Academic literature on the topic 'Commutation relations (Quantum mechanics)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Commutation relations (Quantum mechanics).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Commutation relations (Quantum mechanics)"
WIDOM, A., and Y. N. SRIVASTAVA. "QUANTUM FLUID MECHANICS AND QUANTUM ELECTRODYNAMICS." Modern Physics Letters B 04, no. 01 (January 10, 1990): 1–8. http://dx.doi.org/10.1142/s0217984990000027.
Full textSHABANOV, SERGEI V. "q-OSCILLATORS, NON-KÄHLER MANIFOLDS AND CONSTRAINED DYNAMICS." Modern Physics Letters A 10, no. 12 (April 20, 1995): 941–48. http://dx.doi.org/10.1142/s0217732395001034.
Full textMan'ko, V. I., G. Marmo, F. Zaccaria, and E. C. G. Sudarshan. "Wigner's Problem and Alternative Commutation Relations for Quantum Mechanics." International Journal of Modern Physics B 11, no. 10 (April 20, 1997): 1281–96. http://dx.doi.org/10.1142/s0217979297000666.
Full textIORIO, ALFREDO, and GIUSEPPE VITIELLO. "QUANTUM GROUPS AND VON NEUMANN THEOREM." Modern Physics Letters B 08, no. 04 (February 20, 1994): 269–76. http://dx.doi.org/10.1142/s0217984994000285.
Full textShakhova, E. A., P. P. Rymkevich, A. S. Gorshkov, M. Y. Egorov, and A. S. Stepashkina. "Energy processes with natural quantization." E3S Web of Conferences 124 (2019): 01046. http://dx.doi.org/10.1051/e3sconf/201912401046.
Full textPEDRAM, POURIA. "A CLASS OF GUP SOLUTIONS IN DEFORMED QUANTUM MECHANICS." International Journal of Modern Physics D 19, no. 12 (October 2010): 2003–9. http://dx.doi.org/10.1142/s0218271810018153.
Full textKober, Martin. "Quaternionic quantization principle in general relativity and supergravity." International Journal of Modern Physics A 31, no. 04n05 (February 3, 2016): 1650004. http://dx.doi.org/10.1142/s0217751x16500044.
Full textFLORATOS, EMMANUEL. "MATRIX QUANTIZATION OF TURBULENCE." International Journal of Bifurcation and Chaos 22, no. 09 (September 2012): 1250213. http://dx.doi.org/10.1142/s0218127412502136.
Full textBrooke, J. A., and E. Prugovečki. "Relativistic canonical commutation relations and the geometrization of quantum mechanics." Il Nuovo Cimento A 89, no. 2 (September 1985): 126–48. http://dx.doi.org/10.1007/bf02804855.
Full textChester, David, Xerxes D. Arsiwalla, Louis H. Kauffman, Michel Planat, and Klee Irwin. "Quantization of a New Canonical, Covariant, and Symplectic Hamiltonian Density." Symmetry 16, no. 3 (March 6, 2024): 316. http://dx.doi.org/10.3390/sym16030316.
Full textDissertations / Theses on the topic "Commutation relations (Quantum mechanics)"
Kleeman, R. "Generalized quantization and colour algebras /." Title page, table of contents and abstract only, 1985. http://web4.library.adelaide.edu.au/theses/09PH/09phk635.pdf.
Full textRosaler, Joshua S. "Inter-theory relations in physics : case studies from quantum mechanics and quantum field theory." Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:1fc6c67d-8c8e-4e92-a9ee-41eeae80e145.
Full textWaters, Jayson Cydhaarth. "Estranged/Entangled: The History, Theory, and Technology of Quantum Mechanics in International Relations." Thesis, The University of Sydney, 2022. https://hdl.handle.net/2123/29604.
Full textMickelin, Oscar. "On Spectral Inequalities in Quantum Mechanics and Conformal Field Theory." Thesis, KTH, Matematik (Avd.), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-167969.
Full textVi följer Exner et al. (Commun. Math. Phys. 26 (2014), nr. 2, 531–541) och bevisar nya Lieb-Thirring-olikheter för generella, andra gradens självadjungerade differentialoperatorer med matrisvärda potentialfunktioner, verkandes i en rumsdimension. Dessa innefattar och generaliserar de magnetiska och icke-magnetiska Schrödingeroperatorerna. Vi betraktar tre olika fall, med funktioner definierade på hela reella axeln, på den positiva reella axeln, samt på ett interval. Detta resulterar i tre sorters olikheter. Vidare undersöker vi spektralegenskaperna för en klass operatorer från konform fältteori, genom att asymptotiskt begränsa antalet egenvärden med ett fasrymdsuttryck, samt genom att bevisa ett antal spektralolikheter. Dessa begränsar Riesz-medelvärdena för operatorerna, samt varje enskilt egenvärde, och tillämpas på ett par fysikaliskt intressanta exempel.
Nazaikinskii, Vladimir, Bert-Wolfgang Schulze, and Boris Sternin. "Quantization methods in differential equations : Chapter 2: Exactly soluble commutation relations (The simplest class of classical mechanics)." Universität Potsdam, 2000. http://opus.kobv.de/ubp/volltexte/2008/2579/.
Full textAlecce, Antonio. "Selected problems in quantum mechanics: towards topological quantum devices and heat engine." Doctoral thesis, Università degli studi di Padova, 2017. http://hdl.handle.net/11577/3421931.
Full textIl lavoro presentato in questa tesi tratta principalmente due argomenti quali le termodinamica quantistica e l'ordine topologico. Nel primo caso fisici stanno provando a costruire una teoria capace to descrivere abbastanza in generale gli scambi di calore ed energia in sistemi quantistici. Il secondo argomento, invece, si relaziona a fenomini e stati della meteria esotici come l'effetto "fractional quantum hall" o gli isolanti e superconduttori topologici. Nella prima parte della tesi definiamo la dinamica quantistica per un sistema chiuso ed aperto. Questo é fondamentale per trattare il campo della termodinamica quantistica. Poi, dopo una parte introduttiva sulle trasformazioni termodinamiche quantistiche, ci si sposta verso il campo delle relazioni di fluttuazione non all'equilibrio. Viene trattato il problema dell'irreversibilità tanto nella meccanica classica quanto in quella quantistica. Qui presentiamo uno dei nostri maggiori risultati. Caratterizziamo un'evoluzione adiabatica "termodinamica" irreversibile di un sistema quantistico il cui stato iniziale é uno di equilibrio alla temperatura inversa iniziale ßi. Viene ricavato l'incremento di entropia termodinamica del processo. Come applicazione diretta del risultato precedente si é considerato un ciclo Otto quantistico (QOC). Abbiamo notato che l'aumentare del carattere irreversibile dell'evoluzione inficia le principali figure di merito del ciclo. La seconda parte della tisi, invece, guarda al campo dell'ordine topologico. All'inizio introduciamo i concetti di ordine, classi ed invarianti topologici. Poi introduciamo il ben noto modello di Kitaev per superconduttori 1 D. Questo modello prevede "Majorana zero mode" (MZM) ai capi del filo (il sistema 1 D). I Majorana zero modes sono stati topologici che mostrano una grande resistenza contro il disordine, perurbazioni locali e ogni genere di elemento dissipativo. In viene considerata una generalizzazione del modello di Kitaev con interazioni a molti vicini. Vengono ricavati diagrammi di fase topologica molto "ricchi" che mostrano la presenza di molti MZM per lato. Inoltre si studia l'apparire e scomparire di tali modi a seconda della simmetria di inversione temporale, che é fondamentale per lo studio della fase topologica. I diagrammi di fase mostrano anche la presenza di massive edge modes. In questo ultimo caso gli invarianti topologici non descrivono bene tutte le transizioni. In fine ci siamo focalizzati sul caso limite dove gli MZM sono ottenuti quando il sistema ha una lunghezza finita. Tali casi sono molto interressanti visto il grande vantaggio che possiamo ricavarne in un setup sperimentale dato che il sistema può grandezza ridotta. L'ultima parte é sui dispositivi single electron tunneling. Qui abbiamo descritto la differente capacità a lavorare come "heat-to-current harvester" per un dispositivo che usa quantum dots rispetto ad uno analogo che usa metallic dots. Questi argomenti differenti trovano un punto di unione considerando lavori scientifici recenti in cui si considera trasporto di calore su dispositivi "single electron tuunneling" in cui alcune delle componenti circuitali dei dispositivi mostrano una natura topologica. Sono sistemi perfetti dai quali possiamo ottenere nuovi fenomeni di trasporto.
Genovese, Fabrizio Romano. "Generalized relations for compositional models of meaning." Thesis, University of Oxford, 2017. http://ora.ox.ac.uk/objects/uuid:3b555c2a-6067-422c-9f1b-b1a5af8053ff.
Full textGandhi, Sohang. "Topological Generalizations of the Heisenberg Uncertainty Relation." Honors in the Major Thesis, University of Central Florida, 2006. http://digital.library.ucf.edu/cdm/ref/collection/ETH/id/1222.
Full textBachelors
Arts and Sciences
Physics
Kleeman, R. (Richard). "Generalized quantization and colour algebras / by R. Kleeman." 1985. http://hdl.handle.net/2440/20597.
Full textvii, 147 leaves ; 30 cm.
Title page, contents and abstract only. The complete thesis in print form is available from the University Library.
Thesis (Ph.D.)--University of Adelaide, Dept. of Mathematical Physics, 1986
Hibberd, Anthony Noel. "Yang-Baxter relations in conformal field theory." Phd thesis, 2001. http://hdl.handle.net/1885/147953.
Full textBooks on the topic "Commutation relations (Quantum mechanics)"
Samoĭlenko, S. I. Sravnitelʹnyĭ analiz metodov kommutat͡sii dli͡a t͡sifrovykh seteĭ integralʹnogo obsluzhivanii͡a. Moskva: Akademii͡a nauk SSSR, Nauchno-tekhn. t͡sentr informat͡sionno-vychislitelʹnykh seteĭ, 1991.
Find full textT͡Sit͡siashvili, G. Sh. Kommutat͡sionnye ėffekty v modelʹnykh fizicheskikh statistikakh. Vladivostok: In-t prikladnoĭ matematiki DVO RAN, 1993.
Find full textPetz, Dénes. An invitation to the algebra of canonical commutation relations. Leuven (Belgium): Leuven University Press, 1990.
Find full textD, Han, and United States. National Aeronautics and Space Administration. Scientific and Technical Information Branch, eds. Third International Workshop on Squeezed States and Uncertainty Relations: Proceedings of a workshop held at the University of Maryland, Baltimore County, Baltimore, Maryland, August 10-13, 1993. [Washington, DC]: National Aeronautics and Space Administration, Scientific and Technical Information Branch, 1994.
Find full textIsaacson, Walter. Einstein: Cuộc đời và vũ trụ. Thành phố Hồ Chí Minh: Nhà xuất bản Tổng Hợp TP. Hồ Chí Minh, 2011.
Find full textMoore, R. T., and P. E. T. Jørgensen. Operator Commutation Relations: Commutation Relations for Operators, Semigroups, and Resolvents with Applications to Mathematical Physics and Representations of Lie Groups. Springer, 2012.
Find full textPetz, D., and Dbenes Petz. An Invitation to the Algebra of Canonical Commutation Relations (Leuven Notes in Mathematical and Theoretical Physics). Coronet Books, 1990.
Find full textHoring, Norman J. Morgenstern. Schwinger Action Principle and Variational Calculus. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198791942.003.0004.
Full textArai, Asao. Inequivalent Representations of Canonical Commutation and Anti-Commutation Relations: Representation-theoretical Viewpoint for Quantum Phenomena. Springer, 2020.
Find full textBook chapters on the topic "Commutation relations (Quantum mechanics)"
Birman, M. S., and M. Z. Solomjak. "Commutation Relations of Quantum Mechanics." In Mathematics and Its Applications, 279–96. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-4586-9_12.
Full textAdelman, Steven A. "Commutation Rules and Uncertainty Relations." In Basic Molecular Quantum Mechanics, 91–97. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9780429155741-5.
Full textFaddeev, L., and O. Yakubovskiĭ. "Quantum mechanics of real systems. The Heisenberg commutation relations." In The Student Mathematical Library, 49–53. Providence, Rhode Island: American Mathematical Society, 2009. http://dx.doi.org/10.1090/stml/047/10.
Full textWigner, E. P. "Do the Equations of Motion Determine the Quantum Mechanical Commutation Relations?" In Part I: Particles and Fields. Part II: Foundations of Quantum Mechanics, 95–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-662-09203-3_7.
Full textArai, Asao. "Physical Correspondences in Quantum Field Theory." In Inequivalent Representations of Canonical Commutation and Anti-Commutation Relations, 395–458. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2180-5_10.
Full textSandhya, R. "Generalized Commutation Relations for Single Mode Oscillator." In Recent Developments in Quantum Optics, 105–8. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4615-2936-1_13.
Full textCiaglia, F. M., G. Marmo, and L. Schiavone. "From Classical Trajectories to Quantum Commutation Relations." In Springer Proceedings in Physics, 163–85. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-24748-5_9.
Full textShankar, R. "The Heisenberg Uncertainty Relations." In Principles of Quantum Mechanics, 237–46. New York, NY: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4757-0576-8_9.
Full textShankar, Ramamurti. "The Heisenberg Uncertainty Relations." In Principles of Quantum Mechanics, 245–54. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-7673-0_9.
Full textBagarello, Fabio. "Deformed Canonical (anti-)commutation relations and non-self-adjoint hamiltonians." In Non-Selfadjoint Operators in Quantum Physics, 121–88. Hoboken, NJ, USA: John Wiley & Sons, Inc, 2015. http://dx.doi.org/10.1002/9781118855300.ch3.
Full textConference papers on the topic "Commutation relations (Quantum mechanics)"
Ghirardi, GianCarlo. "The role of identity and entanglement in quantum mechanics." In Spin-statistics connection and commutation relations. AIP, 2000. http://dx.doi.org/10.1063/1.1337709.
Full textArthurs, E., and M. S. Goodman. "Optical Implications of a new quantum correlation result." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1988. http://dx.doi.org/10.1364/oam.1988.tua6.
Full textSalynsky, Sergey. "Quantum theory, canonical commutation relations." In The XIXth International Workshop on High Energy Physics and Quantum Field Theory. Trieste, Italy: Sissa Medialab, 2011. http://dx.doi.org/10.22323/1.104.0047.
Full textSmith, Brian J., N. Thomas-Peter, and I. A. Walmsley. "Two-Photon Interference and Commutation Relations." In Quantum Electronics and Laser Science Conference. Washington, D.C.: OSA, 2010. http://dx.doi.org/10.1364/qels.2010.qfa6.
Full textOtte, A. "Symmetry considerations in quantum computing." In Spin-statistics connection and commutation relations. AIP, 2000. http://dx.doi.org/10.1063/1.1337719.
Full textSolomon, Allan I. "Quon theories in quantum optics." In Spin-statistics connection and commutation relations. AIP, 2000. http://dx.doi.org/10.1063/1.1337723.
Full textKirchner, Stefan. "Deformed quantum statistics of quons." In Spin-statistics connection and commutation relations. AIP, 2000. http://dx.doi.org/10.1063/1.1337724.
Full textCeleghini, Enrico. "Quantum statistics and dynamical algebras: Fermions." In Spin-statistics connection and commutation relations. AIP, 2000. http://dx.doi.org/10.1063/1.1337710.
Full textDowker, H. F. "Spin and statistics in quantum gravity." In Spin-statistics connection and commutation relations. AIP, 2000. http://dx.doi.org/10.1063/1.1337730.
Full textMishra, A. K. "Quantum field theory for orthofermions and orthobosons." In Spin-statistics connection and commutation relations. AIP, 2000. http://dx.doi.org/10.1063/1.1337726.
Full textReports on the topic "Commutation relations (Quantum mechanics)"
Soloviev, V. N., and Y. V. Romanenko. Economic analog of Heisenberg uncertainly principle and financial crisis. ESC "IASA" NTUU "Igor Sikorsky Kyiv Polytechnic Institute", May 2017. http://dx.doi.org/10.31812/0564/2463.
Full text