposes a simple yet efficient centralized optimal PA framework, and next, it derives the optimal joint PA and CA scheme for an FD-D2D network. A simple sub-optimal algorithm for resource allocation named CATPA, based on CA followed by PA, is also derived and proposed. This dissertation also develops, in the end, an efficient decentralized PA using game theory tools that will be an essential part of future works in the context of distributed radio resource management
Uyoata, Uyoata Etuk. "Relay assisted device-to-device communication with channel uncertainty." Doctoral thesis, Faculty of Engineering and the Built Environment, 2019. http://hdl.handle.net/11427/31309.
Full textGeorge, Geordie. "Device-to-device communication and wearable networks harnessing spatial proximity." Doctoral thesis, Universitat Pompeu Fabra, 2017. http://hdl.handle.net/10803/404986.
Full textSe espera que los dispositivos espacialmente proximales que desean intercambiar información se vuelvan más frecuentes en redes inalámbricas, lo que hace cada vez más importante la opción para la comunicación directa de dispositivo-a-dispositivo (D2D). Por un lado, dentro de las redes en las que la comunicación a través de la infraestructura ha sido la convención, permitir tal opción para la comunicación de corto alcance y single-hop entre dispositivos ubicados conjuntamente podría potencialmente generar beneficios de rendimiento en varios aspectos. Por otro lado, en el ámbito de las redes en las que la interacción directa entre dispositivos ha sido una opción obvia, existe una demanda creciente de soportar aplicaciones de velocidad extrema de datos e implementaciones mucho más densas de transmisiones simultáneas. Esta disertación explora dichos aspectos abordando dos problemas principales: (i) analizando los beneficios de rendimiento de la comunicación D2D integrada en las redes móviles celulares y (ii) investigando la viabilidad de las frecuencias mmWave (onda milimétrica) para redes personales de dispositivos wearables (usado en el cuerpo) en entornos cerrados. Bajo suficiente localidad espacial en el tráfico inalámbrico en redes celulares, el modo de comunicación D2D puede ser apalancado para emplear una reutilización espectral más densa, logrando así eficiencias espectrales de área muy alta (bits/s/Hz por unidad de área). La habilitación de D2D implica una remodelación de la topología de red que comprende las fuentes de señal útil e interferencia perjudicial desde la ventaja de cada receptor, lo cual es un factor que delimita el funcionamiento de la red de manera fundamental. Por tanto, para medir las ganancias de rendimiento de D2D y para identificar los retos de la misma, es esencial para modelar la comunicación D2D en un gran ajuste multicelular, sin faltar las características clave del entorno de interferencia resultante. En este sentido, se desarrolla un sólido marco analítico, utilizando herramientas de geometría estocástica. La disertación propone un nuevo enfoque para la aplicación de la geometría estocástica para mejorar la simplicidad, precisión y generalidad del análisis de redes inalámbricas. La evaluación realizada utilizando dicho enfoque, al mismo tiempo que demuestra el potencial de D2D, también indica la necesidad de manejar la oleada de interferencia. Impulsado por estos resultados, y para ilustrar la flexibilidad del marco, también se amplía para incorporar esquemas de protección contra interferencias basados en regiones de exclusión y se evalúan sus los beneficios. La presencia de redes wearables múltiples—cada una de las cuales comprende varios pares de dispositivos en el cuerpo desgastados por personas—en proximidad puede dar como resultado una densidad extrema de transmisiones inalámbricas simultáneas. Se espera que este escenario se convierta habitual en entornos cerrados, por ejemplo, trenes de cercanías, subterráneos, aviones, aeropuertos u oficinas, y será un reto adicional debido a la creciente demanda de aplicaciones inalámbricas intensivas en datos en tecnología wearable. Esta combinación de comunicaciones de muy corto alcance, en aplicaciones de alta velocidad de datos y de reutilización espectral densa parece hacer que la operación en las frecuencias mmWave sea un candidato adecuado; se añade la posibilidad de alojar conjuntos de antenas dentro de dispositivos para el beamforming direccionales. Por tanto, también se investiga la viabilidad de las redes wearables mmWave cerradas, con especial énfasis en modelar apropiadamente el impacto de los mecanismos de propagación en estas frecuencias. En el modelado de propagación, las reflexiones especulares de las superficies se explican explícitamente, ya que se espera que contribuyan a la potencia de la señal útil, mientras que, al mismo tiempo, intensificar la interferencia. Reconociendo la mayor prominencia del bloqueo por obstáculos, también se modelan los bloqueos corporales en los caminos de propagación directa y reflejada. El impacto de estos mecanismos en la eficiencia espectral de la red se evalúa, ayudado por la aplicación de la geometría estocástica y la teoría de la forma aleatoria. Bajo configuraciones internas relevantes, y en la ausencia plausible de señal directa fuerte, se investiga la fiabilidad de las reflexiones superficiales proporcionando potencia de señal útil para una comunicación eficiente y se establece la necesidad de antenas direccionales.
Hasan, Monowar. "Radio Resource Management for Relay-Aided Device-to-Device Communication." IEEE, 2013. http://hdl.handle.net/1993/30531.
Full textLi, Yujin. "Mobility and Traffic Correlations in Device-to-Device (D2D) Communication Networks." Thesis, North Carolina State University, 2015. http://pqdtopen.proquest.com/#viewpdf?dispub=3690209.
Full textBooks on the topic "Communication Device-To-Device"
Mumtaz, Shahid, and Jonathan Rodriguez, eds. Smart Device to Smart Device Communication. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04963-2.
Full textSong, Lingyang, Zhu Han, and Chen Xu. Resource Management for Device-to-Device Underlay Communication. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4614-8193-5.
Full textLi, Peng, and Song Guo. Cooperative Device-to-Device Communication in Cognitive Radio Cellular Networks. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-12595-4.
Full textFried, Stephen. Mobile device security: A comprehensive guide to securing your information in a moving world. Boca Raton, FL: Auerbach Publications, 2010.
Find full textWang, Li, and Huan Tang. Device-to-Device Communications in Cellular Networks. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-30681-0.
Full textZhang, Aiqing, Liang Zhou, and Lei Wang. Security-Aware Device-to-Device Communications Underlaying Cellular Networks. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-32458-6.
Full textUnited States. President (1993-2001 : Clinton). Determination that Pakistan detonated a nuclear device on May 28, 1998: Communication from the President of the United States transmitting determination that Pakistan, a non-nuclear weapon state, detonated a nuclear explosive device on May 28, 1998, pursuant to section 102(b)(1) of the Arms Export Control Act. Washington: U.S. G.P.O., 1998.
Find full textUnited States. President (1993-2001 : Clinton). Determination that Pakistan detonated a nuclear device on May 28, 1998: Communication from the President of the United States transmitting determination that Pakistan, a non-nuclear weapon state, detonated a nuclear explosive device on May 28, 1998, pursuant to section 102(b)(1) of the Arms Export Control Act. Washington: U.S. G.P.O., 1998.
Find full textRodriguez, Jonathan, and Shahid Mumtaz. Smart Device to Smart Device Communication. Springer, 2014.
Find full textRodriguez, Jonathan, and Shahid Mumtaz. Smart Device to Smart Device Communication. Springer, 2016.
Find full textBook chapters on the topic "Communication Device-To-Device"
Doppler, Klaus, Cássio B. Ribeiro, and Pekka Jänis. "Device-To-Device Communication." In Mobile and Wireless Communications for IMT-Advanced and Beyond, 207–29. Chichester, UK: John Wiley & Sons, Ltd, 2011. http://dx.doi.org/10.1002/9781119976431.ch9.
Full textMumtaz, Shahid, and Jonathan Rodriguez. "Introduction to D2D Communication." In Smart Device to Smart Device Communication, 1–22. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04963-2_1.
Full textHong, Daesik, and Seokjung Kim. "Interference Management in D2D Communication." In Smart Device to Smart Device Communication, 89–111. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04963-2_4.
Full textXu, Shaoyi. "Establishment and Maintenance of D2D Communication." In Smart Device to Smart Device Communication, 113–33. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04963-2_5.
Full textSambo, Yusuf A., Muhammad Z. Shakir, Fabien Héliot, Muhammad A. Imran, Shahid Mumtaz, and Khalid A. Qaraqe. "Device-to-Device Communication in Heterogeneous Networks." In Smart Device to Smart Device Communication, 219–35. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04963-2_8.
Full textLi, Peng, and Song Guo. "Cooperative Device-to-Device Communication Architecture." In Cooperative Device-to-Device Communication in Cognitive Radio Cellular Networks, 13–17. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-12595-4_3.
Full textHorsmanheimo, S., N. Maskey, and L. Tuomimäki. "Interdependency Between Mobile and Electricity Distribution Networks: Outlook and Prospects." In Smart Device to Smart Device Communication, 281–308. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04963-2_10.
Full textTsolkas, Dimitris, Eirini Liotou, Nikos Passas, and Lazaros Merakos. "LTE-A Access, Core, and Protocol Architecture for D2D Communication." In Smart Device to Smart Device Communication, 23–40. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04963-2_2.
Full textLei, Lei, and Yiru Kuang. "Node/Peer Discovery, Mode Selection, and Signaling for D2D Communication in LTE-A Band." In Smart Device to Smart Device Communication, 41–88. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04963-2_3.
Full textFodor, Gabor, Stefano Sorrentino, and Shabnam Sultana. "Network Assisted Device-to-Device Communications: Use Cases, Design Approaches, and Performance Aspects." In Smart Device to Smart Device Communication, 135–63. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04963-2_6.
Full textConference papers on the topic "Communication Device-To-Device"
Uyoata, Uyoata, Mqhele Dlodlo, and Joyce Mwangama. "Robust Multicast Device-to-Device Communication." In 2018 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS). IEEE, 2018. http://dx.doi.org/10.1109/ants.2018.8710155.
Full textFlores, Huber, Rajesh Sharma, Denzil Ferreira, Chu Luo, Vassilis Kostakos, Sasu Tarkoma, Pan Hui, and Yong Li. "Social-aware device-to-device communication." In UbiComp '16: The 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing. New York, NY, USA: ACM, 2016. http://dx.doi.org/10.1145/2968219.2968589.
Full textChen, Ho-Yuan, Mei-Ju Shih, and Hung-Yu Wei. "Handover mechanism for device-to-device communication." In 2015 IEEE Conference on Standards for Communications and Networking (CSCN). IEEE, 2015. http://dx.doi.org/10.1109/cscn.2015.7390423.
Full textKhandaker, Muhammad R. A., Christos Masouros, and Kai-Kit Wong. "Secure Full-Duplex Device-to-Device Communication." In 2017 IEEE Globecom Workshops (GC Wkshps). IEEE, 2017. http://dx.doi.org/10.1109/glocomw.2017.8269123.
Full textKar, Udit Narayana, and Debarshi Kumar Sanyal. "Experimental Analysis of Device-to-Device Communication." In 2019 Twelfth International Conference on Contemporary Computing (IC3). IEEE, 2019. http://dx.doi.org/10.1109/ic3.2019.8844914.
Full textYu, C. H., O. Tirkkonen, K. Doppler, and C. Ribeiro. "Power Optimization of Device-to-Device Communication Underlaying Cellular Communication." In ICC 2009 - 2009 IEEE International Conference on Communications. IEEE, 2009. http://dx.doi.org/10.1109/icc.2009.5199353.
Full textSon Dinh-Van, Quang Duong, and Oh-Soon Shin. "Grouped device-to-device communication underlaying cellular networks." In 2013 International Conference on ICT Convergence (ICTC). IEEE, 2013. http://dx.doi.org/10.1109/ictc.2013.6675301.
Full textKoumidis, Konstandinos, Panayiotis Kolios, Christos Panayiotou, and Georgios Ellinas. "Resilient device-to-device communication in emergency situations." In 2016 18th Mediterranean Electrotechnical Conference (MELECON). IEEE, 2016. http://dx.doi.org/10.1109/melcon.2016.7495393.
Full textAkarsu, Alper, and Tolga Girici. "Opportunistic device-to-device communication in wireless downlink." In 2015 23th Signal Processing and Communications Applications Conference (SIU). IEEE, 2015. http://dx.doi.org/10.1109/siu.2015.7130017.
Full textGautam, Sukriti, Prasun Ambastha, Rishabh Jain, and Noor Mohammed V. "Smart Sectorization in Device-to-Device (D2D) Communication." In 2019 International Conference on Vision Towards Emerging Trends in Communication and Networking (ViTECoN). IEEE, 2019. http://dx.doi.org/10.1109/vitecon.2019.8899405.
Full textReports on the topic "Communication Device-To-Device"
Cintron, Fernando J. Performance evaluation of LTE device-to-device out-of-coverage communication with frequency hopping resource scheduling. Gaithersburg, MD: National Institute of Standards and Technology, July 2018. http://dx.doi.org/10.6028/nist.ir.8220.
Full textWang, Jian, and Richard A. Rouil. BLER Performance Evaluation of LTE Device-to-Device Communications. National Institute of Standards and Technology, November 2016. http://dx.doi.org/10.6028/nist.ir.8157.
Full text