Journal articles on the topic 'Compaction Energy'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Compaction Energy.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Al Shamsi, Khalid, and Louay N. Mohammad. "Estimating Optimum Compaction Level for Dense-Graded Hot-Mix Asphalt Mixtures." Journal of Engineering Research [TJER] 7, no. 1 (2010): 11. http://dx.doi.org/10.24200/tjer.vol7iss1pp11-21.
Full textZhou, Hao, Yongjian Guo, Qiang Xu, Guixia Zhang, and Zhen Wang. "Study on Vibration Compaction Energy of Basement Material." Coatings 12, no. 10 (2022): 1495. http://dx.doi.org/10.3390/coatings12101495.
Full textWilczyński, Dominik, Krzysztof Talaśka, Dominik Wojtkowiak, Krzysztof Wałęsa, and Szymon Wojciechowski. "Selection of the Electric Drive for the Wood Waste Compacting Unit." Energies 15, no. 20 (2022): 7488. http://dx.doi.org/10.3390/en15207488.
Full textJiang, Chunlin, Yanhui Ge, Baoqun Wang, Luchen Zhang, and Youbo Liu. "Impact of the High-Energy Dynamic Compaction by Multiple Compactors on the Surrounding Environment." Advances in Civil Engineering 2021 (November 29, 2021): 1–19. http://dx.doi.org/10.1155/2021/6643064.
Full textParente, Manuel, and António Gomes Correia. "Compaction Management: Results of a Demonstration Project." Advanced Materials Research 779-780 (September 2013): 1697–700. http://dx.doi.org/10.4028/www.scientific.net/amr.779-780.1697.
Full textHussain, Sadam. "Effect of Compaction Energy on Engineering Properties of Expansive Soil." Civil Engineering Journal 3, no. 8 (2017): 610. http://dx.doi.org/10.28991/cej-030988.
Full textde Freitas Neto, Osvaldo, Olavo Francisco dos Santos Jr., Fagner Alexandre Nunes de França, and Ricardo Nascimento Flores Severo. "Influence of Compaction Energy and Bentonite Clay Content in the Soil Hydraulic Conductivity." Applied Mechanics and Materials 851 (August 2016): 858–63. http://dx.doi.org/10.4028/www.scientific.net/amm.851.858.
Full textWulandari, P. S., and D. Tjandra. "Properties evaluation of cold mix asphalt based on compaction energy and mixture gradation." IOP Conference Series: Earth and Environmental Science 1195, no. 1 (2023): 012024. http://dx.doi.org/10.1088/1755-1315/1195/1/012024.
Full textAlhaji, Mustapha Mohammed, Musa Alhassan, Taiye Waheed Adejumo, and Ramatu Jibrin. "Effect of Density on Consolidation and Creep Parameters of Clay." Indonesian Journal of Science and Technology 5, no. 1 (2020): 31–44. http://dx.doi.org/10.17509/ijost.v5i1.16819.
Full textVinod, Parameswaran Pillai, Asuri Sridharan, and Rosalint Jolly Soumya. "Effect of compaction energy on CBR and compaction behaviour." Proceedings of the Institution of Civil Engineers - Ground Improvement 168, no. 2 (2015): 116–21. http://dx.doi.org/10.1680/grim.13.00059.
Full textJayawickrama, Priyantha W., Aruna L. Amarasiri, and Pedro E. Regino. "Use of Dynamic Cone Penetrometer to Control Compaction of Granular Fill." Transportation Research Record: Journal of the Transportation Research Board 1736, no. 1 (2000): 71–80. http://dx.doi.org/10.3141/1736-10.
Full textSantos, Adriano A., António Ferreira da Silva, António Gouveia, Carlos Felgueiras, and Nídia Caetano. "Reducing Volume to Increase Capacity—Measures to Reduce Transport Energy for Recyclable Waste Collection." Energies 15, no. 19 (2022): 7351. http://dx.doi.org/10.3390/en15197351.
Full textTalal, Masoud, and O. Suliman Manal. "Influence of Energy on Compaction Characteristics of High Expansive Soils." International Journal of Engineering and Advanced Technology (IJEAT) 9, no. 5 (2020): 1344–48. https://doi.org/10.35940/ijeat.E1114.069520.
Full textZhou, Changhong, Xueyan Liu, Panos Apostolidis, A. Scarpas, and Liang He. "Induction Heating-Assisted Compaction in Porous Asphalt Pavements: A Computational Study." Applied Sciences 8, no. 11 (2018): 2308. http://dx.doi.org/10.3390/app8112308.
Full textKronbergs, Ēriks. "BIOMASS COMPACTION POTENTIALITIES." Environment. Technology. Resources. Proceedings of the International Scientific and Practical Conference 1 (June 20, 2001): 50. http://dx.doi.org/10.17770/etr2001vol1.1935.
Full textYamali, Fahrul Rozi. "ANALISA ENERGI ALAT PEMADAT TANAH LEMPUNG DILAPANGAN." Jurnal Civronlit Unbari 1, no. 1 (2016): 33. http://dx.doi.org/10.33087/civronlit.v1i1.10.
Full textSari, Dwi Winda, Idharmahadi Adha, and Ahmad Zakaria. "Pengujian CBR Laboratorium Mengggunakan Metode Tekanan (Pressure Method) untuk Tanah Timbunan Berdasarkan Energi Pemadatan." Jurnal Rekayasa Sipil dan Desain 7, no. 1 (2019): 89–102. https://doi.org/10.23960/jrsdd.v7i1.1113.
Full textPromputthangkoon, Panu, and Tavorn Kuasakul. "A novel device for inclined compaction test on soils." MATEC Web of Conferences 192 (2018): 02054. http://dx.doi.org/10.1051/matecconf/201819202054.
Full textYang, Jing, Ling Hao Wang, Fu Li Ma, and Xiao Hong Bai. "Study on Reasonable Feature of Compaction Loess with Air Porosities." Applied Mechanics and Materials 238 (November 2012): 441–46. http://dx.doi.org/10.4028/www.scientific.net/amm.238.441.
Full textYamali, Fakhrul Rozi, and Fadlan Fadlan. "ANALISIS ENERGI PEMADATAN TANAH DI LABORATORIUM." Jurnal Civronlit Unbari 2, no. 1 (2017): 14. http://dx.doi.org/10.33087/civronlit.v2i1.12.
Full textMarins, Araceli Ciotti de, José Miguel Reichert, Deonir Secco, Doglas Bassegio, and Daniela Trentin Nava. "Crambe grain yield affected by compaction degrees of an Oxisol." Research, Society and Development 11, no. 3 (2022): e12111326500. http://dx.doi.org/10.33448/rsd-v11i3.26500.
Full textShimobe, Satoru, and Giovanni Spagnoli. "A novel approach to evaluating the compaction control of soils." Quarterly Journal of Engineering Geology and Hydrogeology 53, no. 3 (2020): 452–59. http://dx.doi.org/10.1144/qjegh2019-130.
Full textZhao, Qun, and Jin Fang Zhao. "Designs of Material Compactor Based on Vibration Theory." Advanced Materials Research 700 (May 2013): 187–90. http://dx.doi.org/10.4028/www.scientific.net/amr.700.187.
Full textRahdianata, Dedi, and Indra Noer Hamdhan. "Analisis Tingkat Akurasi Uji Pemadatan dengan Pendekatan Numerik Berbasis Elemen Hingga. (Hal. 87-98)." RekaRacana: Jurnal Teknil Sipil 5, no. 4 (2019): 87. http://dx.doi.org/10.26760/rekaracana.v5i4.87.
Full textZhang, Yuyu, Wanjun Ye, and Zuoren Wang. "Study on the Compaction Effect Factors of Lime-treated Loess Highway Embankments." Civil Engineering Journal 3, no. 11 (2017): 1008. http://dx.doi.org/10.28991/cej-030933.
Full textYang, S. R., H. D. Lin, and W. H. Huang. "Variation of Initial Soil Suction with Compaction Conditions for Clayey Soils." Journal of Mechanics 28, no. 3 (2012): 431–37. http://dx.doi.org/10.1017/jmech.2012.52.
Full textSivrikaya, Osman, Ergun Togrol, and Cafer Kayadelen. "Estimating compaction behavior of fine-grained soils based on compaction energy." Canadian Geotechnical Journal 45, no. 6 (2008): 877–87. http://dx.doi.org/10.1139/t08-022.
Full textSlyusar, Volodymyr. "METHODOLOGY FOR EXPERIMENTAL RESEARCH ON THE DISTRIBUTION OF ENERGY IN THE ELEMENTS OF THE «VIBRATION MACHINE – COMPACTING CONCRETE MIXTURE» SYSTEM." Construction Engineering, no. 41 (February 4, 2025): 40–46. https://doi.org/10.32347/tb.2024-41.0404.
Full textMironovs, Viktors, Jekaterina Nikitina, Matthias Kolbe, Irina Boiko, and Yulia Usherenko. "Magnetic Pulse Powder Compaction." Metals 15, no. 2 (2025): 155. https://doi.org/10.3390/met15020155.
Full textPraticò, Filippo Giammaria, and Giusi Perri. "The Prediction of the Compaction Curves and Energy of Bituminous Mixtures." Infrastructures 10, no. 6 (2025): 132. https://doi.org/10.3390/infrastructures10060132.
Full textLi, Jie, Xiaohong Bai, and Fuli Ma. "Energy transfer and influencing factors in soil during compaction." PLOS ONE 15, no. 11 (2020): e0242622. http://dx.doi.org/10.1371/journal.pone.0242622.
Full textWu, Xia, Xiong Tang, Li Liu, Zhaoyi He, and Sheng He. "The Friction–Lubrication Effect and Compaction Characteristics of an SMA Asphalt Mixture under Variable Temperature Conditions." Materials 17, no. 7 (2024): 1694. http://dx.doi.org/10.3390/ma17071694.
Full textHan, Yunshan, Yanli Dong, Yuanlong Wang, Wei Duan, and Weihua Qin. "Experiment Study of Loess-filled Embankment under Dynamic Compaction." Open Civil Engineering Journal 9, no. 1 (2015): 644–49. http://dx.doi.org/10.2174/1874149501509010644.
Full textMohammadi, K., and Abolfazl Darvizeh. "Dynamic Model of Compaction Process of Metallic Powders." Advanced Materials Research 264-265 (June 2011): 155–59. http://dx.doi.org/10.4028/www.scientific.net/amr.264-265.155.
Full textSano, Yukio. "A Theoretical Derivation of the Similarity of Dynamic Compaction Processes of Powder Media in Dies." Journal of Engineering Materials and Technology 108, no. 2 (1986): 147–52. http://dx.doi.org/10.1115/1.3225852.
Full textMiklašēvičs, Ziedonis. "IDENTIFICATION AND ANALYSIS OF THE FACTORS INFLUENCING THE COEFFICIENTS FOR THE COMPACTION OF ENERGY CHIPS LOADS." Environment. Technology. Resources. Proceedings of the International Scientific and Practical Conference 1 (August 3, 2015): 11. http://dx.doi.org/10.17770/etr2009vol1.1109.
Full textCsanády, Ágnes, László Ipacs, Gyula Kakuk, et al. "Characterization and Comparison of Rapidly Solidified Al Particles Mechanically Milled Nanostructures and their Consolidated Structures Made by High Energy Rate Forming (HERF) Technique." Materials Science Forum 537-538 (February 2007): 321–28. http://dx.doi.org/10.4028/www.scientific.net/msf.537-538.321.
Full textZhang, Xiaoshuang, Min Wang, and Yunshan Han. "Model test study on the effect of dynamic compaction under low water content." PLOS ONE 16, no. 6 (2021): e0253981. http://dx.doi.org/10.1371/journal.pone.0253981.
Full textDialmy, Atar, Mustapha Rguig, and Mehdi Meliani. "Quantification and Optimization of Compaction Energy Used in Earth Construction: Case of Static and Dynamic Compaction." International Journal of Engineering Research in Africa 68 (April 10, 2024): 67–84. http://dx.doi.org/10.4028/p-u3rdpk.
Full textDelRio-Prat, Maria, Angel Vega-Zamanillo, Daniel Castro-Fresno, and Miguel Ángel Calzada-Pérez. "Energy consumption during compaction with a Gyratory Intensive Compactor Tester. Estimation models." Construction and Building Materials 25, no. 2 (2011): 979–86. http://dx.doi.org/10.1016/j.conbuildmat.2010.06.083.
Full textWróbel, Michał, Agnieszka Woszuk, and Wojciech Franus. "Laboratory Methods for Assessing the Influence of Improper Asphalt Mix Compaction on Its Performance." Materials 13, no. 11 (2020): 2476. http://dx.doi.org/10.3390/ma13112476.
Full textAlp, Gokalp. "Energy-based evaluation of vibration compaction." Pollack Periodica 1, no. 3 (2006): 31–44. http://dx.doi.org/10.1556/pollack.1.2006.3.3.
Full textYuan, Yu Qing, Xuan Cang Wang, and Hui Jun Shao. "Study on Impact Compaction of Aeolian Sand Subgrade and its Effect Evaluation." Advanced Materials Research 378-379 (October 2011): 370–73. http://dx.doi.org/10.4028/www.scientific.net/amr.378-379.370.
Full textBasheer, I. A. "Empirical modeling of the compaction curve of cohesive soils." Canadian Geotechnical Journal 38, no. 1 (2001): 29–45. http://dx.doi.org/10.1139/t00-068.
Full textZhang, Qingfeng, and Dongquan Wang. "Field study on the improvement of coal gangue filling using dynamic compaction." PLOS ONE 16, no. 5 (2021): e0250961. http://dx.doi.org/10.1371/journal.pone.0250961.
Full textBeddu, Arifin, Lawalenna Samang, Tri Harianto, and Achmad Bakri Muhiddin. "Interpretation of CBR Test Results Based on the Rapid Impact Compaction Electro-Mechanic System Model." MATEC Web of Conferences 203 (2018): 04003. http://dx.doi.org/10.1051/matecconf/201820304003.
Full textKuwik, Brett, and Ryan C. Hurley. "Energy dissipation due to breakage during confined compaction of granular materials." EPJ Web of Conferences 249 (2021): 07006. http://dx.doi.org/10.1051/epjconf/202124907006.
Full textVasyliev, Oleksii, and Andrii Yakovenko. "Determination of kinetic energy of vibrating machine VP-10." Technical sciences and technologies, no. 1 (39) (May 22, 2025): 59–68. https://doi.org/10.25140/2411-5363-2025-1(39)-59-68.
Full textLimón-Covarrubias, Pedro, Leonardo Ambrosio Ochoa-Ambriz, David Avalos-Cueva, José Roberto Galaviz-González, María de la Luz Pérez-Rea, and Manuel Alberto Gallardo-Sánchez. "Influence of Compaction Energy on the Mechanical Performance of Hot Mix Asphalt with a Reclaimed Asphalt Pavement (RAP) and Rejuvenating Additive." Infrastructures 8, no. 12 (2023): 166. http://dx.doi.org/10.3390/infrastructures8120166.
Full textJi, Xiaoping, Honglei Lu, Cong Dai, Yonggen Ye, Zhifei Cui, and Yue Xiong. "Characterization of Properties of Soil–Rock Mixture Prepared by the Laboratory Vibration Compaction Method." Sustainability 13, no. 20 (2021): 11239. http://dx.doi.org/10.3390/su132011239.
Full text