Dissertations / Theses on the topic 'Commutative Rings and Algebras'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Commutative Rings and Algebras.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Malec, Sara. "Intersection Algebras and Pointed Rational Cones." Digital Archive @ GSU, 2013. http://digitalarchive.gsu.edu/math_diss/14.
Full textSekaran, Rajakrishnar. "Fuzzy ideals in commutative rings." Thesis, Rhodes University, 1995. http://hdl.handle.net/10962/d1005221.
Full textHasse, Erik Gregory. "Lowest terms in commutative rings." Diss., University of Iowa, 2018. https://ir.uiowa.edu/etd/6433.
Full textBell, Kathleen. "Cayley Graphs of PSL(2) over Finite Commutative Rings." TopSCHOLAR®, 2018. https://digitalcommons.wku.edu/theses/2102.
Full textGranger, Ginger Thibodeaux. "Properties of R-Modules." Thesis, University of North Texas, 1989. https://digital.library.unt.edu/ark:/67531/metadc500710/.
Full textOman, Gregory Grant. "A generalization of Jónsson modules over commutative rings with identity." Columbus, Ohio : Ohio State University, 2006. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1164331653.
Full textCoughlin, Heather. "Classes of normal monomial ideals /." view abstract or download file of text, 2004. http://wwwlib.umi.com/cr/uoregon/fullcit?p3147816//.
Full textTypescript. Includes vita and abstract. Includes bibliographical references (leaves 85-86). Also available for download via the World Wide Web; free to University of Oregon users.
Green, Ellen Yvonne. "Characterizing the strong two-generators of certain Noetherian domains." CSUSB ScholarWorks, 1997. https://scholarworks.lib.csusb.edu/etd-project/1539.
Full textSalt, Brittney M. "MONOID RINGS AND STRONGLY TWO-GENERATED IDEALS." CSUSB ScholarWorks, 2014. https://scholarworks.lib.csusb.edu/etd/31.
Full textRace, Denise T. (Denise Tatsch). "Containment Relations Between Classes of Regular Ideals in a Ring with Few Zero Divisors." Thesis, North Texas State University, 1987. https://digital.library.unt.edu/ark:/67531/metadc331394/.
Full textOyinsan, Sola. "Primary decomposition of ideals in a ring." CSUSB ScholarWorks, 2007. https://scholarworks.lib.csusb.edu/etd-project/3289.
Full textZagrodny, Christopher Michael. "Algebraic Concepts in the Study of Graphs and Simplicial Complexes." Digital Archive @ GSU, 2006. http://digitalarchive.gsu.edu/math_theses/7.
Full textLe, Gros Giovanna. "Minimal approximations for cotorsion pairs generated by modules of projective dimension at most one over commutative rings." Doctoral thesis, Università degli studi di Padova, 2019. http://hdl.handle.net/11577/3423180.
Full textIn questa tesi studiamo le coppie di cotorsione (A, B) generate da classi di R-moduli di dimensione proiettiva al più uno. Siamo interessati nel caso in cui queste coppie di cotorsione ammettano ricoprimenti o inviluppi su anelli commutativi. Più precisamente, indaghiamo la congettura di Enochs per A. Cioè, per A contenuta nella classe P_1, che denota la classe di R-moduli di dimensione proiettiva al più uno, cerchiamo di capire se per A una classe ricoprente allora necessariamente implica che A è chiusa per limiti diretti. In più, con certe restrizioni, descriviamo gli anelli che soddisfano questa proprietà. Ci sono due casi da considerare: il caso di coppia di cotorsione di tipo finito e il caso non di tipo finito. Quando la coppia di cotorsione non è (necessariamente) di tipo finito, dimostriamo che per un anello commutativo semiereditario R, se P_1 è una classe ricoprente, deve essere chiusa per limiti diretti. Questo ci da un esempio di una coppia di cotorsione che non è di tipo finito che soddisfa la congettura di Enochs. Successivamente, analizziamo le coppie di cotorsione di tipo finito. Specificamente, le coppie di cotorsione 1-tilting su anelli commutativi. A questo scopo sono indispensabili il lavoro di Hrbek, che caratterizza tali coppie di cotorsione su anelli commutativi, e il lavoro di Positselski e Bazzoni-Positselski nel loro lavoro sui contramoduli. Consideriamo il caso di una coppia di cotorsione 1-tilting (A, T) su un anello commutativo con una topologia di Gabriel associata G, e studiamo quando (A, T) ammette inviluppi. Troviamo che se T ammette inviluppi, G è una topologia di Gabriel perfetta. Cioè, G viene da un epimorfismo piatto di anelli da R a R_G dove R_G è la localizzazione di R rispetto a G. Inoltre, se G è una topologia di Gabriel perfetta, T ammette inviluppi se e solo se R_G ha dimensione proiettiva al più uno e R/J è un anello perfetto per tutti gli ideali J in G se e solo se R_G ha dimensione proiettiva al più uno e l'anello topologico End(R_G/R) è pro-perfetto. Poi consideriamo il caso in cui A è ricoprente. Dimostriamo che A è ricoprente in Mod-R se e solo se R_G ha dimensione proiettiva al più uno e R_G è un anello perfetto e R/J è perfetto per ogni J in G. In aggiunta, studiamo coppie di cotorsione in generale e studiamo condizioni sufficienti affinchè una approssimazione sia minimale. Inoltre, consideriamo una coppia di cotorsione ereditaria e dimostriamo che se ammette ricoprimenti deve ammettere inviluppi.
Byun, Eui Won James. "Affine varieties, Groebner basis, and applications." CSUSB ScholarWorks, 2000. https://scholarworks.lib.csusb.edu/etd-project/1611.
Full textDiaz, Noguera Maribel del Carmen. "Sobre derivações localmente nilpotentes dos aneis K[x,y,z] e K[x,y]." [s.n.], 2007. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306307.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Ciencia da Computação
Made available in DSpace on 2018-08-09T23:37:45Z (GMT). No. of bitstreams: 1 DiazNoguera_MaribeldelCarmen_M.pdf: 632573 bytes, checksum: fbcf2bd0092558fce4ba4d082d4c68c7 (MD5) Previous issue date: 2007
Resumo: O principal objetivo desta dissertação é apresentar resultados centrais sobre derivações localmente nilpotentes no anel de polinômios B = k[x1, ..., xn], para n = 3 que foram apresentados por Daniel Daigle em [2 ], [3] e [4] .Para este propósito, introduziremos os conceitos básicos e fundamentais da teoria das derivações num anel e apresentaremos resultados em relação a derivações localmente nilpotentes num domínio de característica zero e de fatorização única. Entre tais resultados está a fórmula Jacobiana que usaremos para descrever o conjunto das derivações equivalentes e localmente nilpotentes de B = k[x, y, z] e o conjunto LND(B), com B = k[x,y]. Também, explicítam-se condições equivalentes para a existência de uma derivação ?-homogênea e localmente nilpotente de B = k[x, y, z] com núcleo k[¿, g], onde {¿}, {g} e B, mdc(?) = mdc(?(¿), ? (g)) = 1
Abstract: In this dissertation we present centraIs results on locally nilpotents derivations in a ring of polynomials B = k[x1, ..., xn], for n = 3, which were presented by Daniel Daigle in [2], [3] and [4]. For this, we introduce basic fundamenta1 results of the theory of derivations in a ring and we present results on locally nilpotents derivations in a domain with characteristic zero and unique factorization. One of these results is the Jacobian forrnula that we use to describe the set of the equivalent loca11y nilpotents derivations of B = k[x, y, z] and the set LND(B) where B = k[x, y]. Moreover, we give equivalent conditions to the existence of a ?-homogeneous locally nilpotent derivation in the ring B = k[x, y, z] with kernel k[¿, g], {¿} and {g} e B, and mdc(?) = mdc(?(¿), ? (g)) = 1
Mestrado
Algebra
Mestre em Matemática
Berni, Jean Cerqueira. "Some algebraic and logical aspects of C∞-Rings." Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/45/45131/tde-14022019-203839/.
Full textConforme observado por I. Moerdijk e G. Reyes em [63], os anéis C∞ têm sido estudados especialmente tendo em vista suas aplicações em Teoria de Singularidades e para construir toposes que sirvam de modelos para a Geometria Diferencial Sintética. Neste trabalho, seguimos um caminho complementar, aprofundando nosso conhecimento sobre eles por um viés mais puro, fazendo uso da Teoria das Categorias e os analisando a partir de pontos de vista algébrico e lógico-categorial. Iniciamos o trabalho apresentando uma sistematização abrangente dos fatos fundamentais da teoria (equacional) dos anéis C∞, distribuídos aqui e ali na literatura atual - a maioria sem demonstrações - mas que servem de base para a teoria. Na sequência, desenvolvemos alguns tópicos do que denominamos Álgebra Comutativa C∞, expandindo resultados parciais de [66] e [67]. Realizamos um estudo sistemático dos anéis C∞ von Neumann-regulares - na linha do estudo algébrico realizado em [2]- e apresentamos alguns resultados interessantes a seu respeito, juntamente com sua relação (funtorial) com os espaços booleanos. Estudamos algumas noções pertinentes à Teoria de Feixes para anéis ∞, tais como espaços (localmente) ∞anelados e o sítio de Zariski liso. Finalmente, descrevemos toposes classicantes para a teoria (algébrica) dos anéis C∞, a teoria (coerente) dos anéis locais C∞ e a teoria (algébrica) dos anéis C∞ von Neumann regulares.
Ferreira, Mauricio de Araujo 1982. "Algebras biquaternionicas : construção, classificação e condições de existencia via formas quadraticas e involuções." [s.n.], 2006. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306541.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica
Made available in DSpace on 2018-08-05T18:56:31Z (GMT). No. of bitstreams: 1 Ferreira_MauriciodeAraujo_M.pdf: 1033477 bytes, checksum: 8d697b5cdeb1a633c1270a5e2f919de7 (MD5) Previous issue date: 2006
Resumo: Neste trabalho, estudamos as álgebras biquaterniônicas, que são um tipo especial de álgebra central simples de dimensão 16, obtida como produto tensorial de duas álgebras de quatérnios. A teoria de formas quadráticas é aplicada para estudarmos critérios de decisão sobre quando uma álgebra biquaterniônica é de divisão e quando duas destas álgebras são isomorfas. Além disso, utilizamos o u-invariante do corpo para discutirmos a existência de álgebras biquaterniônicas de divisão sobre o corpo. Provamos também um resultado atribuído a A. A. Albert, que estabelece critérios para decidir quando uma álgebra central simples de dimensão 16 é de fato uma álgebra biquaterniônica, através do estudo de involuções. Ao longo do trabalho, construímos vários exemplos concretos de álgebras biquaterniônicas satisfazendo propriedades importantes
Mestrado
Algebra
Mestre em Matemática
Gokhale, Dhananjay R. "Resolutions mod I, Golod pairs." Diss., Virginia Tech, 1992. http://hdl.handle.net/10919/39431.
Full textPh. D.
Lavila, Vidal Olga. "On the diagonals of a Rees algebra." Doctoral thesis, Universitat de Barcelona, 1999. http://hdl.handle.net/10803/53578.
Full textL’objectiu d’aquesta memòria és l’estudi de les propietats aritmètiques de les diagonals d’una àlgebra de Rees o, des d’un punt de vista geomètric, dels anells de coordenades homogenis d’immersions d’explosions de varietats projectives al llarg d’una subvarietat. En primer lloc, anem a introduir el tema i els principals problemes que tractarem. A continuació, exposarem els resultats coneguts sobre aquests problemes i finalment farem un resum dels resultats obtinguts en aquesta memòria.
Johnston, Ann. "Markov Bases for Noncommutative Harmonic Analysis of Partially Ranked Data." Scholarship @ Claremont, 2011. http://scholarship.claremont.edu/hmc_theses/4.
Full textMargolin, Benjamin Paul. "Non-commutative deformation rings." Diss., University of Iowa, 2016. https://ir.uiowa.edu/etd/3135.
Full textDuncan, A. J. "Two topics in commutative ring theory." Thesis, University of Edinburgh, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.234124.
Full textChoi, Yemon. "Cohomology of commutative Banach algebras and l¹-semigroup algebras." Thesis, University of Newcastle Upon Tyne, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.427291.
Full textAkalan, Evrim. "Generalizations of non-commutative uniquefactorization rings." Thesis, University of Warwick, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.502119.
Full textVo, Monika. "New classes of finite commutative rings." Thesis, University of Hawaii at Manoa, 2003. http://proquest.umi.com/pqdweb?index=2&did=765961151&SrchMode=1&sid=1&Fmt=2&VInst=PROD&VType=PQD&RQT=309&VName=PQD&TS=1208558919&clientId=23440.
Full textMoore, David. "Endomorphisms of commutative unital Banach algebras." Thesis, University of Nottingham, 2017. http://eprints.nottingham.ac.uk/39674/.
Full textDawson, Thomas. "Extensions of normed algebras." Thesis, University of Nottingham, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.288997.
Full textRumbos, Irma Beatriz. "A sheaf representation for non-commutative rings /." Thesis, McGill University, 1987. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=70356.
Full textDenizler, Ismail Hakki. "Artinian modules over commutative rings, and duality." Thesis, University of Sheffield, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.364185.
Full textZuick, Nhan H. "The Gelfand Theorem for Commutative Banach Algebras." CSUSB ScholarWorks, 2015. https://scholarworks.lib.csusb.edu/etd/243.
Full textArcher, Louise. "Hall algebras and Green rings." Thesis, University of Oxford, 2005. http://ora.ox.ac.uk/objects/uuid:960af4b3-8f32-4263-9142-261f49d52405.
Full textat, Peter Michor@esi ac. "Smooth $*$--Algebras." ESI preprints, 2001. ftp://ftp.esi.ac.at/pub/Preprints/esi1046.ps.
Full textMooney, Christopher Park. "Generalized factorization in commutative rings with zero-divisors." Thesis, The University of Iowa, 2013. http://pqdtopen.proquest.com/#viewpdf?dispub=3595128.
Full textThe study of factorization in integral domains has a long history. Unique factorization domains, like the integers, have been studied extensively for many years. More recently, mathematicians have turned their attention to generalizations of this such as Dedekind domains or other domains which have weaker factorization properties. Many authors have sought to generalize the notion of factorization in domains. One particular method which has encapsulated many of the generalizations into a single study is that of τ-factorization, studied extensively by A. Frazier and D.D. Anderson.
Another generalization comes in the form of studying factorization in rings with zero-divisors. Factorization gets quite complicated when zero-divisors are present due to the existence of several types of associate relations as well as several choices about what to consider the irreducible elements.
In this thesis, we investigate several methods for extending the theory of τ-factorization into rings with zero-divisors. We investigate several methods including: 1) the approach used by A.G. Agˇargün and D.D. Anderson, S. Chun and S. Valdes-Leon in several papers; 2) the method of U-factorization developed by C.R. Fletcher and extended by M. Axtell, J. Stickles, and N. Baeth and 3) the method of regular factorizations and 4) the method of complete factorizations.
This thesis synthesizes the work done in the theory of generalized factorization and factorization in rings with zero-divisors. Along the way, we encounter several nice applications of the factorization theory. Using τ z-factorizations, we discover a nice relationship with zero-divisor graphs studied by I. Beck as well as D.D. Anderson, D.F. Anderson, A. Frazier, A. Lauve, and P. Livingston. Using τ-U-factorization, we are able to answer many questions that arise when discussing direct products of rings.
There are several benefits to the regular factorization factorization approach due to the various notions of associate and irreducible coinciding on regular elements greatly simplifying many of the finite factorization property relationships. Complete factorization is a very natural and effective approach taken to studying factorization in rings with zero-divisors. There are several nice results stemming from extending τ-factorization in this way. Lastly, an appendix is provided in which several examples of rings satisfying the various finite factorization properties studied throughout the thesis are given.
Coutinho, S. C. "Generating modules efficiently over non-commutative noetherian rings." Thesis, University of Leeds, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.372589.
Full textHayes, Leslie Danielle. "The plus closure of an ideal." Access restricted to users with UT Austin EID Full text (PDF) from UMI/Dissertation Abstracts International, 2001. http://wwwlib.umi.com/cr/utexas/fullcit?p3035948.
Full textGawell, Elin. "Centra of Quiver Algebras." Licentiate thesis, Stockholms universitet, Matematiska institutionen, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-106734.
Full textHart, Robert. "A Non-commutative *-algebra of Borel Functions." Thèse, Université d'Ottawa / University of Ottawa, 2012. http://hdl.handle.net/10393/23235.
Full textVolkweis, Leite Samuel [Verfasser]. "p-adic Representations of Commutative Rings / Samuel Volkweis Leite." Konstanz : Bibliothek der Universität Konstanz, 2013. http://d-nb.info/1031879943/34.
Full textEmerson, Sharon Sue. "Overrings of an Integral Domain." Thesis, University of North Texas, 1992. https://digital.library.unt.edu/ark:/67531/metadc332679/.
Full textNenashev, Gleb. "On a class of commutative algebras associated to graphs." Licentiate thesis, Stockholms universitet, Matematiska institutionen, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-132987.
Full textChattopadhyay, Arkadev. "Circuits, communication and polynomials." Thesis, McGill University, 2008. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=115660.
Full textBoolean circuits are natural computing devices and are ubiquitous in the modern electronic age. We study the limitation of this model when the depth of circuits is fixed, independent of the length of the input. The power of such constant-depth circuits using gates computing modular counting functions remains undetermined, despite intensive efforts for nearly twenty years. We make progress on two fronts: let m be a number having r distinct prime factors none of which divides ℓ. We first show that constant depth circuits employing AND/OR/MODm gates cannot compute efficiently the MAJORITY and MODℓ function on n bits if 'few' MODm gates are allowed, i.e. they need size nW&parl0;1s&parl0;log n&parr0;1/&parl0;r-1&parr0;&parr0; if s MODm gates are allowed in the circuit. Second, we analyze circuits that comprise only MOD m gates, We show that in sub-linear size (and arbitrary depth), they cannot compute AND of n bits. Further, we establish that in that size they can only very poorly approximate MODℓ.
Our first result on circuits is derived by introducing a novel notion of computation of boolean functions by polynomials. The study of degree as a resource in polynomial representation of boolean functions is of much independent interest. Our notion, called the weak generalized representation, generalizes all previously studied notions of computation by polynomials over finite commutative rings. We prove that over the ring Zm , polynomials need Wlogn 1/r-1 degree to represent, in our sense, simple functions like MAJORITY and MODℓ. Using ideas from arguments in communication complexity, we simplify and strengthen the breakthrough work of Bourgain showing that functions computed by o(log n)-degree polynomials over Zm do not even correlate well with MODℓ.
Finally, we study the 'Number on the Forehead' model of multiparty communication that was introduced by Chandra, Furst and Lipton [CFL83]. We obtain fresh insight into this model by studying the class CCk of languages that have constant k-party deterministic communication complexity under every possible partition of input bits among parties. This study is motivated by Szegedy's [Sze93] surprising result that languages in CC2 can all be extremely efficiently recognized by very shallow boolean circuits. In contrast, we show that even CC 3 contains languages of arbitrarily large circuit complexity. On the other hand, we show that the advantage of multiple players over two players is significantly curtailed for computing two simple classes of languages: languages that have a neutral letter and those that are symmetric.
Extending the recent breakthrough works of Sherstov [She07, She08b] for two-party communication, we prove strong lower bounds on multiparty communication complexity of functions. First, we obtain a bound of n O(1) on the k-party randomized communication complexity of a function that is computable by constant-depth circuits using AND/OR gates, when k is a constant. The bound holds as long as protocols are required to have better than inverse exponential (i.e. 2-no1 ) advantage over random guessing. This is strong enough to yield lower bounds on the size of an important class of depth-three circuits: circuits having a MAJORITY gate at its output, a middle layer of gates computing arbitrary symmetric functions and a base layer of arbitrary gates of restricted fan-in.
Second, we obtain nO(1) lower bounds on the k-party randomized (bounded error) communication complexity of the Disjointness function. This resolves a major open question in multiparty communication complexity with applications to proof complexity. Our techniques in obtaining the last two bounds, exploit connections between representation by polynomials over teals of a boolean function and communication complexity of a closely related function.
Weaver, Martha Ellen. "Graded artin algebras, coverings and factor rings." Diss., Virginia Polytechnic Institute and State University, 1986. http://hdl.handle.net/10919/82612.
Full textPh. D.
Trentham, Stacy Michelle. "Atomicity in Rings with Zero Divisors." Diss., North Dakota State University, 2011. https://hdl.handle.net/10365/28905.
Full textBradford, Jeremy. "Commutative endomorphism rings of simple abelian varieties over finite fields." Thesis, University of Maryland, College Park, 2013. http://pqdtopen.proquest.com/#viewpdf?dispub=3557641.
Full textIn this thesis we look at simple abelian varieties defined over a finite field k = [special characters omitted]pn with Endk( A) commutative. We derive a formula that connects the p -rank r(A) with the splitting behavior of p in E = [special characters omitted](π), where π is a root of the characteristic polynomial of the Frobenius endomorphism. We show how this formula can be used to explicitly list all possible splitting behaviors of p in [special characters omitted]E, and we do so for abelian varieties of dimension less than or equal to four defined over [special characters omitted]p. We then look for when p divides [[special characters omitted]E : [special characters omitted][π, π]]. This allows us to prove that the endomorphism ring of an absolutely simple abelian surface is maximal at p when p ≥ 3. We also derive a condition that guarantees that p divides [[special characters omitted]E: [special characters omitted][π, π]]. Last, we explicitly describe the structure of some intermediate subrings of p-power index between [special characters omitted][π, π] and [special characters omitted]E when A is an abelian 3-fold with r(A) = 1.
Oman, Gregory Grant. "A generalization of Jónsson modules over commutative rings with identity." The Ohio State University, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=osu1164331653.
Full textGjerling, Andreas. "On rings of quotients of soluble group algebras." Thesis, Queen Mary, University of London, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.286813.
Full textQuah, James. "Nilpotent elements in green rings of Hopf algebras." Thesis, University of Exeter, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.337805.
Full textChasen, Lee A. "The cohomology rings of classical Brauer tree algebras." Diss., Virginia Tech, 1995. http://hdl.handle.net/10919/38572.
Full textHieta-aho, Erik. "On Finite Rings, Algebras, and Error-Correcting Codes." Ohio University / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1525182104493243.
Full textNordstrom, Hans Erik. "Associated primes over Ore extensions and generalized Weyl algebras /." view abstract or download file of text, 2005. http://wwwlib.umi.com/cr/uoregon/fullcit?p3181118.
Full textTypescript. Includes vita and abstract. Includes bibliographical references (leaves 48-49). Also available for download via the World Wide Web; free to University of Oregon users.