Journal articles on the topic 'Commutation relations (Quantum mechanics)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Commutation relations (Quantum mechanics).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
WIDOM, A., and Y. N. SRIVASTAVA. "QUANTUM FLUID MECHANICS AND QUANTUM ELECTRODYNAMICS." Modern Physics Letters B 04, no. 01 (1990): 1–8. http://dx.doi.org/10.1142/s0217984990000027.
Full textSHABANOV, SERGEI V. "q-OSCILLATORS, NON-KÄHLER MANIFOLDS AND CONSTRAINED DYNAMICS." Modern Physics Letters A 10, no. 12 (1995): 941–48. http://dx.doi.org/10.1142/s0217732395001034.
Full textMan'ko, V. I., G. Marmo, F. Zaccaria, and E. C. G. Sudarshan. "Wigner's Problem and Alternative Commutation Relations for Quantum Mechanics." International Journal of Modern Physics B 11, no. 10 (1997): 1281–96. http://dx.doi.org/10.1142/s0217979297000666.
Full textIORIO, ALFREDO, and GIUSEPPE VITIELLO. "QUANTUM GROUPS AND VON NEUMANN THEOREM." Modern Physics Letters B 08, no. 04 (1994): 269–76. http://dx.doi.org/10.1142/s0217984994000285.
Full textShakhova, E. A., P. P. Rymkevich, A. S. Gorshkov, M. Y. Egorov, and A. S. Stepashkina. "Energy processes with natural quantization." E3S Web of Conferences 124 (2019): 01046. http://dx.doi.org/10.1051/e3sconf/201912401046.
Full textPEDRAM, POURIA. "A CLASS OF GUP SOLUTIONS IN DEFORMED QUANTUM MECHANICS." International Journal of Modern Physics D 19, no. 12 (2010): 2003–9. http://dx.doi.org/10.1142/s0218271810018153.
Full textKober, Martin. "Quaternionic quantization principle in general relativity and supergravity." International Journal of Modern Physics A 31, no. 04n05 (2016): 1650004. http://dx.doi.org/10.1142/s0217751x16500044.
Full textFLORATOS, EMMANUEL. "MATRIX QUANTIZATION OF TURBULENCE." International Journal of Bifurcation and Chaos 22, no. 09 (2012): 1250213. http://dx.doi.org/10.1142/s0218127412502136.
Full textBrooke, J. A., and E. Prugovečki. "Relativistic canonical commutation relations and the geometrization of quantum mechanics." Il Nuovo Cimento A 89, no. 2 (1985): 126–48. http://dx.doi.org/10.1007/bf02804855.
Full textChester, David, Xerxes D. Arsiwalla, Louis H. Kauffman, Michel Planat, and Klee Irwin. "Quantization of a New Canonical, Covariant, and Symplectic Hamiltonian Density." Symmetry 16, no. 3 (2024): 316. http://dx.doi.org/10.3390/sym16030316.
Full textChevalier, Hadrien, Hyukjoon Kwon, Kiran E. Khosla, Igor Pikovski, and M. S. Kim. "Many-body probes for quantum features of spacetime." AVS Quantum Science 4, no. 2 (2022): 021402. http://dx.doi.org/10.1116/5.0079675.
Full textSkála, Lubomír, and Vojtěch Kapsa. "Quantum Mechanics Needs No Interpretation." Collection of Czechoslovak Chemical Communications 70, no. 5 (2005): 621–37. http://dx.doi.org/10.1135/cccc20050621.
Full textBaşkal, Sibel, Young Kim, and Marilyn Noz. "Poincaré Symmetry from Heisenberg’s Uncertainty Relations." Symmetry 11, no. 3 (2019): 409. http://dx.doi.org/10.3390/sym11030409.
Full textBenzair, H., M. Merad, and T. Boudjedaa. "Path integral for quantum dynamics with position-dependent mass within the displacement operator approach." Modern Physics Letters A 35, no. 30 (2020): 2050246. http://dx.doi.org/10.1142/s0217732320502466.
Full textMoretti, P., and L. Cianchi. "Feynman's approach to quantum mechanics: Trajectories, commutation relations and uncertainty principle." Il Nuovo Cimento D 11, no. 1-2 (1989): 229–40. http://dx.doi.org/10.1007/bf02450241.
Full textWu, Kunlong. "Embarking on the path to quantum field theory." Theoretical and Natural Science 26, no. 1 (2023): 221–26. http://dx.doi.org/10.54254/2753-8818/26/20241083.
Full textMathieu, J., L. Marchildon, and D. Rochon. "The bicomplex quantum Coulomb potential problem." Canadian Journal of Physics 91, no. 12 (2013): 1093–100. http://dx.doi.org/10.1139/cjp-2013-0261.
Full textMeljanac, Stjepan, and Salvatore Mignemi. "Quantum Mechanics of the Extended Snyder Model." Symmetry 15, no. 7 (2023): 1373. http://dx.doi.org/10.3390/sym15071373.
Full textWheeler, James T. "Quanta Without Quantization." Modern Physics Letters A 12, no. 29 (1997): 2175–81. http://dx.doi.org/10.1142/s0217732397002223.
Full textChashchina, Olga I., Abhijit Sen, and Zurab K. Silagadze. "On deformations of classical mechanics due to Planck-scale physics." International Journal of Modern Physics D 29, no. 10 (2020): 2050070. http://dx.doi.org/10.1142/s0218271820500704.
Full textContreras González, Mauricio, Marcelo Villena, and Roberto Ortiz Herrera. "An Optimal Control Perspective on Classical and Quantum Physical Systems." Symmetry 15, no. 11 (2023): 2033. http://dx.doi.org/10.3390/sym15112033.
Full textANDERSON, LARA B., and JAMES T. WHEELER. "QUANTUM MECHANICS AS A MEASUREMENT THEORY ON BICONFORMAL SPACE." International Journal of Geometric Methods in Modern Physics 03, no. 02 (2006): 315–40. http://dx.doi.org/10.1142/s0219887806001168.
Full textEckhardt, W. "The quantum-mechanical harmonic oscillator: Markovian limit and commutation relations." Physics Letters A 114, no. 2 (1986): 75–76. http://dx.doi.org/10.1016/0375-9601(86)90482-2.
Full textGiesel, Kristina, and Michael Kobler. "An Open Scattering Model in Polymerized Quantum Mechanics." Mathematics 10, no. 22 (2022): 4248. http://dx.doi.org/10.3390/math10224248.
Full textÖzcan, Özgür. "Investigating students’ conceptual difficulties on commutation relations and expectation value problems in quantum mechanics." SHS Web of Conferences 26 (2016): 01123. http://dx.doi.org/10.1051/shsconf/20162601123.
Full textBhattacharya, Ranjan, and Siddhartha Bhowmick. "Do trilinear commutation relations in quantum mechanics admit coordinate space realization in three dimensions?" Journal of Mathematical Physics 28, no. 6 (1987): 1290–92. http://dx.doi.org/10.1063/1.527532.
Full textZUMINO, BRUNO. "DEFORMATION OF THE QUANTUM MECHANICAL PHASE SPACE WITH BOSONIC OR FERMIONIC COORDINATES." Modern Physics Letters A 06, no. 13 (1991): 1225–35. http://dx.doi.org/10.1142/s0217732391001305.
Full textSOW, C. L., and T. T. TRUONG. "QUANTUM GROUP APPROACH TO A SOLUBLE VERTEX MODEL WITH GENERALIZED ICE RULE." International Journal of Modern Physics A 11, no. 10 (1996): 1747–61. http://dx.doi.org/10.1142/s0217751x96000936.
Full textKryvobok, Artem, and Alan D. Kathman. "Quantum mechanical four-dimensional non-polarizing beamsplitter." Quantum Studies: Mathematics and Foundations 9, no. 1 (2021): 55–70. http://dx.doi.org/10.1007/s40509-021-00256-8.
Full textBracci, Luciano, and Luigi E. Picasso. "Nonequivalent representations of canonical commutation relations in quantum mechanics: The case of the Aharonov-Bohm effect." American Journal of Physics 75, no. 3 (2007): 268–71. http://dx.doi.org/10.1119/1.2360994.
Full textDULAT, SAYIPJAMAL, and KANG LI. "COMMUTATOR ANOMALY IN NONCOMMUTATIVE QUANTUM MECHANICS." Modern Physics Letters A 21, no. 39 (2006): 2971–76. http://dx.doi.org/10.1142/s0217732306020585.
Full textVladimirov, Igor G., and Ian R. Petersen. "Decoherence quantification through commutation relations decay for open quantum harmonic oscillators." Systems & Control Letters 178 (August 2023): 105585. http://dx.doi.org/10.1016/j.sysconle.2023.105585.
Full textSzasz A., Vincze Gy. "Rosen-Chambers Variation Theory of Linearly-Damped Classic and Quantum Oscillator." JOURNAL OF ADVANCES IN PHYSICS 4, no. 1 (2014): 404–26. http://dx.doi.org/10.24297/jap.v4i1.6966.
Full textGáliková, Veronika, and Peter Prešnajder. "COULOMB SCATTERING IN NON-COMMUTATIVE QUANTUM MECHANICS." Acta Polytechnica 53, no. 5 (2013): 427–32. http://dx.doi.org/10.14311/ap.2013.53.0427.
Full textBeggs, Edwin J., and Shahn Majid. "Quantum Riemannian geometry of phase space and nonassociativity." Demonstratio Mathematica 50, no. 1 (2017): 83–93. http://dx.doi.org/10.1515/dema-2017-0009.
Full textPalenik, Mark C. "Quantum mechanics from Newton's second law and the canonical commutation relation [ X , P ] = i." European Journal of Physics 35, no. 4 (2014): 045014. http://dx.doi.org/10.1088/0143-0807/35/4/045014.
Full textDORSCH, GLÁUBER CARVALHO, and JOSÉ ALEXANDRE NOGUEIRA. "MAXIMALLY LOCALIZED STATES IN QUANTUM MECHANICS WITH A MODIFIED COMMUTATION RELATION TO ALL ORDERS." International Journal of Modern Physics A 27, no. 21 (2012): 1250113. http://dx.doi.org/10.1142/s0217751x12501138.
Full textCui, Dianzhen, T. Li, Jianning Li, and Xuexi Yi. "Detecting deformed commutators with exceptional points in optomechanical sensors." New Journal of Physics 23, no. 12 (2021): 123037. http://dx.doi.org/10.1088/1367-2630/ac3ff7.
Full textPedram, Pouria. "The Minimal Length and the Shannon Entropic Uncertainty Relation." Advances in High Energy Physics 2016 (2016): 1–8. http://dx.doi.org/10.1155/2016/5101389.
Full textKullie, Ossama. "Time Operator, Real Tunneling Time in Strong Field Interaction and the Attoclock." Quantum Reports 2, no. 2 (2020): 233–52. http://dx.doi.org/10.3390/quantum2020015.
Full textHerrebrugh, Albert V. . "Determinism In Quantum Slit-Experiments." Hyperscience International Journals 2, no. 3 (2022): 115–21. http://dx.doi.org/10.55672/hij2022pp115-121.
Full textChing, C. L., C. X. Yeo, and W. K. Ng. "Nonrelativistic anti-Snyder model and some applications." International Journal of Modern Physics A 32, no. 02n03 (2017): 1750009. http://dx.doi.org/10.1142/s0217751x17500099.
Full textChung, Won Sang. "Two Phases of the Non-Commutative Quantum Mechanics with the Generalized Uncertainty Relations." International Journal of Theoretical Physics 55, no. 4 (2015): 2174–81. http://dx.doi.org/10.1007/s10773-015-2856-z.
Full textACCARDI, LUIGI. "NOISE AND DISSIPATION IN QUANTUM THEORY." Reviews in Mathematical Physics 02, no. 02 (1990): 127–76. http://dx.doi.org/10.1142/s0129055x90000065.
Full textPlankensteiner, David, Christoph Hotter, and Helmut Ritsch. "QuantumCumulants.jl: A Julia framework for generalized mean-field equations in open quantum systems." Quantum 6 (January 4, 2022): 617. http://dx.doi.org/10.22331/q-2022-01-04-617.
Full textSHALABY, ABOUZEID M. "VACUUM STABILITY OF THE ${\mathcal{PT}}$-SYMMETRIC (-ϕ4) SCALAR FIELD THEORY". International Journal of Modern Physics A 28, № 08 (2013): 1350023. http://dx.doi.org/10.1142/s0217751x13500231.
Full textSpeicher, Roland, and Moritz Weber. "Quantum groups with partial commutation relations." Indiana University Mathematics Journal 68, no. 6 (2019): 1849–83. http://dx.doi.org/10.1512/iumj.2019.68.7791.
Full textGoodearl, Kenneth R. "Commutation relations for arbitrary quantum minors." Pacific Journal of Mathematics 228, no. 1 (2006): 63–102. http://dx.doi.org/10.2140/pjm.2006.228.63.
Full textChung, Won Sang. "Generalized Uncertainty Relation in the Non-commutative Quantum Mechanics." International Journal of Theoretical Physics 55, no. 6 (2016): 2989–3000. http://dx.doi.org/10.1007/s10773-016-2931-0.
Full textWang, Simeng. "Quantum symmetries on noncommutative complex spheres with partial commutation relations." Infinite Dimensional Analysis, Quantum Probability and Related Topics 21, no. 04 (2018): 1850028. http://dx.doi.org/10.1142/s0219025718500285.
Full text